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 ones. The fact that some conditionally independent processes satisfy this kind of mixing properties motivated our study. We investigate the weak consistency as well as the asymptotic normality of the estimator of the variance that we propose.

Introduction

It is well-known that asymptotic theorems allow to obtain approximations of various laws. One of these theorem, which is fundamental in probability theory, is the central limit theorem (C.L.T.). In [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] we have considered processes of dependent random variables (r.v.s) that are conditionally independent given a factor. In particular, we have assumed that the conditioning is with respect to an unbounded memory of the factor. These processes are of interest for example in risk theory. Our main result consisted in deriving some mixing properties for such processes and proving a Central Limit Theorem for processes satisfying this new mixing property. We restate here the following definition of mixing provided in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF]. In the definition below a and b are norms on bounded functions (or on subspaces of bounded functions). Definition 1.1. Let u, v be integers, a sequence (X n ) n∈N of r.v.s is said to be η * (u,v)mixing, if there exist a function r → η * (r) decreasing to 0 as r goes to infinity and a constant C(u, v) > 0 such that for any real valued bounded functions f and g and for any multi-indices satisfying the relation (⋆):

i 1 < • • • < i u ≤ i u < i u + r ≤ j 1 < • • • < j v ≤ j v , (⋆)
we have sup |Cov (f (X i1 , . . . , X iu ), g(X j1 , . . . , X jv ))| ≤ C(u, v)η * (r) f a g b , (1.1) where the supremum is taken over all the sequences (i 1 , . . . , i u ) and (j 1 , . . . , j v ) satisfying (⋆) and r ≤ j 1i u is the gap of time between past and future.

Depending on the norms used in Definition 1.1, we have various kind of mixing (see [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF]). For example, if a = b = ∞ , we shall say that the process is α * (u,v) -mixing and we shall write α * (r) instead of η * (r). If the process is α * (u,v) -mixing for all u, v and if sup u,v∈N C(u, v) ≤ C < ∞ then the process is α-mixing in the sense of [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] and we shall write α(r) instead of η * (r).

Remark 1.2. Let h : R u → R, be an arbitrary function and denote his lipschitz modulus by Lip(h) = sup x =y |h(x)h(y)| / xy 1 . If sup |Cov (f (X i1 , . . . , X iu ), g(X j1 , . . . , X jv ))| ≤ C(u, v)η * (r)Lip(f )Lip(g), (1.2) where C(u, v) = (uLip(f ) + vLip(g) + uvLip(f )Lip(g)) and η * (r) → 0 as r goes to infinity, then the process is said λ-weakly dependent. For more details on this type of mixing and on its applications we refer to [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF].

In the case of classical mixing sequences (see i.e. [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF][START_REF] Doukhan | Mixing properties and examples[END_REF]), mixing coefficients are uniform on u and v. This is not the case for mixing sequences satisfying our mixing condition (1.1). The usefulness of this kind of mixing coefficients has been shown in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] where conditionally independent examples that satisfy (1.1) are given.

Mixing processes have very interesting asymptotic properties especially in the stationary case. Many authors have investigated the classical central limit theorem (C.L.T.) for the sum S n = n i=1 X i where X i are r.v.s satisfying mixing conditions (see for examples [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF][START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF][START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF]).

Note that when the real variance in a C.L.T. is replaced by an estimate from the given data, then the estimator is called a self-normalizer and we say that a self normalized central limit theorem (S.N.C.L.T.) holds. While for independent and identically distributed r.v.s it is very simple to estimate the variance, this is not the case for dependent r.v.s for which we should construct an estimator which takes into account the dependence structure. The present paper aims at providing a self-normalizer and a S.N.C.L.T. for mixing sequences satisfying (1.1). For α-mixing sequences, [START_REF] Shi | Estimation of the variance for strongly mixing sequences[END_REF] took over the class of estimator introduced in [START_REF] Peligrad | Estimation of the variance of partial sums for ρmixing random variables[END_REF] for ρ-mixing sequences and showed that this class gives consistent estimators for strongly mixing sequences of r.v.s. For stationary sequences of associated r.v.s we refer to [START_REF] Peligrad | Estimation of variance of partial sums of an associated sequence of random variables[END_REF] in which the self normalizer arises from classical Bernstein-Block-Technique (see [START_REF] Bernstein | Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes[END_REF]). [START_REF] Doukhan | Variance estimation with applications[END_REF] dealt with random vectors of λ-weakly dependent sequences. They use non-overlapping blocks denoted by

∆ i,m = 1 √ m (i-1)(m+ℓ)+m j=(i-1)(m+ℓ)+1 X j ,
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in the construction of their estimator. The fact that blocks are non-overlapping leads to choose two parameter m and ℓ while for Peligrad and Shao's (1995) estimator the blocks denoted by

∆ i,m = 1 √ m i+m j=i+1 X j ,
are overlapping and only the parameter m must be chosen. In addition, choosing nonoverlapping blocks enables [START_REF] Doukhan | Variance estimation with applications[END_REF] to provide not only an estimator of the variance but also an estimator of the variance of the estimator.

We have proved in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] that conditionally independent processes of r.v.s (X n ) n∈N given a factor (V 1 , . . . , V n ) satisfy η * (u,v) -mixing conditions. For such processes mixing coefficient may be exponentially bounded with respect to u and v (namely C(u, v) ≤ K u+v with K > 0) where the mixing coefficient for λ-weakly dependent r.v.s is a polynomial function of u and v and of Lipschitz functions (see Remark 1.2). This is our main motivation for providing a S.N.C.L.T. for η * (u,v) -mixing processes. In this work we provide a self-normalizer which is a modified version of the one obtained in [START_REF] Peligrad | Estimation of the variance of partial sums for ρmixing random variables[END_REF]. As in [START_REF] Shi | Estimation of the variance for strongly mixing sequences[END_REF] we adapt this estimator to our kind of mixing. We investigate its weak consistency as well as its asymptotic normality. In this frame we derive useful tools such as a covariance inequality of Davydov's kind and moment inequalities of Rosenthal's kind which are adapted with our structure of mixing. This work is organized as follows. In Section 2 we give our main preliminary results: moment inequalities, covariance inequality and uniform integrability property. These are the main tools for the proofs of our results. In Section 3 we present our main results: we provide an estimator of the variance and we derive a S.N.C.L.T. (see Theorem 3.5). Also, the asymptotic normality of our estimator is proved (see Theorem 3.7). Section 4 is devoted to the proofs. In Section 5, we recall some examples that satisfy our assumptions. These examples may be relevant for example in risk theory contexts, they have already been presented in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF].

