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Abstract

We prove a self normalized central limit theorem for a new mixing class of processes
introduced in Kacem et al. (2013). This class is larger than the classical strongly mix-
ing processes and thus our result is more general than Peligrad and Shao’s (1995)
and Shi’s (2000) ones. The fact that some conditionally independent processes satisfy
this kind of mixing properties motivated our study. We investigate the weak consis-
tency as well as the asymptotic normality of the estimator of the variance that we
propose.
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1 Introduction

It is well-known that asymptotic theorems allow to obtain approximations of various

laws. One of these theorem, which is fundamental in probability theory, is the central

limit theorem (C.L.T.).

In [15] we have considered processes of dependent random variables (r.v.s) that are

conditionally independent given a factor. In particular, we have assumed that the con-

ditioning is with respect to an unbounded memory of the factor. These processes are

of interest for example in risk theory. Our main result consisted in deriving some mix-

ing properties for such processes and proving a Central Limit Theorem for processes

satisfying this new mixing property. We restate here the following definition of mixing

provided in [15].

In the definition below ‖ ‖a and ‖ ‖b are norms on bounded functions (or on subspaces

of bounded functions).
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Self normalized C.L.T. for some mixing processes.

Definition 1.1. Let u, v be integers, a sequence (Xn)n∈N of r.v.s is said to be η∗(u,v)-
mixing, if there exist a function r 7→ η∗(r) decreasing to 0 as r goes to infinity and a

constant C(u, v) > 0 such that for any real valued bounded functions f and g and for

any multi-indices satisfying the relation (⋆):

i1 < · · · < iu ≤ iu < iu + r ≤ j1 < · · · < jv ≤ jv, (⋆)

we have

sup |Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv ))| ≤ C(u, v)η∗(r)‖f‖a‖g‖b, (1.1)

where the supremum is taken over all the sequences (i1, . . . , iu) and (j1, . . . , jv) satisfy-

ing (⋆) and r ≤ j1 − iu is the gap of time between past and future.

Depending on the norms used in Definition 1.1, we have various kind of mixing (see

[2]). For example, if ‖ ‖a = ‖ ‖b = ‖ ‖∞, we shall say that the process is α∗
(u,v)-mixing

and we shall write α∗(r) instead of η∗(r). If the process is α∗
(u,v)-mixing for all u, v and if

supu,v∈N
C(u, v) ≤ C < ∞ then the process is α-mixing in the sense of [23] and we shall

write α(r) instead of η∗(r).

Remark 1.2. Let h : Ru → R, be an arbitrary function and denote his lipschitz modulus

by Lip(h) = supx 6=y |h(x)− h(y)| / ‖x− y‖1. If

sup |Cov (f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv ))| ≤ C(u, v)η∗(r)Lip(f)Lip(g), (1.2)

where C(u, v) = (uLip(f)+ vLip(g)+uvLip(f)Lip(g)) and η∗(r) → 0 as r goes to infinity,

then the process is said λ-weakly dependent. For more details on this type of mixing

and on its applications we refer to [5].

In the case of classical mixing sequences (see i.e. [13, 6]), mixing coefficients are

uniform on u and v. This is not the case for mixing sequences satisfying our mixing

condition (1.1). The usefulness of this kind of mixing coefficients has been shown in

[15] where conditionally independent examples that satisfy (1.1) are given.

Mixing processes have very interesting asymptotic properties especially in the sta-

tionary case. Many authors have investigated the classical central limit theorem (C.L.T.)

for the sum Sn =
∑n

i=1 Xi where Xi are r.v.s satisfying mixing conditions (see for exam-

ples [5, 23, 14]).

Note that when the real variance in a C.L.T. is replaced by an estimate from the

given data, then the estimator is called a self-normalizer and we say that a self nor-

malized central limit theorem (S.N.C.L.T.) holds. While for independent and identically

distributed r.v.s it is very simple to estimate the variance, this is not the case for de-

pendent r.v.s for which we should construct an estimator which takes into account the

dependence structure. The present paper aims at providing a self-normalizer and a

S.N.C.L.T. for mixing sequences satisfying (1.1). For α-mixing sequences, [25] took over

the class of estimator introduced in [19] for ρ-mixing sequences and showed that this

class gives consistent estimators for strongly mixing sequences of r.v.s. For stationary

sequences of associated r.v.s we refer to [20] in which the self normalizer arises from

classical Bernstein-Block-Technique (see [1]). [7] dealt with random vectors of λ-weakly

dependent sequences. They use non-overlapping blocks denoted by

∆i,m =
1√
m

(i−1)(m+ℓ)+m∑

j=(i−1)(m+ℓ)+1

Xj ,
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Self normalized C.L.T. for some mixing processes.

in the construction of their estimator. The fact that blocks are non-overlapping leads

to choose two parameter m and ℓ while for Peligrad and Shao’s (1995) estimator the

blocks denoted by

∆̃i,m =
1√
m

i+m∑

j=i+1

Xj ,

are overlapping and only the parameter m must be chosen. In addition, choosing non-

overlapping blocks enables [7] to provide not only an estimator of the variance but also

an estimator of the variance of the estimator.

We have proved in [15] that conditionally independent processes of r.v.s (Xn)n∈N given

a factor (V1, . . . , Vn) satisfy η∗(u,v)- mixing conditions. For such processes mixing coef-

ficient may be exponentially bounded with respect to u and v (namely C(u, v) ≤ Ku+v

with K > 0) where the mixing coefficient for λ-weakly dependent r.v.s is a polynomial

function of u and v and of Lipschitz functions (see Remark 1.2). This is our main moti-

vation for providing a S.N.C.L.T. for η∗(u,v)- mixing processes.

In this work we provide a self-normalizer which is a modified version of the one ob-

tained in [19]. As in [25] we adapt this estimator to our kind of mixing. We investigate

its weak consistency as well as its asymptotic normality. In this frame we derive use-

ful tools such as a covariance inequality of Davydov’s kind and moment inequalities of

Rosenthal’s kind which are adapted with our structure of mixing.

This work is organized as follows. In Section 2 we give our main preliminary results:

moment inequalities, covariance inequality and uniform integrability property. These

are the main tools for the proofs of our results. In Section 3 we present our main re-

sults: we provide an estimator of the variance and we derive a S.N.C.L.T. (see Theorem

3.5). Also, the asymptotic normality of our estimator is proved (see Theorem 3.7). Sec-

tion 4 is devoted to the proofs. In Section 5, we recall some examples that satisfy our

assumptions. These examples may be relevant for example in risk theory contexts, they

have already been presented in [15].

2 Main tools: moment inequalities, covariance inequality and

uniform integrability

In all this paper, we shall use indifferently E(|f(X)|p) 1
p or ‖f‖p when there is no

ambiguity.

2.1 Covariance inequality

In the following proposition we restate a covariance inequality which is adapted with

our structure of mixing and which is proved in [15].

Proposition 2.1. Let (Xn)n∈N be a stationary α∗
(u,v)-mixing sequence. Let ‖f‖p < ∞

and ‖g‖q < ∞, where 1 < p, q ≤ ∞ and 1
p + 1

q < 1, then

|Cov(f(Xi1 , . . . , Xiu), g(Xj1 , . . . , Xjv ))| ≤ (C(u, v) + 8)(E|f |p) 1
p (E|g|q) 1

q α∗(r)s, (2.1)

where s = 1− 1
p − 1

q and jv − iu = r where r is a positive integer.

Remark 2.2. Note that if (Xn)n∈N is a sequence of complex valued r.v.s then by sepa-

rating the real and imaginary parts of the complex number, we obtain inequality (2.1)

with 4 ∗ (C(u, v) + 8) instead of (C(u, v) + 8).
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Self normalized C.L.T. for some mixing processes.

2.2 Moment inequalities

Moment inequalities of partial sums play a very important role in various proofs of

limit theorems. For independent r.v.s we have the following Rosenthal type inequality

E|X1 + . . .+Xn|q ≤ Cq(

n∑

i=1

E|Xi|q + (

n∑

i=1

E|Xi|2)q/2). (2.2)

In Lemmas 2.4 and 2.5 we provide Rosenthal type inequalities for mixing sequences

that satisfy the α∗
(u,v)-mixing condition defined by inequality (1.1). Recall the definition

of the coefficients of weak dependence introduced in [8].

Definition 2.3. For positive integer r, define the coefficients of weak dependence as

the non-decreasing sequence (Cr,q)(q≥2) such that

Cr,q := sup
∣∣Cov(Xt1 × . . .×Xtm , Xtm+1

× . . .×Xtq )
∣∣ ,

where the supremum is taken over the multi-indices 1 ≤ t1 ≤ · · · ≤ tq with tm+1−tm = r.

We give the following lemma for bounded r.v.s satisfying the α∗
(u,v)-mixing condition.

Lemma 2.4. Let (Xn)n∈N be a sequence of random variables such that

sup
i∈N

|Xi| ≤ M . In addition assume that (Xn)n∈N is α∗
(m,q−m)-mixing with 1 ≤ m < q. Then

for any positive integer r, we have

Cr,q ≤ MqC(m, q −m)α∗(r).

For non bounded r.v.s we derive the following lemma which is straightforward from

Proposition 2.1 and Lemma 4.6 in [5].

Lemma 2.5. Assume that the sequence of r.v.s (Xn)n∈N is centered and let Sn =

n∑

i=1

Xi.

If the sequence (Xn)n∈N is α∗
(1,1)-mixing and for some δ > 0, sup

i∈N

‖Xi‖2+δ < ∞ then

E(S2
n) ≤ 2nK2

n−1∑

r=0

α∗(r)
δ

δ+2 . (2.3)

If the sequence (Xn)n∈N is α∗
(3,3)-mixing such that sup

i∈N

‖Xi‖4+δ < ∞ for some δ > 0 then

E(S4
n) ≤ 4!n2K2

2

(
n−1∑

r=0

α∗(r)
δ

δ+2

)2

+ nK4

n−1∑

r=0

(r + 1)2α∗(r)
δ

δ+2 , (2.4)

where

K2 = (C(1, 1) + 8) sup
i∈N

‖Xi‖22+δ and K4 = (C(3, 3) + 8) sup
i∈N

‖Xi‖44+2δ .

In Section 3 we need an estimation of the moments of the sum of order p greater

than 2 where p is not necessary an integer. To this aim we prove the following theorem

which apply to α∗-mixing processes. It is a generalized version of Theorem 4.1 in [24].

For δ > 0 fixed, n ∈ N
∗, p ≥ s > 0, we define

Dn,s,p =

(
n−1∑

q=0

(1 + q)p−sα∗(q)
δ

δ+2

)( δ
δ+s+1)

. (2.5)
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Self normalized C.L.T. for some mixing processes.

Theorem 2.6. Let 2 < p < r < ∞, 2 < v ≤ r and (Xn)n∈N be an α∗
(m,2)-mixing sequence

of r.v.s where 1 < m < [n2 ] + 1. Let EXn = 0 and assume for all n ∈ N, ‖Xn‖r < ∞.

Assume that for some C > 0 and θ > 0

α∗(n) ≤ Cn−θ. (2.6)

Then, for any ǫ > 0 there exists A = A(ε, r, p, θ, C) < ∞ such that

E|Sn|p ≤ A

(
np/2(K2Dn,2,2)

p/2 + n(p−(r−p)θ/r)∨(1+ǫ) sup
i≤n

‖Xi‖pr
)
. (2.7)

In particular, for any ε > 0, if θ ≥ (p− 1)r/(r − p) then

E|Sn|p ≤ A

(
np/2(K2Dn,2,2)

p/2 + n(1+ε) sup
i≤n

‖Xi‖pr
)
, (2.8)

and if θ ≥ pr
(2(r−p)) then

E|Sn|p ≤ Anp/2

(
(K2Dn,2,2)

p/2 + sup
i≤n

‖Xi‖pr
)
. (2.9)

2.3 Uniform integrability

The concept of uniform integrability (U.I.) is essential in the proof of our limit theo-

rems. Recall that if lim
A→∞

sup
n∈N

E(|Xn|1|Xn|>A) = 0 then the family of r.v.s (Xn)n∈N is said

uniformly integrable. Lemma 2.5 leads to the following corollary which gives sufficient

conditions to have U.I. condition of order p where p ∈ {2, 4}.

Corollary 2.7. Choose p an integer in {2, 4} . Let (Xn)n∈N be a stationary α∗
(p−1,p−1)

mixing sequence. Without loss of generality consider that E(Xi) = 0 and assume that

E(|Xi|p+δ) < ∞ for some δ > 0. If for each s in {2, p}

D∞,2,s < ∞,

then {∣∣∣∣
Sn√
n

∣∣∣∣
p

, n ≥ 1

}
,

is uniformly integrable.

Remark 2.8. Let (Xn)n∈N be a stationary α∗
(m,2)-mixing sequence of random variables,

where 1 < m < [n2 ] + 1. Assume that for some, C > 0, δ > 0, p > 2, a > p(p+δ)
2δ ,

α∗(n) ≤ Cn−a, E|X1|p+δ < ∞,

then Theorem 2.6 implies that

{∣∣∣∣
Sn − E(Sn)√

n

∣∣∣∣
p

, n ≥ 1

}
is uniformly integrable.

3 Self Normalized Central Limit Theorem for stationary strongly

mixing sequences

In the literature, to prove limit theorems for strongly mixing sequences of r.v.s, one

may approximate the strongly mixing sequence by another sequence. For examples, [9,

10] considers a direct approximation of mixing sequences by a sequence of martingale

differences (for more details we refer to [26] and [11]). Another method known as
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Self normalized C.L.T. for some mixing processes.

Bernstein’s method (see [1]) is to consider a direct approximation of mixing sequences

by a sequence of independent r.v.s. This is the method used in the proof of the central

limit theorem derived in [13]. We refer to [3, 5, 6] for a survey on C.L.T. for mixing

sequences.

Remark 3.1. Assume that (Xn)n∈N is a stationary centered sequence.

If
∑∞

j=1 E(X0Xj) < ∞ then

σ2 := E(X2
0 ) + 2

∞∑

j=1

E(X0Xj) < ∞. (3.1)

If σ > 0 then,

σ2
n := E(

n∑

j=0

Xj)
2 = nE(X2

0 ) + 2

n∑

j=1

(n− j)Cov(X0, Xj) = nσ2(1 + o(1)). (3.2)

Before stating a S.N.C.L.T. for α∗
(u,v)−mixing sequence of r.v.s we recall the following

theorem proved in [15] for α∗
(u,v)-mixing process.