Main tools: moment inequalities, covariance inequality and uniform integrability

In all this paper, we shall use indifferently E(|f (X)| p ) 1 p or f p when there is no ambiguity.

Covariance inequality

In the following proposition we restate a covariance inequality which is adapted with our structure of mixing and which is proved in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF]. Proposition 2.1. Let (X n ) n∈N be a stationary α * (u,v) -mixing sequence. Let f p < ∞ and g q < ∞, where 1 < p, q ≤ ∞ and

1 p + 1 q < 1, then |Cov(f (X i1 , . . . , X iu ), g(X j1 , . . . , X jv ))| ≤ (C(u, v) + 8)(E|f | p ) 1 p (E|g| q ) 1 q α * (r) s , (2.1) 
where s = 1 -1 p -1 q and j vi u = r where r is a positive integer.

Remark 2.2. Note that if (X n ) n∈N is a sequence of complex valued r.v.s then by separating the real and imaginary parts of the complex number, we obtain inequality (2.1) with 4 * (C(u, v) + 8) instead of (C(u, v) + 8).
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Moment inequalities

Moment inequalities of partial sums play a very important role in various proofs of limit theorems. For independent r.v.s we have the following Rosenthal type inequality

E|X 1 + . . . + X n | q ≤ C q ( n i=1 E|X i | q + ( n i=1 E|X i | 2 ) q/2 ). (2.2)
In Lemmas 2.4 and 2.5 we provide Rosenthal type inequalities for mixing sequences that satisfy the α * (u,v) -mixing condition defined by inequality (1.1). Recall the definition of the coefficients of weak dependence introduced in [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF].

Definition 2.3. For positive integer r, define the coefficients of weak dependence as the non-decreasing sequence (C r,q ) (q≥2) such that

C r,q := sup Cov(X t1 × . . . × X tm , X tm+1 × . . . × X tq ) ,
where the supremum is taken over the multi-indices 1 ≤ t 1 ≤ • • • ≤ t q with t m+1 -t m = r.

We give the following lemma for bounded r.v.s satisfying the α * (u,v) -mixing condition.

Lemma 2.4. Let (X n ) n∈N be a sequence of random variables such that sup i∈N |X i | ≤ M . In addition assume that (X n ) n∈N is α * (m,q-m) -mixing with 1 ≤ m < q. Then for any positive integer r, we have C r,q ≤ M q C(m, qm)α * (r).

For non bounded r.v.s we derive the following lemma which is straightforward from Proposition 2.1 and Lemma 4.6 in [START_REF] Dedecker | Weak dependence: with examples and applications[END_REF].

Lemma 2.5. Assume that the sequence of r.v.s (X n ) n∈N is centered and let S n = n i=1 X i .

If the sequence (X n ) n∈N is α *

(1,1) -mixing and for some δ > 0, sup

i∈N X i 2+δ < ∞ then E(S 2 n ) ≤ 2nK 2 n-1 r=0 α * (r) δ δ+2 .
(2.3)

If the sequence (X n ) n∈N is α * (3,3) -mixing such that sup i∈N X i 4+δ < ∞ for some δ > 0 then E(S 4 n ) ≤ 4!n 2 K 2 2 n-1 r=0 α * (r) δ δ+2 2 + nK 4 n-1 r=0 (r + 1) 2 α * (r) δ δ+2 , (2.4)
where

K 2 = (C(1, 1) + 8) sup i∈N X i 2 2+δ and K 4 = (C(3, 3) + 8) sup i∈N X i 4 4+2δ .
In Section 3 we need an estimation of the moments of the sum of order p greater than 2 where p is not necessary an integer. To this aim we prove the following theorem which apply to α * -mixing processes. It is a generalized version of Theorem 4.1 in [START_REF] Shao | Weak convergence for weighted empirical processes of dependent sequences[END_REF]. For δ > 0 fixed, n ∈ N * , p ≥ s > 0, we define

D n,s,p = n-1 q=0 (1 + q) p-s α * (q) δ δ+2 ( δ δ+s +1) . (2.5) Theorem 2.6. Let 2 < p < r < ∞, 2 < v ≤ r and (X n ) n∈N be an α * (m,2) -mixing sequence of r.v.s where 1 < m < [ n 2 ] + 1.
Let EX n = 0 and assume for all n ∈ N, X n r < ∞. Assume that for some C > 0 and θ > 0

α * (n) ≤ Cn -θ . (2.6)
Then, for any ǫ > 0 there exists

A = A(ε, r, p, θ, C) < ∞ such that E|S n | p ≤ A n p/2 (K 2 D n,2,2 ) p/2 + n (p-(r-p)θ/r)∨(1+ǫ) sup i≤n X i p r .
(2.7)

In particular, for any ε > 0, if θ ≥ (p -1)r/(r -p) then E|S n | p ≤ A n p/2 (K 2 D n,2,2 ) p/2 + n (1+ε) sup i≤n X i p r , (2.8) and if θ ≥ pr (2(r-p)) then E|S n | p ≤ An p/2 (K 2 D n,2,2 ) p/2 + sup i≤n X i p r .
(2.9)

Uniform integrability

The concept of uniform integrability (U.I.) is essential in the proof of our limit theo- mixing sequence. Without loss of generality consider that E(X i ) = 0 and assume that

rems. Recall that if lim A→∞ sup n∈N E(|X n |1 |Xn|>A ) = 0 then the family of r.v.s (X n ) n∈N is said uniformly integrable.
E(|X i | p+δ ) < ∞ for some δ > 0. If for each s in {2, p} D ∞,2,s < ∞, then S n √ n p , n ≥ 1 , is uniformly integrable. Remark 2.8. Let (X n ) n∈N be a stationary α * (m,2) -mixing sequence of random variables, where 1 < m < [ n 2 ] + 1. Assume that for some, C > 0, δ > 0, p > 2, a > p(p+δ) 2δ , α * (n) ≤ Cn -a , E|X 1 | p+δ < ∞, then Theorem 2.6 implies that S n -E(S n ) √ n p
, n ≥ 1 is uniformly integrable.

Self Normalized Central Limit Theorem for stationary strongly mixing sequences

In the literature, to prove limit theorems for strongly mixing sequences of r.v.s, one may approximate the strongly mixing sequence by another sequence. For examples, [START_REF] Gordin | The central limit theorem for stationary random processes[END_REF][START_REF] Gordin | A remark on the martingale method for proving the central limit theorem for stationary sequences[END_REF] considers a direct approximation of mixing sequences by a sequence of martingale differences (for more details we refer to [START_REF] Volný | Approximating martingales and the central limit theorem for strictly stationary processes[END_REF] and [START_REF] Hall | Martingale limit theory and its application[END_REF]). Another method known as Self normalized C.L.T. for some mixing processes.