Theorem 3.2. Let (Xn)n∈N be a stationary α∗
(u,v)-mixing process for all (u, v) ∈ N

∗. Let
E(X1) = µ and assume for a fixed δ > 0

E |X1|2+δ
< ∞ and

∞∑

r=1

α∗(r)
δ

2+δ < ∞. (3.3)

If in addition there exist M > 0 and K > 0 such that for any u, v, and r,

{
C(u, v) ≤ Ku+v,

α∗(r) ≤ M
ra , a > max {2 ln(K)− 1, 2} .

(3.4)

Then,
Sn − nµ√

nσ

L→ N(0, 1). (3.5)

Remark 3.3. Condition (3.3) or (3.4) on α∗ implies (3.1).

The invariance principle has been extensively investigated for weakly dependent

and mixing sequences (see i.e. [17, 18, 22, 4]). In particular [16] derived a weak in-

variance principle (W.I.P.) for dependent r.v.s which is extended by [12] for α-mixing

sequence of r.v.s. In the following theorem we provide a W.I.P. for α∗
(u,v)-mixing se-

quence. Let {W (t), 0 ≤ t ≤ 1} be a standard Wiener process and define by Wn(t) =

(S[nt] − [nt]µ)/σn, 0 ≤ t ≤ 1.

Theorem 3.4. Let (Xn)n∈N be a stationary α∗
(u,v)-mixing process for all (u, v) ∈ N

∗×N
∗.

Let E(X1) = µ and assume that (3.3) and (3.4) hold. Then,

Wn ⇒ W, (3.6)

where ⇒ stands for the weak convergence.

Now we introduce the following estimator which is a modified version of some esti-

mators introduced in [19] (we write ℓn = ℓ).

B2
n,2 =

1

n− ℓ+ 1

n−ℓ∑

j=0

(
Sj(ℓ)−Xℓ√

ℓ

)2
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Self normalized C.L.T. for some mixing processes.

and

B̂2
n,2 =

1

n− ℓ+ 1

n−ℓ∑

j=0

(
Sj(ℓ)− ℓµ√

ℓ

)2

with

Sj(ℓ) =

j+ℓ∑

k=j+1

Xk and Xℓ =
1

n− ℓ+ 1

n−ℓ∑

j=0

Sj(ℓ).

Note that as n → ∞, (3.2) may be written as follows

Var(Sn)

n
:=

σ2
n

n
→ σ2. (3.7)

The following result proves that B2
n,2 is a consistent estimator of σ2.

Theorem 3.5. Let (Xn)n∈N be a stationary process wich is α∗
(u,v)-mixing for all integers

u and v. Assume that (3.3) holds. In addition assume that there exists K > 0 such that

for all integers u and v,

C(u, v) ≤ Ku+v and consider ℓn = ℓ, ℓ = [ln(n)/5 ln(K)] + x, (3.8)

where [y] denotes the integer part of y and x is an integer. If 0 < σ < ∞, then

Bn,2 → σ in L2. (3.9)

Remark 3.6. Note that a consequence of (3.5) and (3.9) is that

Sn − nµ√
nBn,2

L→ N(0, 1). (3.10)

This proves a S.N.C.L.T. for mixing processes satisfying our α∗
(u,v)− mixing condition.

Finally, we state the asymptotic normality of Bn,2.

Theorem 3.7. Let (Xn)n∈N be a stationary α∗
(u,v)-mixing process for all integers u and

v, with E(X1) = µ. Denote by S(ℓ) =
∑ℓ

k=1 Xk and let ℓ be as in (3.8). Assume (3.3),

(3.7), it exists δ > 0 such that E(|Xi|4+3δ) < ∞ and that there exist K > 0, C > 0 such

that for all integers u, v, r

{
C(u, v) ≤ Ku+v,

α∗(r) ≤ C
ra , with a > max

{
(δ+2)(4+3δ)

δ , 2 ln(K)− 1
}
,

(3.11)

Then,
√

n

ℓ


Bn,2 − E

(∣∣∣∣
S(ℓ)− ℓµ√

ℓ

∣∣∣∣
2
) 1

2


 L→ N(0,

σ2

3
). (3.12)

Remark 3.8. Note that the choice of ℓ depends on the behavior of C(u, v). Assume that

there is K > 0 such that for all (u, v) we have

1. Case 1: C(u, v) ≤ K we may choose ℓn = o(n) and Theorems 3.5 and 3.7 hold.

2. Case 2: C(u, v) ≤ K(u + v)β i.e. C(u, v) is a polynomial on u and v then we can

choose ℓn = ns with s < 1
4 if β < 4 and s < 1

β+1 if β ≥ 4 and Theorems 3.5 and 3.7

hold.
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Self normalized C.L.T. for some mixing processes.

4 Proof of the main results

Proof of Theorem 2.6. Because in our case the mixing coefficients depend on u and v,

classical theorems such as Theorem 4.1 in [24] don’t hold. We may nevertheless follow

the lines of their proof. We shall prove inequality (2.7) by induction on n. Assume that

E|Sk|p ≤ A
(
kp/2(K2Dn,2,2)

p/2 + kp+
θ(p−r)

r ∨(1+ǫ) ‖X‖pr
)

(4.1)

holds for each 1 < k < n. Note that (4.1) is obvious for k = 1. We shall prove that (4.1)

holds for k = n. Define

ξi =

n∧(2i−1)m∑

j=1+2(i−1)m

Xj , ηi =

n∧2im∑

j=1+(2i−1)m

Xj , (4.2)

where 1 ≤ i ≤ kn := 1 + [n/(2m)]. Note that for fixed i there exists a gap of length m

between ξi and ηi. Let a be a constant such that 0 < a < 1
2 and take m = [an] + 1. By

Minkowski inequality we write

E|Sn|p ≤ 2p−1(E|
kn∑

i=1

ξi|p + E|
kn∑

i=1

ηi|p) := 2p−1(I1 + I2). (4.3)

The proof of Theorem 2.6 requires the following Lemma due to [24].

Lemma 4.1 ([24], Lemma 4.1). Let ξi, 1 ≤ i ≤ n be a sequence of r.v.s and let Fi be the

σ-field generated by (ξj , j ≤ i). Then for any p ≥ 2 there is a constant D = D(p) such

that

E|
n∑

i=1

ξi|p ≤ D × [(
n∑

i=1

E(ξ2i ))
p
2 +

n∑

i=1

E|ξi|p + np−1
n∑

i=1

E|E(ξi|Fi−1)
p+

n
p
2−1 × |

n∑

i=1

E|E(ξ2i |Fi−1)− E(ξ2i )|
p
2 ].

In order to simplify the notations, in what follows, ‖X‖r stands for sup
i≤n

‖Xi‖r.

Replacing n by kn in Lemma 4.1 yields to

I1 ≤ D × [(

kn∑

i=1

E|ξi|2)
p
2

︸ ︷︷ ︸
I1,1

+

kn∑

i=1

E|ξi|p + kp−1
n

kn∑

i=1

E|E(ξi|Fi−1)|p

︸ ︷︷ ︸
I1,2

+

k
p
2−1
n

kn∑

i=1

E|E(ξ2i |Fi−1)− E(ξ2i )|
p
2

︸ ︷︷ ︸
I1,3

].

We begin with the bound for I1,1. From (2.3) and (2.5) we deduce that

I1,1 ≤ (kn2mK2Dm,2,2)
p
2 ≤ 2

p
2 (knm)

p
2 (K2Dm,2,2)

p
2 ≤ 2pK

p
2
2 (nDn,2,2)

p
2

where knm < 2n.

Nowwe consider I1,3. Define Yi = E(ξ2i |Fi−1)−E(ξ2i ) and denote by Fi−1 = σ(ξ1, . . . , ξi−1).
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Yi is a measurable function with respect to Fi−1. Write E(|Yi|p/2) = E|Yi|(p/2)−1sgn(Yi)Yi

then we have

E(|Yi|p/2) = E(|Yi|
p
2−1sgn(Yi)(ξ

2
i − E(ξ2i )))

≤ sup
j,l

∑

2(i−1)m<j,l≤n∧(2i−1)m

Cov(|Yi|
p
2−1, XjXl − E(XjXl)).

Consider that

f(X1+2(i−1)m, . . . , Xn∧(2i−1)m) = |Yi|p/2−1 and g(Xj , Xl) = |XjXl − E(XjXl)|.

Choose p in (2.1) equals to p
p−2 and q = r

2 such that 2
r + p−2

p < 1, in this case by

Proposition 2.1 we have
∣∣∣Cov

(
|Yi|p/2−1, XjXl − E(XjXl)

)∣∣∣ ≤ (C(m, 2) + 8)(E|Yi|
p
2 )

p−2
p ‖XjXl‖ r

2
α∗(m)

2
p− 2

r .

Then

E|Yi|p/2 ≤ (C(m, 2) + 8)m2(E|Yi|
p
2 )

p−2
p ‖X‖2r α∗(m)

2
p− 2

r .

Hence

E|Yi|p/2 ≤ (C(m, 2) + 8)
p
2mp ‖X‖pr α∗(m)1−

p
r .

Let B be a constant. By inequality (2.6) and as θ > 0 and p < r we write

I1,3 ≤ k
p
2
n (C(m, 2) + 8)

p
2mp ‖X‖pr α∗(m)1−

p
r

≤ 2pB(C(m, 2) + 8)pn(p+θ
(p−r)

r )∨(1+ε)aθ
(p−r)

r ‖X‖pr
Now, let us focus on I1,2. Define Zi = E(ξi|Fi−1) and denote by

f(X1+2(i−1)m, . . . , Xn∧(2i−1)m) = |Yi|p and g(Xj) = |Xj − E(Xj)|.

Now choose p in (2.1) equals to p
p−1 and q equals to r where 1

r + p−1
p < 1. Then in this

case we have

E(|Zi|p) = E(|Zi|p−1sgn(Zi)(ξi)) ≤ sup
∑

2(i−1)m<j≤n∧(2i−1)m

Cov[(|Zi|p−1, Xj)]

≤ (C(m, 1) + 8)m(E|Zi|p)
p−1
p ‖X‖r α∗(m)

1
p− 1

r .

Hence,

E(|Zi|p) ≤ (C(m, 1) + 8)pmp ‖X‖pr α∗(m)1−
p
r .

By inequality (2.6) and as θ > 0 and p < r we have

I1,2 ≤ 2pC(C(m, 2) + 8)pn(p+θ
(p−r)

r )∨(1+ε)aθ
(p−r)

r ‖X‖pr ,

where C is a constant, whence

I1 ≤ D[

kn∑

i=1

E|ξi|p + 2pK
p
2
2 (nDn,2,2)

p
2+

2p+1B(C(m, 2) + 8)pn(p+θ
(p−r)

r )∨(1+ε)aθ
(p−r)

r ‖X‖pr ].
(4.4)

Similarly for

I2 ≤ D[

kn∑

i=1

E|ηi|p + 2pK
p
2
2 (nDn,2,2)

p
2

+ 2p+1B(C(m, 2) + 8)pn(p+θ
(p−r)

r )∨(1+ε)aθ
(p−r)

r ‖X‖pr ].
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Self normalized C.L.T. for some mixing processes.

Consequently, we have

E |Sn|p ≤ 2p−1D[

kn∑

i=1

E|ξi|p +
kn∑

i=1

E|ηi|p + 2p+1K
p
2
2 (nDn,2,2)

p
2

+ 2B(C(m, 2) + 8)p2p+1n(p+θ
(p−r)

r )∨(1+ε)aθ
(p−r)

r ‖X‖pr ].

Remark that
∑kn

i=1 E|ξi|p +
∑kn

i=1 E|ηi|p ≤ 2knE|ξ1|p = 2knE|Sm|p.
Take a = (2p+4D)−

1
ε− 2

p−2 . Assume that (4.1) is true for all k < n where

A = 2p+1D
[
2p + 2p+1C (C(m, 2) + 8)

p
aθ

(p−r)
r

]
.

In this case by (4.3), (4.4) and (4) we get

E |Sn|p ≤ 2pDknA
[
mp/2(K2Dm,2,2)

p/2 +mp+θ
(p−r)

r ∨(1+ε) ‖X‖pr
]

+
A

2

(
n

p
2 (K2Dn,2,2)

p
2 + n(p+θ

(p−r)
r )∨(1+ǫ) ‖X‖pr

)

≤ A
[
np/2(K2Dn,2,2)

p/2 + n(p+
θ(p−r)

r )∨(1+ε) ‖X‖pr
]
.

(4.5)

So that, finally (4.1) is valid for k = n.

Before proceeding to the proof of Theorem 3.5, we give the following lemma which

is useful in the proof of this theorem. This lemma is a variant of Lemma 2.3 in [25].

Lemma 4.2. Let (Xn, n ≥ 1) be α∗
(ℓn,ℓn)

-mixing sequence where 1 ≤ ℓn ≤ n. Let f be

a real function on R
ℓn and put Zi = f(Xi+1, . . . , Xi+ℓn). Assume that E |Zk|2+δ

< ∞ for

some δ > 0 and sup
j∈N

‖Zj‖22+δ < ∞. Then we have

V ar(

n∑

k=1

Zk) ≤ 2nKℓn sup
j∈N

‖Zj‖22+δ (C(ℓn, ℓn) + 8)

[ n
ℓn
]+1∑

r=1

α∗(r)
δ

δ+2 .

where K is a constant.

Proof of Lemma 4.2. Let f be a real function onR
ℓn and denote by Zi = f(Xi+1, . . . , Xi+ℓn).

Write

Var(

n∑

k=1

Zk) ≤ ℓ2n max
j

Var(

[ n
ℓn
]∑

i=0

Ziℓn+j)

and use Proposition 2.1.