Bernstein's method (see [START_REF] Bernstein | Sur l'extension du théorème limite du calcul des probabilités aux sommes de quantités dépendantes[END_REF]) is to consider a direct approximation of mixing sequences by a sequence of independent r.v.s. This is the method used in the proof of the central limit theorem derived in [START_REF] Ibragimov | Independent and stationary sequences of random variables[END_REF]. We refer to [START_REF] Chuanrong | Limit theory for mixing dependent random variables[END_REF][START_REF] Dedecker | Weak dependence: with examples and applications[END_REF][START_REF] Doukhan | Mixing properties and examples[END_REF] for a survey on C.L.T. for mixing sequences.

Remark 3.1. Assume that (X n ) n∈N is a stationary centered sequence. If ∞ j=1 E(X 0 X j ) < ∞ then σ 2 := E(X 2 0 ) + 2 ∞ j=1 E(X 0 X j ) < ∞. (3.1) If σ > 0 then, σ 2 n := E( n j=0 X j ) 2 = nE(X 2 0 ) + 2 n j=1 (n -j)Cov(X 0 , X j ) = nσ 2 (1 + o(1)). (3.2)
Before stating a S.N.C.L.T. for α * (u,v)mixing sequence of r.v.s we recall the following theorem proved in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] for α * (u,v) -mixing process. Theorem 3.2. Let (X n ) n∈N be a stationary α * (u,v) -mixing process for all (u, v) ∈ N * . Let E(X 1 ) = µ and assume for a fixed δ > 0

E |X 1 | 2+δ < ∞ and ∞ r=1 α * (r) δ 2+δ < ∞. (3.3) 
If in addition there exist M > 0 and K > 0 such that for any u, v, and r, The invariance principle has been extensively investigated for weakly dependent and mixing sequences (see i.e. [START_REF] Merlevède | Recent advances in invariance principles for stationary sequences[END_REF][START_REF] Shao | On the invariance principle for ρ-mixing sequences of random variables[END_REF][START_REF] Philipp | Almost sure invariance principles for partial sums of weakly dependent random variables[END_REF][START_REF] Davydov | The invariance principle for stationary processes[END_REF]). In particular [START_REF] Mcleish | Invariance principles for dependent variables[END_REF] derived a weak invariance principle (W.I.P.) for dependent r.v.s which is extended by [START_REF] Herrndrof | A functional central limit theorem for strongly mixing sequences of random variables[END_REF] for α-mixing sequence of r.v.s. In the following theorem we provide a W.I.P. for α * (u,v) -mixing sequence. Let {W (t), 0 ≤ t ≤ 1} be a standard Wiener process and define by W n

C(u, v) ≤ K u+v , α * (r) ≤ M r a , a > max {2 ln(K) -1, 2} .
(t) = (S [nt] -[nt]µ)/σ n , 0 ≤ t ≤ 1. Theorem 3.4. Let (X n ) n∈N be a stationary α * (u,v) -mixing process for all (u, v) ∈ N * ×N * . Let E(X 1 ) = µ and assume that (3.3) and (3.4) hold. Then, W n ⇒ W , (3.6)
where ⇒ stands for the weak convergence. Now we introduce the following estimator which is a modified version of some estimators introduced in [START_REF] Peligrad | Estimation of the variance of partial sums for ρmixing random variables[END_REF] (we write ℓ n = ℓ).

B 2 n,2 = 1 n -ℓ + 1 n-ℓ j=0 S j (ℓ) -X ℓ √ ℓ 2
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B 2 n,2 = 1 n -ℓ + 1 n-ℓ j=0 S j (ℓ) -ℓµ √ ℓ 2 with S j (ℓ) = j+ℓ k=j+1 X k and X ℓ = 1 n -ℓ + 1 n-ℓ j=0 S j (ℓ).
Note that as n → ∞, (3.2) may be written as follows

Var(S n ) n := σ 2 n n → σ 2 .
(3.7)

The following result proves that B 2 n,2 is a consistent estimator of σ 2 .

Theorem 3.5. Let (X n ) n∈N be a stationary process wich is α * (u,v) -mixing for all integers u and v. Assume that (3.3) holds. In addition assume that there exists K > 0 such that for all integers u and v,

C(u, v) ≤ K u+v and consider ℓ n = ℓ, ℓ = [ln(n)/5 ln(K)] + x, (3.8) 
where [y] denotes the integer part of y and x is an integer.

If 0 < σ < ∞, then B n,2 → σ in L 2 .
(3.9) Remark 3.6. Note that a consequence of (3.5) and (3.9) is that

S n -nµ √ nB n,2 L
→ N (0, 1).

(3.10)

This proves a S.N.C.L.T. for mixing processes satisfying our α * (u,v)mixing condition.

Finally, we state the asymptotic normality of B n,2 .

Theorem 3.7. Let (X n ) n∈N be a stationary α * (u,v) -mixing process for all integers u and v, with E(X 1 ) = µ. Denote by S(ℓ) = ℓ k=1 X k and let ℓ be as in (3.8). Assume (3.3), (3.7), it exists δ > 0 such that E(|X i | 4+3δ ) < ∞ and that there exist K > 0, C > 0 such that for all integers u, v, r

C(u, v) ≤ K u+v , α * (r) ≤ C r a , with a > max (δ+2)(4+3δ) δ , 2 ln(K) -1 , (3.11 
)

Then, n ℓ   B n,2 -E S(ℓ) -ℓµ √ ℓ 2 1 2   L → N (0, σ 2 3 
).

(3.12) Remark 3.8. Note that the choice of ℓ depends on the behavior of C(u, v). Assume that there is K > 0 such that for all (u, v) we have 

Proof of the main results

Proof of Theorem 2.6. Because in our case the mixing coefficients depend on u and v, classical theorems such as Theorem 4.1 in [START_REF] Shao | Weak convergence for weighted empirical processes of dependent sequences[END_REF] don't hold. We may nevertheless follow the lines of their proof. We shall prove inequality (2.7) by induction on n. Assume that

E|S k | p ≤ A k p/2 (K 2 D n,2,2 ) p/2 + k p+ θ(p-r) r ∨(1+ǫ) X p r (4.1)
holds for each 1 < k < n. Note that (4.1) is obvious for k = 1. We shall prove that (4.1) holds for k = n. Define

ξ i = n∧(2i-1)m j=1+2(i-1)m X j , η i = n∧2im j=1+(2i-1)m X j , (4.2) 
where

1 ≤ i ≤ k n := 1 + [n/(2m)].
Note that for fixed i there exists a gap of length m between ξ i and η i . Let a be a constant such that 0 < a < 1 2 and take m = [an] + 1. By Minkowski inequality we write

E|S n | p ≤ 2 p-1 (E| kn i=1 ξ i | p + E| kn i=1 η i | p ) := 2 p-1 (I 1 + I 2 ). (4.
3)

The proof of Theorem 2.6 requires the following Lemma due to [START_REF] Shao | Weak convergence for weighted empirical processes of dependent sequences[END_REF].