Proof of Theorem 3.4. To prove this theorem we follow the proof of the W.I.P. pro-

vided by [12] for α− mixing sequences. Note that the proof of the Theorem of [12] is

done in a simplified version in [3]. Following their proof, the W.I.P. holds for α− mixing

sequences if a C.L.T. holds and if tightness is verified. We note that a sufficient condi-

tions for tightness is the following: for any ǫ > 0, η > 0, there exist a δ, 0 < δ < 1, and

an integer n0 such that, for 0 ≤ t ≤ 1,

1

δ
P

{
sup

t≤s≤s+δ
|Wn(s)−Wn(t)| ≥ ǫ

}
≤ η, n ≥ n0. (4.6)

Recall that a C.L.T. (Theorem 3.2) holds for α∗
(u,v)− mixing sequences, so that, the key

to prove Theorem 3.4 lies in verification of (4.6). A careful analysis of the proof of [3]
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Self normalized C.L.T. for some mixing processes.

shows that if in addition to (3.3) and (3.4), there exists a positive integer p = o(n) such

that as n → ∞,

(n/p) max
0≤m≤n−p

P

{
max
1≤r≤p

|Sm+r − Sm| > ǫ
√
n

}
→ 0 for any ǫ > 0, (4.7)

then the tightness is verified. Equation (4.7) is implied by

max
0≤m≤n−p

E



(∑m+p

i=m+1 |Xi|√
p

)2

I

(∑m+p
i=m+1 |Xi|√

p
> ǫ

√
n

p

)
→ 0 as n → ∞, (4.8)

and (4.8) is satisfied provided that
{
|∑m+p

i=m+1 Xi/
√
p|2, p ≥ 1

}
is uniformly integrable

which follows from Corollary 2.7. The proof is completed.

Proof of Theorem 3.5. Without loss of generality consider that µ = 0. We have∑∞
n=1 α

∗(n)
δ

2+δ < ∞ then, for large n, α∗(n)
δ

δ+2 ≤ 1
n whence α∗(n)n

2
δ ≤ α∗(n)

δ
δ+2 . First

we prove that

|Bn,2 − B̂n,2| → 0 in L2 . (4.9)

By Minkowski inequality we have

(
n−ℓ∑

j=0

|Sj(ℓ)−Xℓ√
ℓ

|2) 1
2 ≤ (

n−ℓ∑

j=0

|Sj(ℓ)√
ℓ

|2) 1
2 + (

n−ℓ∑

j=0

|Xℓ√
ℓ
|2) 1

2 .

Hence,

|Bn,2 − B̂n,2| ≤
1√

n− ℓ+ 1
× [(

n−ℓ∑

j=0

|Sj(ℓ)√
ℓ

|2) 1
2 + (

n−ℓ∑

j=0

|Xℓ√
ℓ
|2) 1

2 − (
n−ℓ∑

j=0

|Sj(ℓ)√
ℓ

|2) 1
2 ].

We obtain

E|Bn,2 − B̂n,2|2 ≤ 1

n− ℓ+ 1
E|(

n−ℓ∑

j=0

|Xℓ√
ℓ
|2) 1

2 |2 = E|X
2

ℓ

ℓ
|.

Moreover,

E|X
2

ℓ

ℓ
| = 1

ℓ
Var(Xℓ) =

1

ℓ(n− ℓ+ 1)2
Var(

n−ℓ∑

j=0

Sj(ℓ)).

We write S(ℓ) = S0(ℓ). From Lemma 4.2

1

ℓ(n− ℓ+ 1)2
Var(

n−ℓ∑

j=0

Sj(ℓ)) ≤
2A′(C(ℓ, ℓ) + 8)

(n− ℓ+ 1)
‖S(ℓ)‖22+δ

[n−ℓ
ℓ ]+1∑

r=0

α∗(r)
δ

δ+2 .

where A′ is a constant. The choice of ℓn depends on the behavior of C(u, v) with respect

to u and v. Since we assume that

C(u, v) ≤ Ku+v, ℓ = [
ln(n)

5 ln(K)
] + x, (4.10)

we get (using Theorem 2.6):

2A′

(n− ℓ+ 1)

[n−ℓ
ℓ ]+1∑

r=0

α∗(r)
δ

δ+2 (K2xn
2
5 + 8) ‖S(ℓ)‖22+δ = O(

ℓ

n
3
5

) = o(1).
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Self normalized C.L.T. for some mixing processes.

Hence (4.9) holds. In order to prove that Bn,2 → σ as n → ∞ it suffices to prove that

B̂n,2 → σ in L2 as n → ∞. (4.11)

Now we first prove that

E|B̂2
n,2 − E(

S(ℓ)√
ℓ
)2| → 0 as n → ∞. (4.12)

Define

Zj,1 = (
Sj(ℓ)√

ℓ
)2I(

|Sj(ℓ)|√
ℓ

≤ (
n

ℓ
)1/8) and Zj,2 = (

Sj(ℓ)√
ℓ

)2I(
|Sj(ℓ)|√

ℓ
> (

n

ℓ
)1/8).

We have

E|B̂2
n,2 − E(

S(ℓ)√
ℓ
)2| = 1

n− ℓ+ 1
E|

n−ℓ∑

j=0

(Zj,1 − E(Zj,1)) +

n−ℓ∑

j=0

(Zj,2 − E(Zj,2))|

≤ K ′n−1(E|
n−ℓ∑

j=0

Zj,1 − E(Zj,1)|+ nE|Z0,2|)

≤ K ′[(n−2Var(
n−ℓ∑

j=0

Zj,1))
1
2 + E(

S(ℓ)√
ℓ
)2I(

|S(ℓ)|√
ℓ

> (
n

ℓ
)1/8)].

where K ′ is a constant. From Lemma 4.2 we obtain

n−2Var(

n−ℓ∑

j=0

Zj,1) ≤
2A

′

1ℓ(n− ℓ+ 1)

n2
(C(ℓ, ℓ) + 8) ‖Zj,1‖22+δ

[n−ℓ
ℓ ]+1∑

r=0

α∗(r)
δ

δ+2

where A
′

1 is a constant. With our choice of ℓ:

E|B̂2
n,2 − E(

S(ℓ)√
ℓ
)2| = O(

ln(n)

n
3
5

).

On the other hand, the uniform integrability of
(
S(ℓ)/

√
ℓ
)2

implies that

E[(
S(ℓ)√

ℓ
)2I|S(ℓ)

√
ℓ
|>(n

ℓ )
1/8 ] → 0.

Then (4.12) holds. Moreover, the uniform integrability of
(
S(ℓ)/

√
ℓ
)2

implies

E[(
S(ℓ)√

ℓ
)2I|S(ℓ)

√
ℓ
|≤R

] → E(
S(ℓ)√

ℓ
)2, as R → ∞

and recall that from Remark 3.1

E(
S(ℓ)√

ℓ
)2 → σ2 as ℓ → ∞. (4.13)

So that (4.12) implies

E|B̂2
n,2 − σ2| → 0 as n → ∞. (4.14)

Finally, for any x, y ≥ 0, for any p ≥ 1.

|x− y|2 ≤ K ′|xp − yp| 2p ,

so that (4.11) holds. As a conclusion, by (4.9) and (4.11) we have Bn,2 → σ in L2 as

n → ∞.
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Self normalized C.L.T. for some mixing processes.

Remark 4.3. Note that if C(u, v) is a polynomial function of u and v such that C(u, v) ≤
K(u+ v)β and if we choose ℓ = ns with s < 1

(1+β) then Theorem 3.5 holds with the same

proof.