Lemma 4.1 ([24], Lemma 4.1). Let ξ i , 1 ≤ i ≤ n be a sequence of r.v.s and let F i be the σ-field generated by (ξ j , j ≤ i). Then for any p ≥ 2 there is a constant

D = D(p) such that E| n i=1 ξ i | p ≤ D × [( n i=1 E(ξ 2 i )) p 2 + n i=1 E|ξ i | p + n p-1 n i=1 E|E(ξ i |F i-1 ) p + n p 2 -1 × | n i=1 E|E(ξ 2 i |F i-1 ) -E(ξ 2 i )| p 2 ].
In order to simplify the notations, in what follows, X r stands for sup i≤n X i r .

Replacing n by k n in Lemma 4.1 yields to

I 1 ≤ D × [( kn i=1 E|ξ i | 2 ) p 2 I1,1 + kn i=1 E|ξ i | p + k p-1 n kn i=1 E|E(ξ i |F i-1 )| p I1,2 + k p 2 -1 n kn i=1 E|E(ξ 2 i |F i-1 ) -E(ξ 2 i )| p 2 I1,3
].

We begin with the bound for I 1,1 . From (2.3) and (2.5) we deduce that

I 1,1 ≤ (k n 2mK 2 D m,2,2 ) p 2 ≤ 2 p 2 (k n m) p 2 (K 2 D m,2,2 ) p 2 ≤ 2 p K p 2 2 (nD n,2,2 ) p 2
where k n m < 2n.

Now we consider I 1,3 . Define Y i = E(ξ 2 i |F i-1 )-E(ξ 2 i ) and denote by F i-1 = σ(ξ 1 , . . . , ξ i-1 ). Y i is a measurable function with respect to F i-1 . Write E(|Y i | p/2 ) = E|Y i | (p/2)-1 sgn(Y i )Y i then we have E(|Y i | p/2 ) = E(|Y i | p 2 -1 sgn(Y i )(ξ 2 i -E(ξ 2 i ))) ≤ sup j,l 2(i-1)m<j,l≤n∧(2i-1)m Cov(|Y i | p 2 -1 , X j X l -E(X j X l )). Consider that f (X 1+2(i-1)m , . . . , X n∧(2i-1)m ) = |Y i | p/2-1 and g(X j , X l ) = |X j X l -E(X j X l )|.
Choose p in (2.1) equals to p p-2 and q = r 2 such that 2 r + p-2 p < 1, in this case by Proposition 2.1 we have

Cov |Y i | p/2-1 , X j X l -E(X j X l ) ≤ (C(m, 2) + 8)(E|Y i | p 2 ) p-2 p X j X l r 2 α * (m) 2 p -2 r .
Then

E|Y i | p/2 ≤ (C(m, 2) + 8)m 2 (E|Y i | p 2 ) p-2 p X 2 r α * (m) 2 p -2 r .
Hence

E|Y i | p/2 ≤ (C(m, 2) + 8) p 2 m p X p r α * (m) 1-p r .
Let B be a constant. By inequality (2.6) and as θ > 0 and p < r we write

I 1,3 ≤ k p 2 n (C(m, 2) + 8) p 2 m p X p r α * (m) 1-p r ≤ 2 p B(C(m, 2) + 8) p n (p+θ (p-r) r )∨(1+ε) a θ (p-r) r X p r
Now, let us focus on I 1,2 . Define Z i = E(ξ i |F i-1 ) and denote by f (X 1+2(i-1)m , . . . , X n∧(2i-1)m ) = |Y i | p and g(X j ) = |X j -E(X j )|.

Now choose p in (2.1) equals to p p-1 and q equals to r where 1 r + p-1 p < 1. Then in this case we have

E(|Z i | p ) = E(|Z i | p-1 sgn(Z i )(ξ i )) ≤ sup 2(i-1)m<j≤n∧(2i-1)m Cov[(|Z i | p-1 , X j )] ≤ (C(m, 1) + 8)m(E|Z i | p ) p-1 p X r α * (m) 1 p -1 r .
Hence,

E(|Z i | p ) ≤ (C(m, 1) + 8) p m p X p r α * (m) 1-p r .
By inequality (2.6) and as θ > 0 and p < r we have

I 1,2 ≤ 2 p C(C(m, 2) + 8) p n (p+θ (p-r) r )∨(1+ε) a θ (p-r) r X p r ,
where C is a constant, whence

I 1 ≤ D[ kn i=1 E|ξ i | p + 2 p K p 2 2 (nD n,2,2 ) p 2 + 2 p+1 B(C(m, 2) + 8) p n (p+θ (p-r) r )∨(1+ε) a θ (p-r) r X p r ]. (4.4) 
Similarly for

I 2 ≤ D[ kn i=1 E|η i | p + 2 p K p 2 2 (nD n,2,2 ) p 2 + 2 p+1 B(C(m, 2) + 8) p n (p+θ (p-r) r )∨(1+ε) a θ (p-r) r X p r ].
EJP 0 (2012), paper 0.
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Consequently, we have

E |S n | p ≤ 2 p-1 D[ kn i=1 E|ξ i | p + kn i=1 E|η i | p + 2 p+1 K p 2 2 (nD n,2,2 ) p 2 + 2B(C(m, 2) + 8) p 2 p+1 n (p+θ (p-r) r )∨(1+ε) a θ (p-r) r X p r ]. Remark that kn i=1 E|ξ i | p + kn i=1 E|η i | p ≤ 2k n E|ξ 1 | p = 2k n E|S m | p . Take a = (2 p+4 D) -1 ε -2 p-2 . Assume that (4.1) is true for all k < n where A = 2 p+1 D 2 p + 2 p+1 C (C(m, 2) + 8) p a θ (p-r) r .
In this case by (4.3), (4.4) and ( 4) we get

E |S n | p ≤ 2 p Dk n A m p/2 (K 2 D m,2,2 ) p/2 + m p+θ (p-r) r ∨(1+ε) X p r + A 2 n p 2 (K 2 D n,2,2 ) p 2 + n (p+θ (p-r) r )∨(1+ǫ) X p r ≤ A n p/2 (K 2 D n,2,2 ) p/2 + n (p+ θ(p-r) r )∨(1+ε) X p r . (4.5) 
So that, finally (4.1) is valid for k = n.

Before proceeding to the proof of Theorem 3.5, we give the following lemma which is useful in the proof of this theorem. This lemma is a variant of Lemma 2.3 in [START_REF] Shi | Estimation of the variance for strongly mixing sequences[END_REF]. Lemma 4.2. Let (X n , n ≥ 1) be α * (ℓn,ℓn) -mixing sequence where 1 ≤ ℓ n ≤ n. Let f be a real function on R ℓn and put Z

i = f (X i+1 , . . . , X i+ℓn ). Assume that E |Z k | 2+δ < ∞ for some δ > 0 and sup j∈N Z j 2 2+δ < ∞. Then we have V ar( n k=1 Z k ) ≤ 2nKℓ n sup j∈N Z j 2 2+δ (C(ℓ n , ℓ n ) + 8) [ n ℓn ]+1 r=1 α * (r) δ δ+2 .
where K is a constant.

Proof of Lemma 4.2. Let f be a real function on R ℓn and denote by Z i = f (X i+1 , . . . , X i+ℓn ).

Write

Var(

n k=1 Z k ) ≤ ℓ 2 n max j Var( [ n ℓn ] i=0 Z iℓn+j )
and use Proposition 2.1.

Proof of Theorem 3.4.

To prove this theorem we follow the proof of the W.I.P. provided by [START_REF] Herrndrof | A functional central limit theorem for strongly mixing sequences of random variables[END_REF] for αmixing sequences. Note that the proof of the Theorem of [START_REF] Herrndrof | A functional central limit theorem for strongly mixing sequences of random variables[END_REF] is done in a simplified version in [START_REF] Chuanrong | Limit theory for mixing dependent random variables[END_REF]. Following their proof, the W.I.P. holds for αmixing sequences if a C.L.T. holds and if tightness is verified. We note that a sufficient conditions for tightness is the following: for any ǫ > 0, η > 0, there exist a δ, 0 < δ < 1, and an integer n 0 such that, for 0 ≤ t ≤ 1,

1 δ P sup t≤s≤s+δ |W n (s) -W n (t)| ≥ ǫ ≤ η, n ≥ n 0 . (4.6)
Recall that a C.L.T. (Theorem 3.2) holds for α * (u,v)mixing sequences, so that, the key to prove Theorem 3.4 lies in verification of (4.6). A careful analysis of the proof of [START_REF] Chuanrong | Limit theory for mixing dependent random variables[END_REF] EJP 0 (2012), paper 0.
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shows that if in addition to (3.3) Proof of Theorem 3.5. Without loss of generality consider that µ = 0. We have

∞ n=1 α * (n) δ 2+δ < ∞ then, for large n, α * (n) δ δ+2 ≤ 1 n whence α * (n)n 2 δ ≤ α * (n) δ δ+2 . First we prove that |B n,2 -B n,2 | → 0 in L 2 . (4.9)
By Minkowski inequality we have

( n-ℓ j=0 | S j (ℓ) -X ℓ √ ℓ | 2 ) 1 2 ≤ ( n-ℓ j=0 | S j (ℓ) √ ℓ | 2 ) 1 2 + ( n-ℓ j=0 | X ℓ √ ℓ | 2 ) 1 2 .
Hence,

|B n,2 -B n,2 | ≤ 1 √ n -ℓ + 1 × [( n-ℓ j=0 | S j (ℓ) √ ℓ | 2 ) 1 2 + ( n-ℓ j=0 | X ℓ √ ℓ | 2 ) 1 2 -( n-ℓ j=0 | S j (ℓ) √ ℓ | 2 ) 1 2 ].
We obtain

E|B n,2 -B n,2 | 2 ≤ 1 n -ℓ + 1 E|( n-ℓ j=0 | X ℓ √ ℓ | 2 ) 1 2 | 2 = E| X 2 ℓ ℓ |. Moreover, E| X 2 ℓ ℓ | = 1 ℓ Var(X ℓ ) = 1 ℓ(n -ℓ + 1) 2 Var( n-ℓ j=0 S j (ℓ)).
We write S(ℓ) = S 0 (ℓ). From Lemma 4.2

1 ℓ(n -ℓ + 1) 2 Var( n-ℓ j=0 S j (ℓ)) ≤ 2A ′ (C(ℓ, ℓ) + 8) (n -ℓ + 1) S(ℓ) 2 2+δ [ n-ℓ ℓ ]+1 r=0 α * (r) δ δ+2 .
where A ′ is a constant. The choice of ℓ n depends on the behavior of C(u, v) with respect to u and v. Since we assume that

C(u, v) ≤ K u+v , ℓ = [ ln(n) 5 ln(K) ] + x, (4.10) 
we get (using Theorem 2.6):

2A ′ (nℓ + 1)

[ n-ℓ ℓ ]+1 r=0 α * (r) δ δ+2 (K 2x n 2 5 + 8) S(ℓ) 2 2+δ = O( ℓ n 3 5 
) = o(1).

EJP 0 (2012), paper 0.
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Hence (4.9) holds. In order to prove that B n,2 → σ as n → ∞ it suffices to prove that

B n,2 → σ in L 2 as n → ∞. (4.11) 
Now we first prove that

E| B 2 n,2 -E( S(ℓ) √ ℓ ) 2 | → 0 as n → ∞. (4.12) Define Z j,1 = ( S j (ℓ) √ ℓ ) 2 I( |S j (ℓ)| √ ℓ ≤ ( n ℓ ) 1/8 ) and Z j,2 = ( S j (ℓ) √ ℓ ) 2 I( |S j (ℓ)| √ ℓ > ( n ℓ ) 1/8 ).
We have

E| B 2 n,2 -E( S(ℓ) √ ℓ ) 2 | = 1 n -ℓ + 1 E| n-ℓ j=0 (Z j,1 -E(Z j,1 )) + n-ℓ j=0 (Z j,2 -E(Z j,2 ))| ≤ K ′ n -1 (E| n-ℓ j=0 Z j,1 -E(Z j,1 )| + nE|Z 0,2 |) ≤ K ′ [(n -2 Var( n-ℓ j=0 Z j,1
))

1 2 + E( S(ℓ) √ ℓ ) 2 I( |S(ℓ)| √ ℓ > ( n ℓ ) 1/8 )].
where K ′ is a constant. From Lemma 4.2 we obtain

n -2 Var( n-ℓ j=0 Z j,1 ) ≤ 2A ′ 1 ℓ(n -ℓ + 1) n 2 (C(ℓ, ℓ) + 8) Z j,1 2 2+δ [ 
n-ℓ ℓ ]+1 r=0 α * (r) δ δ+2
where A ′ 1 is a constant. With our choice of ℓ:

E| B 2 n,2 -E( S(ℓ) √ ℓ ) 2 | = O( ln(n) n 3 5 
).