In the proof of Theorem 3.7 we need the following lemma on triangular arrays.

Lemma 4.4. Let (Xn)n≥1 be α∗
(u,v)-mixing sequence of r.v.s for every 1 ≤ u ≤ v ≤

n. Assume that (3.3) and and 3.4 hold. Let {ank;1≤k≤n} be a triangular array of real

numbers such that

sup
n

n∑

k=1

a2nk < ∞ and sup |ank| → 0 as n → ∞. (4.15)

Assume that

{
|Xk|2+δ

}
is a uniformly integrable family and that

Var(
n∑

k=1

ankXk) → σ2.

Then ∑n
k=1 ankXk

σ

L→ N(0, 1) (4.16)

as n → ∞.

In order to prove Lemma 4.4 we need the following lemma whose proof follows the

proof of Lemma 3.2 in [21].

Lemma 4.5. Let (Xn)n∈N be an α∗
(1,1)-mixing sequence with sup

k∈N

E |Xk|2+δ
< ∞ for

some δ > 0. Let {ank; 1 ≤ k ≤ n} be a triangular array of real number such that

∞∑

k=1

a2nk < ∞ and sup
1≤k≤n

|ank| → 0 as n → ∞. (4.17)

Assume that (3.3) holds then for every 0 ≤ a < b ≤ n

Var(

b∑

k=a

ankXk) ≤ C1

b∑

k=a

a2nk < ∞, (4.18)

where C1 = 2(C(1, 1) + 8) sup
i∈N

‖Xi‖22+δ

∑

r=0

α∗(r)
δ

δ+2 .

Proof of Lemma 4.5. Proceed as in [21] to get

Var(

b∑

k=a

ankXk) ≤ 2

b∑

k=a

a2nk

b∑

k,j=a

|Cov(Xk, Xj)|

and use Lemma 2.5.

Remark 4.6. Let (Xn)n∈N be a stationary centered sequence and let {ank;1≤k≤n} be a

triangular array of real numbers.

If for any k ≥ 1,
∞∑

t=1

antE(XtXk) < ∞

then

s2k :=
∞∑

t=1

ankantE(XtXk) < ∞, (4.19)
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and

σ2
n := E

(
n∑

k=1

ankXk

)2

=

n∑

k=1

s2k. (4.20)

Clearly, we have

n inf
1≤k≤n

s2k < σ2
n < n sup

1≤k≤n
s2k.

Now we prove Lemma 4.4

Proof of Lemma 4.4. We use a truncation technic. Let N be a constant, we write

X
′

i = XiI(|Xi| ≤ N)− E(XiI(|Xi| ≤ N)),

X
′′

i = XiI(|Xi| > N)− E(XiI(|Xi| > N)),

From Lemma 4.5 and by the uniform integrability condition of |Xi|2+δ we have

lim
N→∞

sup
n

Var(

n∑

i=1

ankX
′′

ni) = 0.

so to prove this lemma it suffices to prove that
∑n

i=1 ankX
′
i√

Var(
∑n

i=1 ankX
′
i)

L→ N (0, 1),

We follow the proof of Theorem 3.2 given in [15] which is based on Bernstein’s method.

We note that Lemma 4.4 holds if conditions (4.21) and (4.22) below are satisfied for

some p = o(n), q = [n/p] and k = [n/(p+ q)].

lim
n→∞

n sup1≤k≤n a
2
nk

pσ2
n

∫

|Z|>ǫσn

z2dFp(z) = 0, (4.21)

with Fp the distribution function Fp(z) = P (an1X
′
1 + . . .+ anpX

′
p < z) and

lim
n→∞

E(
1

σn

k∑

i=0

ηi)
2 = 0, where ηi =

(i+1)p+(i+1)q∑

(i+1)p+iq+1

anjX
′
j , (0 ≤ i ≤ k − 1). (4.22)

Using Markov’s inequality, we have

n sup1≤k≤n a
2
nk

pσ2
n

∫

|Z|>ǫσn

z2dFp(z) ≤
n sup1≤k≤n a

4
nk

ǫ2pσ4
n

E(

p∑

i=1

X ′
i)

4, (4.23)

Assume without loss of generality that E(X ′
i) = 0. Using that

∑∞
j=1 α

∗(j) < ∞, the

inequality |E(X ′
0, X

′
j)| ≤ C(1, 1)N2α∗(j) and following Remark 4.6 we get

lim
n→∞

n sup1≤k≤n a
2
nk

pσ2
n

∫

|Z|>ǫσn

z2dFp(z) ≤ lim
n→∞

n sup1≤k≤n a
4
nkE(

∑p
i=1 X

′
i)

4

ǫ2 inf1≤k≤n s4kpn
2

. (4.24)

Lemma 4.6 in [5] implies that E(

n∑

i=1

X ′
i)

4 = O(n2) if

∞∑

i=1

jα∗(j) < ∞. Hence the right hand of (4.23) is O( pn ) and goes to zero provided that

p = o(n). For the second condition (4.22) we have

lim
n→∞

E[(
1

σn

k∑

i=0

ηi)
2] ≤ lim

n→∞

sup1≤k≤n a
2
nk

inf1≤k≤n s2kn
[

k∑

i=1

E(η2i ) + 2
∑

i<j≤k

E(ηiηj)]. (4.25)

Following the proof of Theorem 3.2 in [15], we get Lemma 4.4.
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Self normalized C.L.T. for some mixing processes.

Theorem 3.7 follows from the proposition below which is the same result as in The-

orem 3.7 but for B̂n,2 instead of Bn,2.

Proposition 4.7. Let (Xn)n∈N be a stationary α∗
(u,v)-mixing process for all (u, v) ∈ N

∗

with E(X1) = µ. Denote by S(ℓ) =
∑ℓ

k=1 Xk and let ℓ be as in (3.8). Assume (3.3), (3.7),

(3.11) and E(|Xi|4+3δ) < ∞. Then,

√
n

ℓ
(B̂n,2 − E(|S(ℓ)− ℓµ√

ℓ
|2) 1

2 )
L→ N(0,

σ2

3
). (4.26)

Proof of Proposition 4.7. Assume without loss of generality that E(X1) = 0. Let r =

o(n) and ℓ = o(r). Define

ξm,n =

m(2ℓ+r)+r−1∑

j=m(2ℓ+r)

[(
Sj(ℓ)√

ℓ
)2 − E(

Sj(ℓ)√
ℓ

)2],

ηm,n =

(m+1)(2ℓ+r)−1∑

j=m(2ℓ+r)+r

[(
Sj(ℓ)√

ℓ
)2 − E(

Sj(ℓ)√
ℓ

)2],

where m = 0, 1, . . . , kn := [(n− ℓ+ 1)/(2ℓ+ r)]− 1, ξ is a partial sum of r terms and η is

a partial sum of 2ℓ terms.

We follow the strategy of proof of Theorem 2.1 in [19] and Theorem 1.3 in [25]. Recall

that these results do not apply directly because of the form of our mixing.