On the other hand, the uniform integrability of S(ℓ)/ √ ℓ

2 implies that E[( S(ℓ) √ ℓ ) 2 I | S(ℓ) √ ℓ |>( n ℓ ) 1/8 ] → 0.
Then (4.12) holds. Moreover, the uniform integrability of S(ℓ)/ √ ℓ

2 implies E[( S(ℓ) √ ℓ ) 2 I | S(ℓ) √ ℓ |≤R ] → E( S(ℓ) √ ℓ ) 2 , as R → ∞
and recall that from Remark 3.1

E( S(ℓ) √ ℓ ) 2 → σ 2 as ℓ → ∞. (4.13) 
So that (4.12) implies

E| B 2 n,2 -σ 2 | → 0 as n → ∞. (4.14) 
Finally, for any x, y ≥ 0, for any p ≥ 1.

|x -y| 2 ≤ K ′ |x p -y p | 2 p ,
so that (4.11) holds. As a conclusion, by (4.9) and (4.11) we have B n,2 → σ in L 2 as n → ∞.

Remark 4.3. Note that if C(u, v) is a polynomial function of u and v such that C(u, v) ≤ K(u + v) β and if we choose ℓ = n s with s < 1 (1+β) then Theorem 3.5 holds with the same proof.

In the proof of Theorem 3.7 we need the following lemma on triangular arrays. 

Assume that |X k |
2+δ is a uniformly integrable family and that Var(

n k=1 a nk X k ) → σ 2 . Then n k=1 a nk X k σ L → N (0, 1) (4.16) 
as n → ∞.

In order to prove Lemma 4.4 we need the following lemma whose proof follows the proof of Lemma 3.2 in [START_REF] Peligrad | Central limit theorem for linear processes[END_REF]. 

Lemma 4.5. Let (X n ) n∈N be an α * (1,1) -mixing sequence with sup k∈N E |X k | 2+δ < ∞ for some δ > 0. Let {a nk ; 1 ≤ k ≤ n}
a nk X k ) ≤ C 1 b k=a a 2 nk < ∞, (4.18) 
where

C 1 = 2(C(1, 1) + 8) sup i∈N X i 2 2+δ r=0 α * (r) δ δ+2 .
Proof of Lemma 4.5. Proceed as in [START_REF] Peligrad | Central limit theorem for linear processes[END_REF] to get

Var( b k=a a nk X k ) ≤ 2 b k=a a 2 nk b k,j=a |Cov(X k , X j )|
and use Lemma 2.5.

Remark 4.6. Let (X n ) n∈N be a stationary centered sequence and let {a nk;1≤k≤n } be a triangular array of real numbers.

If for any k ≥ 1, ∞ t=1 a nt E(X t X k ) < ∞ then s 2 k := ∞ t=1 a nk a nt E(X t X k ) < ∞, (4.19) 
EJP 0 (2012), paper 0.

Self normalized C.L.T. for some mixing processes. Proof of Lemma 4.4. We use a truncation technic. Let N be a constant, we write so to prove this lemma it suffices to prove that

X ′ i = X i I(|X i | ≤ N ) -E(X i I(|X i | ≤ N )), X ′′ i = X i I(|X i | > N ) -E(X i I(|X i | > N )), From Lemma 4.
n i=1 a nk X ′ i Var( n i=1 a nk X ′ i ) L → N (0, 1),
We follow the proof of Theorem 3.2 given in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] which is based on Bernstein's method. We note that Lemma 4. 

X ′ i ) 4 , (4.23) 
Assume without loss of generality that E( 

X ′ i ) = 0. Using that ∞ j=1 α * (j) < ∞, the inequality |E(X ′ 0 , X ′ j )| ≤ C(1,
X ′ i ) 4 = O(n 2 ) if ∞ i=1 jα * (j) < ∞.
lim n→∞ E[( 1 σ n k i=0 η i ) 2 ] ≤ lim n→∞ sup 1≤k≤n a 2 nk inf 1≤k≤n s 2 k n [ k i=1 E(η 2 i ) + 2 i<j≤k E(η i η j )]. (4.25) 
Following the proof of Theorem 3.2 in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF], we get Lemma 4.4.

Self normalized C.L.T. for some mixing processes.

Theorem 3.7 follows from the proposition below which is the same result as in Theorem 3.7 but for B n,2 instead of B n,2 .

Proposition 4.7. Let (X n ) n∈N be a stationary α * (u,v) -mixing process for all (u, v) ∈ N * with E(X 1 ) = µ. Denote by S(ℓ) = ℓ k=1 X k and let ℓ be as in (3.8). Assume (3.3), (3.7), (3.11) andE [(

(|X i | 4+3δ ) < ∞. Then, n ℓ ( B n,2 -E(| S(ℓ) -ℓµ √ ℓ | 2 ) 1 2 ) L → N (0, σ 2 3 ). 
S j (ℓ) √ ℓ ) 2 -E( S j (ℓ) √ ℓ ) 2 ], η m,n = (m+1)(2ℓ+r)-1 j=m(2ℓ+r)+r [( S j (ℓ) √ ℓ ) 2 -E( S j (ℓ) √ ℓ ) 2 ],
where m = 0, 1, . . . , k n := [(nℓ + 1)/(2ℓ + r)] -1, ξ is a partial sum of r terms and η is a partial sum of 2ℓ terms.

We follow the strategy of proof of Theorem 2.1 in [START_REF] Peligrad | Estimation of the variance of partial sums for ρmixing random variables[END_REF] and Theorem 1.3 in [START_REF] Shi | Estimation of the variance for strongly mixing sequences[END_REF]. Recall that these results do not apply directly because of the form of our mixing.