It is easy to see that

√
n

ℓ
(B̂2

n,2 − E(
S(ℓ)√

ℓ
)2) =

√
n

ℓ

1

(n− ℓ+ 1)

n−ℓ∑

j=0

[(
Sj(ℓ)√

ℓ
)2 − E(

Sj(ℓ)√
ℓ

)2]

=

√
n

ℓ

1

(n− ℓ+ 1)

kn∑

m=0

ξm,n +

√
n

ℓ

1

(n− ℓ+ 1)

kn∑

m=0

ηm,n

+

√
n

ℓ

1

(n− ℓ+ 1)

n−ℓ∑

j=(kn+1)(2ℓ+r)

[(
Sj(ℓ)√

ℓ
)2 − E(

Sj(ℓ)√
ℓ

)2]

= J1,n + J2,n + J3,n.

By Lemma 4.2 we have

Var(J3,n) =
n

ℓ

1

(n− ℓ+ 1)2
Var[

n−ℓ∑

j=(kn+1)(2ℓ+r)

((
Sj(ℓ)√

ℓ
)2 − E(

Sj(ℓ)√
ℓ

)2)]

≤ 2A′
2n(2ℓ+ r)

(n− ℓ+ 1)2
(C(ℓ, ℓ) + 8)||(S(ℓ)√

ℓ
)2||22+δ

[nℓ ]+1∑

r=1

α∗(r)
δ

δ+2 ,

where A′
2 is a constant. Also by Lemma 4.2 as kn ≤ (n/r) we have

Var(J2,n) =
n

(n− ℓ+ 1)2ℓ
Var(

kn∑

m=0

ηm,n)

≤ 2ℓn2A
′

3(C(ℓ, ℓ) + 8)

r(n− ℓ+ 1)2
||(S(ℓ)√

ℓ
)2||22+δ

[nℓ ]+1∑

r=1

α∗(r)
δ

δ+2 ,

(4.27)
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where A
′

3 is a constant. Consider r =
√
n, and ℓ = ⌈ln(n)/(5 lnK)⌉ + x, then Var(J2,n)

and Var(J3,n) go to 0.

Therefore to complete the proof of Proposition 4.7 it remains to show that

J1,n
L→ N (0,

4σ4

3
), (4.28)

or equivalently,

1√
nℓ

kn∑

m=0

ξm,n
L→ N (0,

4σ4

3
). (4.29)

We have

1√
nℓ

kn∑

m=0

ξm,n =

√
r

n

√
1

rℓ

kn∑

m=0

ξm,n =

√
r

n

kn∑

m=0

ζm,n, (4.30)

where we denote by ζm,n =
√

1
rℓξm,n. Recall that by (3.11) and

E(|Xi|4+3δ) < ∞, ∣∣∣Sj(ℓ)/
√
ℓ
∣∣∣
4+2δ

is U.I. (4.31)

In addition with our choice of ℓ and r we have

(
r

ℓ
)1+

δ
2E|(S(ℓ)√

ℓ
)2|2+δI((

S(ℓ)√
ℓ
)2 ≥ 1

2

√
r

ℓ
) = o(1). (4.32)

By stationarity and (4.32) we have

sup
m

E|ζm,n|2+δI(|ζm,n| >
r

ℓ
) ≤ 2δ+1(

r

ℓ
)1+

δ
2E|(S(ℓ)√

ℓ
)2|2+δI((

S(ℓ)√
ℓ
)2 ≥ 1

2

√
r

ℓ
)

= o(1) as n → ∞.

(4.33)

which means that
{
|ζm,n|2+δ

}
is uniformly integrable. Now we will prove that

Var(

√
r

n

kn∑

m=0

ζm,n) →
4σ4

3
. (4.34)

We have

Var(

√
r

n

kn∑

m=0

ζm,n) =
r

n

kn∑

m=0

E(ζ2m,n) + 2

kn−1∑

i=0

kn∑

j=i+1

E(

√
r

n
ζj,n

√
r

n
ζi,n).

Using (2.1) and with our choices of ℓ = [ln(n)/5 ln(K)] + x and r =
√
n we have ∀ j > i

E(

√
r

n
ζi,n

√
r

n
ζj,n) =

1

nℓ
E(ξi,nξj,n) =

1

nℓ3
Cov(

i(2ℓ+r)+r−1∑

k=i(2ℓ+r)

S2
k(ℓ),

j(2ℓ+r)+r−1∑

s=j(2ℓ+r)

S2
s (ℓ))

≤ A
′

4

nℓ3

i(2ℓ+r)+r−1∑

k=i(2ℓ+r)

j(2ℓ+r)+r−1∑

s=j(2ℓ+r)

(C(ℓ, ℓ) + 8)
∥∥S2(ℓ)

∥∥2
2+δ

α∗(s− k)
δ

δ+2

≤
A

′

4

(
K2xn

2
5 + 8

)
r2

nℓ3
∥∥S2(ℓ)

∥∥2
2+δ

α∗ ((j − i+ 1)(2ℓ+ r))
δ

δ+2

≤
A

′

4

(
n

2
5 + 8

)

ℓ3
∥∥S2(ℓ)

∥∥2
2+δ

α∗ ((j − i+ 1)(2ℓ+ r))
δ

δ+2 ,

(4.35)
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where A
′

4 is a constant. Using Theorem 2.6 to bound ‖S2(ℓ)‖22+δ and with our hypothesis

on the coefficients α∗ (specifically, the assumption that

a > ((4 + 3δ)(δ + 2))/δ), we get:

kn−1∑

i=0

kn∑

j=i+1

E(

√
r

n
ζi,n

√
r

n
ζj,n) = o(1). (4.36)

So that, it remains to control r
n

∑kn

m=0 E(ζ
2
m,n) = r

n

∑kn

m=0 E(ζ
2
0,n). By our choices of ℓ

and r it remains that as n → ∞, r
n

∑kn

m=0 E(ζ
2
0,n) ∼ E(ζ20,n).

We have

E(ζ20,n) = E[
1√
rℓ

r−1∑

j=0

S2
j (ℓ)√
ℓ

− E(
S2
j (ℓ)√
ℓ

)]2

=
1

rℓ3

r−1∑

j=0

Var(S2
j (ℓ)) +

2

rℓ3

r−2∑

j=0

r−1∑

i=j+1

Cov(S2
j (ℓ), S

2
i (ℓ))

=
1

ℓ3
Var(S2(ℓ))

︸ ︷︷ ︸
T1,n

+
2

rℓ3

r−2∑

j=r−ℓ

r−1∑

i=j+1

Cov(S2
j (ℓ), S

2
i (ℓ))

︸ ︷︷ ︸
T2,n

+

2

rℓ3

r−ℓ−1∑

j=0

j+ℓ−1∑

i=j+1

Cov(S2
j (ℓ), S

2
i (ℓ))

︸ ︷︷ ︸
T3,n

+
2

rℓ3

r−ℓ−1∑

j=0

r−1∑

i=j+ℓ

Cov(S2
j (ℓ), S

2
i (ℓ))

︸ ︷︷ ︸
T4,n

= T1,n + T2,n + T3,n + T4,n.

(4.37)

With our choices of ℓ and r and the hypothesis on the mixing coefficients, we show that

T1,n, T2,n and T4,n go to 0 as n → ∞. Also, we have

T3,n ∼ 2
1

ℓ

ℓ−1∑

i=1

Cov

((
S(ℓ)√

ℓ

)2

,

(
Si(ℓ)√

ℓ

)2
)
.