It is easy to see that

n ℓ ( B2 n,2 -E( S(ℓ) √ ℓ ) 2 ) = n ℓ 1 (n -ℓ + 1) n-ℓ j=0 [( S j (ℓ) √ ℓ ) 2 -E( S j (ℓ) √ ℓ ) 2 ] = n ℓ 1 (n -ℓ + 1) kn m=0 ξ m,n + n ℓ 1 (n -ℓ + 1) kn m=0 η m,n + n ℓ 1 (n -ℓ + 1) n-ℓ j=(kn+1)(2ℓ+r) [( S j (ℓ) √ ℓ ) 2 -E( S j (ℓ) √ ℓ ) 2 ] = J 1,n + J 2,n + J 3,n .
By Lemma 4.2 we have

Var(J 3,n ) = n ℓ 1 (n -ℓ + 1) 2 Var[ n-ℓ j=(kn+1)(2ℓ+r) (( S j (ℓ) √ ℓ ) 2 -E( S j (ℓ) √ ℓ ) 2 )] ≤ 2A ′ 2 n(2ℓ + r) (n -ℓ + 1) 2 (C(ℓ, ℓ) + 8)||( S(ℓ) √ ℓ ) 2 || 2 2+δ [ n ℓ ]+1 r=1 α * (r) δ δ+2 ,
where A ′ 2 is a constant. Also by Lemma 4.2 as k n ≤ (n/r) we have

Var(J 2,n ) = n (n -ℓ + 1) 2 ℓ Var( kn m=0 η m,n ) ≤ 2ℓn 2 A ′ 3 (C(ℓ, ℓ) + 8) r(n -ℓ + 1) 2 ||( S(ℓ) √ ℓ ) 2 || 2 2+δ [ n ℓ ]+1 r=1 α * (r) δ δ+2 , (4.27) 
EJP 0 (2012), paper 0.

where A ′ 3 is a constant. Consider r = √ n, and ℓ = ⌈ln(n)/(5 ln K)⌉ + x, then Var(J 2,n )

and Var(J 3,n ) go to 0.

Therefore to complete the proof of Proposition 4.7 it remains to show that

J 1,n L → N (0, 4σ 4 3 ), (4.28) 
or equivalently, 

1 √ nℓ kn m=0 ξ m,n L → N (0, 4σ 4 3 ). 
(|X i | 4+3δ ) < ∞, S j (ℓ)/ √ ℓ 4+2δ is U.I. ( 4 

.31)

In addition with our choice of ℓ and r we have 

( r ℓ ) 1+ δ 2 E|( S(ℓ) √ ℓ ) 2 | 2+δ I(( S(ℓ) √ ℓ ) 2 ≥ 1 2 r ℓ ) = o(1). ( 4 
sup m E|ζ m,n | 2+δ I(|ζ m,n | > r ℓ ) ≤ 2 δ+1 ( r ℓ ) 1+ δ 2 E|( S(ℓ) √ ℓ ) 2 | 2+δ I(( S(ℓ) √ ℓ ) 2 ≥ 1 2 r ℓ ) = o(1)
as n → ∞. 

m,n ) = r n kn m=0 E(ζ 2 m,n ) + 2 kn-1 i=0 kn j=i+1 E( r n ζ j,n r n ζ i,n ).
Using (2.1) and with our choices of ℓ = [ln(n)/5 ln(K)] + x and r = √ n we have ∀ j > i sequence of independent and identically distributed Bernoulli r.v.s with parameter q.

E( r n ζ i,n r n ζ j,n ) = 1 nℓ E(ξ i,n ξ j,n ) = 1 nℓ 3 Cov( i(2ℓ+r)+r-1 k=i(2ℓ+r) S 2 k (ℓ), j ( 
We shall assume that the conditional law of I i has the following structure:

P(I i = 1|V i ) = K i j=1 (1 + V j ) 2 i-j ,
where K is a constant of normalization. This example is inspired from insurance risk theory: (I i ) (i∈N ) may modulate the frequency claim processes such that if I i = 1 then there is a claim. On may consider the process (X i ) (i∈N ) , modeling individual claim amounts in non-live insurance for example, such that X i = I i × B i , where

• the I i 's are Bernoulli r.v's, conditionally independent with respect to V i , as above,

• the claim amount B i 's are considered independent and independent of the I i 's and of V i . • (V i ) (i∈N ) is a mixing sequence of Bernoulli random variables.

It has been shown in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] that if the process (V i ) i∈N is α * (u,v) -mixing then so is (X n ) n∈N . Moreover, if the mixing coefficients of (V i ) i∈N are denoted α * V (r) and C V (u, v) then, there exists A > 1, B > 1 such that the mixing coefficients of (X n ) n∈N are such that

α * X (r) ≤ 2 -r 2 + α * V ( α 2
) and C X (u, v) ≤ max(2A v , B u+v C V (u, v)).

Example in an absolutely continuous case

Let the sequence of r.v.s (X i ) (i∈N ) be such that for all i ∈ N, X i are conditionally independent with respect to the vector of the factor V i . Consider that (X i ) (i∈N ) are Pareto r.v.s and that the sequence (V i ) (i∈N ) is a sequence of i.i.d Bernoulli r.v.s with parameter q. In this case, the conditional law of X i given V i is P areto(α, θ i ) where α > 2 is the shape parameter and θ i > 0 is the scale parameter. We assume that for all i ∈ N, the conditional density of X i given V i has the form

f i V i (x i ; α, θ i ) = α × θ α i x α+1 i for x i ≥ θ i ,
where the scale parameter θ i is a r.v. depending on V i and on α such that

θ α i = K i j=1 1 + V j 2 i-j .
It has been shown in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] that if the process (V i ) i∈N is α * (u,v) -mixing then so is (X n ) n∈N . As in the previous example, explicit bounds on the mixing coefficients of (X n ) n∈N , depending on those of (V i ) i∈N may be obtained.

Concluding remarks

Our results (Theorems 3.5 and 3.7) apply for sequences of stationary r.v.s. Below, we mention that if a mixing sequence is converging toward a stationary state, then the limit process is also mixing.

Assume that (X n ) (n∈N) is a sequence of asymptotically stationary r.v.s. That is, there is a stationary sequence (Y n ) (n∈N) such that for all bounded function g : R k → R and n ∈ N we have for all k ∈ N, E(g(X n , . . . , X n+k ))

n→∞ → E(g(Y 0 , . . . , Y k )). 

  Lemma 2.5 leads to the following corollary which gives sufficient conditions to have U.I. condition of order p where p ∈ {2, 4}.

Corollary 2 . 7 .

 27 Choose p an integer in {2, 4} . Let (X n ) n∈N be a stationary α * (p-1,p-1)

(3. 5 ) 3 . 3 .

 533 Remark Condition(3.3) or(3.4) on α * implies (3.1).

Lemma 4 . 4 . 2

 442 Let (X n ) n≥1 be α * (u,v) -mixing sequence of r.v.s for every 1 ≤ u ≤ v ≤ n. Assume that (3.3) and and 3.4 hold. Let {a nk;1≤k≤n } be a triangular array of real numbers such that sup nk < ∞ and sup |a nk | → 0 as n → ∞.

  be a triangular array of real number such that ∞ k=1 a 2 nk < ∞ and sup 1≤k≤n |a nk | → 0 as n → ∞.

(4. 17 )

 17 Assume that(3.3) holds then for every 0 ≤ a < b ≤ n Var( b k=a

  5 and by the uniform integrability condition of |X i | 2+δ we have lim

n sup 1≤k≤n a 2 nk pσ 2 n |Z|>ǫσn z 2 η i ) 2

 22 4 holds if conditions (4.21) and (4.22) below are satisfied for somep = o(n), q = [n/p] and k = [n/(p + q)].lim n→∞ dF p (z) = 0, (4.21) with F p the distribution function F p (z) = P (a n1 X ′ 1 + . . . + a np X ′ p < z) and lim n→∞ = 0, where η i = (i+1)p+(i+1)q (i+1)p+iq+1a nj X ′ j , (0 ≤ i ≤ k -1).

(4. 22 )sup 1≤k≤n a 2 nk pσ 2 n |Z|>ǫσn z 2 4 nk

 2224 Using Markov's inequality, we have n dF p (z) ≤ n sup 1≤k≤n a

(4. 26 )of Proposition 4 . 7 .

 2647 Proof Assume without loss of generality that E(X 1 ) = 0. Let r = o(n) and ℓ = o(r). Define ξ m,n = m(2ℓ+r)+r-1 j=m(2ℓ+r)

  by ζ m,n = 1 rℓ ξ m,n . Recall that by (3.11) and E

( 4 .

 4 33) which means that |ζ m,n | 2+δ is uniformly integrable. Now we will prove that Var(

ℓ 3 S 2

 32 (ℓ) 2 2+δ α * ((ji + 1)(2ℓ + r)) δ δ+2 , (4.35) EJP 0 (2012), paper 0.

( 5 . 1 )

 51 EJP 0 (2012), paper 0.

  1. Case 1: C(u, v) ≤ K we may choose ℓ n = o(n) and Theorems 3.5 and 3.7 hold.

2. Case 2: C(u, v) ≤ K(u + v) β i.e. C(u, v) is a polynomial on u and v then we can choose ℓ n = n s with s < 1 4 if β < 4 and s < 1 β+1 if β ≥ 4 and Theorems 3.5 and 3.7 hold.

  and (3.4), there exists a positive integer p = o(n) such that as n → ∞,

	(n/p) max 0≤m≤n-p	P max 1≤r≤p	|S m+r -S m | > ǫ	√	n → 0 f or any ǫ > 0,	(4.7)
	then the tightness is verified. Equation (4.7) is implied by
	max 0≤m≤n-p	E	 	m+p i=m+1 |X i | √ p	2	I	m+p i=m+1 |X i | √ p	> ǫ	n p	  → 0 as n → ∞,	(4.8)
	and (4.8) is satisfied provided that | which follows from Corollary 2.7. The proof is completed. m+p i=m+1 X i / √ p| 2 , p ≥ 1 is uniformly integrable

  1)N 2 α * (j) and following Remark 4.6 we get

	lim n→∞	n sup 1≤k≤n a 2 nk pσ 2 n	|Z|>ǫσn	z 2 dF p (z) ≤ lim n→∞	n sup 1≤k≤n a 4 nk E( ǫ 2 inf 1≤k≤n s 4 k pn 2 p i=1 X ′ i ) 4	.	(4.24)
				n			
	Lemma 4.6 in [5] implies that E(				
				i=1			

ejp.ejpecp.org

EJP 0 (2012), paper 0.

where A ′ 4 is a constant. Using Theorem 2.6 to bound S 2 (ℓ) 2 2+δ and with our hypothesis on the coefficients α * (specifically, the assumption that a > ((4 + 3δ)(δ + 2))/δ), we get: 

We have

(4.37)

With our choices of ℓ and r and the hypothesis on the mixing coefficients, we show that T 1,n , T 2,n and T 4,n go to 0 as n → ∞. Also, we have

At this stage, we need the following lemma which is another writing of Lemma 2.5 of [START_REF] Shi | Estimation of the variance for strongly mixing sequences[END_REF] which itself is derived by a careful analysis of Theorem 1.2 in [START_REF] Peligrad | Estimation of the variance of partial sums for ρmixing random variables[END_REF].

where (W (t), 0 ≤ t ≤ 1) is a standard wiener process and Var(S(ℓ))/ √ ℓ → σ 2 as ℓ → ∞. Cov((

3 .

(4.39)

EJP 0 (2012), paper 0.
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Finally as it was proved in [START_REF] Shi | Estimation of the variance for strongly mixing sequences[END_REF] we have 

We remark that since a >

is uniformly integrable. To conclude the proof of the theorem, it suffices to prove that

n,2 → 0, as n goes to infinity, which can be done by following [START_REF] Shi | Estimation of the variance for strongly mixing sequences[END_REF] and [START_REF] Peligrad | Estimation of the variance of partial sums for ρmixing random variables[END_REF].

Some examples

In [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF], we have given some examples of conditionally independent r.v.s (X i ) (i∈N ) given a factor (V 1 , . . . , V n ) that are relevant from the risk theory point of view. In fact, we considered that the structure of dependence between r.v.s (X i ) (i∈N ) may come from a time-varying common factor which represents the evolution of socio-economic and natural environment. For these examples we have considered that r.v.s X n , n ≥ 1, are controlled by an unbounded memory of the factor. It should be noted that by unbounded memory of the factor we mean that the conditional independence is with respect to a length varying factor vector.

We have proved in [START_REF] Kacem | Some mixing properties of conditionally independent processes[END_REF] that these example satisfy the α * (u,v)mixing property. We recall these examples here for completeness. Also, we have noticed that for these example the coefficients C(u, v) are exponential in (u, v), so that we cannot obtain the mixing property with the classical α or Φ-mixing coefficients.

A discrete example

Consider the process (I i ) (i∈N ) such that I i 's are Bernoulli r.v's conditionally to V i = (V 1 . . . , V i ) and conditionally independent with respect to V i where (V i ) (i∈N ) is a mixing Proposition 5.1. Assume that (X n ) n∈N is α * (u v)mixing and (Y n ) (n∈N) is a stationary process satisfying (5.1). Then (Y n ) (n∈N) satisfy the α * (u v)mixing property with the same coefficients.

Proposition 5.1 implies if (X n ) (n∈N) is a α * (u v)mixing and asymptotically stationary sequence then our results apply to the limit process. Examples considered above are asymptotically stationary.