At this stage, we need the following lemma which is another writing of Lemma 2.5 of

[25] which itself is derived by a careful analysis of Theorem 1.2 in [19].

Lemma 4.8. Let (Xn)n≥1 be a stationary α∗
(v,v)− mixing sequences for all (u, v) ∈ N

∗

with E(X1) = 0. Assume that (3.3) and (3.4) hold, then

lim
ℓ→∞

1

ℓ

ℓ−1∑

i=1

Cov((
S(ℓ)√

ℓ
)2, (

Si(ℓ)√
ℓ
)2) =

∫ 1

0

Cov(σ2W (1)2, σ2(W (1 + t)−W (t))2)dt

=
2σ4

3
,

(4.38)

where (W (t), 0 ≤ t ≤ 1) is a standard wiener process and Var(S(ℓ))/
√
ℓ → σ2 as ℓ → ∞.

Remark 4.9. We note that Lemma 4.8 holds by Theorem 3.4 and by the uniform inte-

grability of (S(ℓ)/
√
ℓ)2, ℓ ≥ 1.

Lemma 4.8 leads to

lim
ℓ→∞

2
1

ℓ

ℓ−1∑

i=1

Cov((
S(ℓ)√

ℓ
)2, (

Si(ℓ)√
ℓ
)2) =

4σ4

3
. (4.39)
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Finally as it was proved in [25] we have

B̂n,2 − E(|S(ℓ)−ℓµ√
ℓ

|2) 1
2

B̂2
n,2 − E((S(ℓ)−ℓµ√

ℓ
)2)

→ 1

2σ
in probability. (4.40)

and by (4.39) we get

n

ℓ
Var(B̂n,2 − E(

S(ℓ)− ℓµ√
ℓ

|2) 1
2 )→σ2

3
. (4.41)

Finally Proposition 4.7 is a consequence of (4.41) and of (4.16).

Remark 4.10. Note that if C(u, v) ≤ K(u+ v)β i.e. C(u, v) is polynomial in u and v and

if ℓ = ns then by the same reasoning (4.36) holds.

Proof of Theorem 3.7. Theorem 3.7 is a corollary of Proposition 4.7. Without loss of

generality, assume that µ = 0. Recall that

Xℓ =
1

(n− ℓ+ 1)

n−ℓ∑

j=0

Sj(ℓ).

We remark that since a >
(4 + 3δ)(2 + δ)

δ
, Remark 2.8 implies that

{(
Sn − nµ√

n

)4+2δ

, n ≥ 1

}
,

is uniformly integrable. To conclude the proof of the theorem, it suffices to prove that

√
n

ℓ
E

∣∣∣B̂2
n,2 −B2

n,2

∣∣∣→ 0, as n goes to infinity,

which can be done by following [25] and [19].

5 Some examples

In [15], we have given some examples of conditionally independent r.v.s (Xi)(i∈N)

given a factor (V1, . . . , Vn) that are relevant from the risk theory point of view. In fact,

we considered that the structure of dependence between r.v.s (Xi)(i∈N) may come from

a time-varying common factor which represents the evolution of socio-economic and

natural environment. For these examples we have considered that r.v.s Xn, n ≥ 1, are

controlled by an unbounded memory of the factor. It should be noted that by unbounded

memory of the factor we mean that the conditional independence is with respect to a

length varying factor vector.

We have proved in [15] that these example satisfy the α∗
(u,v)− mixing property. We

recall these examples here for completeness. Also, we have noticed that for these

example the coefficients C(u, v) are exponential in (u, v), so that we cannot obtain the

mixing property with the classical α or Φ-mixing coefficients.

5.1 A discrete example

Consider the process (Ii)(i∈N) such that Ii’s are Bernoulli r.v’s conditionally to V i =

(V1 . . . , Vi) and conditionally independent with respect to V i where (Vi)(i∈N) is a mixing
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sequence of independent and identically distributed Bernoulli r.v.s with parameter q.

We shall assume that the conditional law of Ii has the following structure:

P(Ii = 1|V i) = K

i∑

j=1

(1 + Vj)

2i−j
,

where K is a constant of normalization. This example is inspired from insurance risk

theory: (Ii)(i∈N) may modulate the frequency claim processes such that if Ii = 1 then

there is a claim. On may consider the process (Xi)(i∈N), modeling individual claim

amounts in non-live insurance for example, such that Xi = Ii ×Bi, where

• the Ii’s are Bernoulli r.v’s, conditionally independent with respect to V i, as above,

• the claim amount Bi’s are considered independent and independent of the Ii’s and

of V i.

• (Vi)(i∈N) is a mixing sequence of Bernoulli random variables.

It has been shown in [15] that if the process (Vi)i∈N is α∗
(u,v)-mixing then so is (Xn)n∈N.

Moreover, if the mixing coefficients of (Vi)i∈N are denoted α∗
V (r) and CV (u, v) then,

there exists A > 1, B > 1 such that the mixing coefficients of (Xn)n∈N are such that

α∗
X(r) ≤ 2−

r
2 + α∗

V (
α

2
) and CX(u, v) ≤ max(2Av, Bu+vCV (u, v)).

5.2 Example in an absolutely continuous case

Let the sequence of r.v.s (Xi)(i∈N) be such that for all i ∈ N, Xi are conditionally

independent with respect to the vector of the factor V i. Consider that (Xi)(i∈N) are

Pareto r.v.s and that the sequence (Vi)(i∈N) is a sequence of i.i.d Bernoulli r.v.s with

parameter q. In this case, the conditional law of Xi given V i is Pareto(α, θi) where

α > 2 is the shape parameter and θi > 0 is the scale parameter. We assume that for all

i ∈ N, the conditional density of Xi given V i has the form

f i
V i

(xi;α, θi) = α× θαi
xα+1
i

for xi ≥ θi,

where the scale parameter θi is a r.v. depending on V i and on α such that

θαi = K
i∑

j=1

1 + Vj

2i−j
.

It has been shown in [15] that if the process (Vi)i∈N is α∗
(u,v)-mixing then so is (Xn)n∈N.

As in the previous example, explicit bounds on the mixing coefficients of (Xn)n∈N, de-

pending on those of (Vi)i∈N may be obtained.

Concluding remarks

Our results (Theorems 3.5 and 3.7) apply for sequences of stationary r.v.s. Below,

we mention that if a mixing sequence is converging toward a stationary state, then the

limit process is also mixing.

Assume that (Xn)(n∈N) is a sequence of asymptotically stationary r.v.s. That is, there

is a stationary sequence (Yn)(n∈N) such that for all bounded function g : Rk → R and

n ∈ N we have for all k ∈ N,

E(g(Xn, . . . , Xn+k))
n→∞→ E(g(Y0, . . . , Yk)). (5.1)
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Proposition 5.1. Assume that (Xn)n∈N is α∗
(u v)− mixing and (Yn)(n∈N) is a stationary

process satisfying (5.1). Then (Yn)(n∈N) satisfy the α∗
(u v)− mixing property with the

same coefficients.

Proposition 5.1 implies if (Xn)(n∈N) is a α∗
(u v)− mixing and asymptotically stationary

sequence then our results apply to the limit process. Examples considered above are

asymptotically stationary.
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