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Controllability of the linear 1D wave equation

with inner moving forces

Carlos Castro∗ Nicolae Ĉındea† Arnaud Münch†

January 14, 2014

Abstract

This paper deals with the numerical computation of distributed null controls for the 1D

wave equation. We consider supports of the controls that may vary with respect to the time

variable. The goal is to compute approximations of such controls that drive the solution

from a prescribed initial state to zero at a large enough controllability time. Under specific

geometric conditions on the support of the controls earlier introduced in [Castro, Exact con-

trollability of the 1-D wave equation from a moving interior point, 2013 ], we first prove a

generalized observability inequality for the homogeneous wave equation. We then introduce

and prove the well-posedness of a mixed formulation that characterizes the controls of minimal

square-integrable norm. Such mixed formulation, introduced in [Cindea and Münch, A mixed

formulation for the direct approximation of the control of minimal L
2-norm for linear type

wave equations], and solved in the framework of the (space-time) finite element method, is

particularly well-adapted to address the case of time dependent support. Several numerical

experiments are discussed.

Keywords: Linear wave equation, null controllability, finite element methods, Mixed formulation.
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1 Introduction

Let T be a positive real, QT the domain (0, 1) × (0, T ), qT a non-empty subset of QT and ΣT =

{0, 1} × (0, T ). We are concerned in this work with the null distributed controllability for the 1D

wave equation:







ytt − yxx = v 1qT
, (x, t) ∈ QT

y(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).

(1)

We assume that (y0, y1) ∈ V := H1
0 (0, 1) × L2(0, 1); v = v(t) is the control (a function in L2(qT ))

and y = y(x, t) is the associated state. 1qT
from QT to {0, 1} denotes the indicatrice function of

qT . We also use the notation:

Ly := ytt − yxx. (2)

For any (y0, y1) ∈ V and any v ∈ L2(qT ), there exists exactly one solution y to (1), with the

regularity y ∈ C0([0, T ];H1
0 (0, 1)) ∩ C1([0, T ];L2(0, 1)) (see [19]).
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The null controllability problem for (1) at time T is the following: for each (y0, y1) ∈ V , find

v ∈ L2(qT ) such that the corresponding solution to (1) satisfies

y(· , T ) = 0, yt(· , T ) = 0 in (0, 1). (3)

When the subset qT takes the form qT := ω × (0, T ), where ω denotes a subset of (0, 1), the

null-controllability of (1) at any large time T > T ⋆ is well-known (for instance, see [1, 19]). The

critical time T ⋆ is related to the measure of (0, 1) \ ω. Moreover, as a consequence of the Hilbert

Uniqueness Method of J.-L. Lions [19], the null controllability of (1) is equivalent to an observability

inequality for the associated adjoint problem : there exists C > 0 such that

‖ϕ(·, 0), ϕt(·, 0)‖2
H

≤ C ‖ϕ‖2
L2(ω×(0,T )), ∀(ϕ0, ϕ1) ∈ H := L2(0, 1) ×H−1(0, 1) (4)

where (ϕ,ϕ0, ϕ1) solves

Lϕ = 0 in QT , ϕ = 0 on ΣT ; (ϕ(·, 0), ϕt(·, 0)) = (ϕ0, ϕ1) in (0, 1). (5)

We investigate in this work some questions related to the controllability of (1) for more general

subsets qT ⊂ QT of the form

qT =

{

(x, t) ∈ QT ; a(t) < x < b(t), t ∈ (0, T )

}

(6)

for some functions a, b ∈ C([0, T ], ]0, 1[). Thus, the support of the control function v depends on

the time variable. A geometrical description is given by Figure 1.

To our knowledge, the control of PDEs with non-cylindrical support has been much less ad-

dressed in the literature. For the wave equation, we mention the contribution of Khapalov [18]

providing observability results for a moving point sensor in the interior of the domain, allow-

ing the author to avoid the usual difficulties related to strategic or non-strategic points. In

particular, in the 1D setting, for any T > 0, the existence of controls continuous almost ev-

erywhere in (0, T ), supported over curves continuous almost everywhere is obtained for data in

H2(0, 1) ∩H1
0 (0, 1) ×H1

0 (0, 1). More recently, let us mention two works concerning again the 1D

wave equation both for initial data in H and any T > 2: the first one [6] analyzes the exact

controllability from a moving interior point. By the way of the d’Alembert formulae, an observ-

ability inequality is proved for a precise sets of curves {(γ(t), t)}t∈(0,T ) leading to moving controls

in H−1(∪t∈(0,T )γ(t) × {t}). The second one [11] considers the controllability from the moving

boundary of the form 1 + kt with k ∈ (0, 1], t ∈ (0, T ). In the case k < 1, the controllability in

L2(0, T ) is proved by the way of the multiplier method: as is usual, a change of variable reduces

the problem on fixed domains for wave equation with non constants coefficient. In the case k = 1

for which the speed of the moving endpoint is equal to the characteristic speed, the d’Alembert

formulae allows to characterize the reachable set.

Let us denote by C(a, b, T ) the class of domains of the form given by (6) for which the control-

lability holds, or equivalently the set of triplet (a, b, T ) ∈ C([0, T ], ]0, 1[)×C([0, T ], ]0, 1[)×R+ for

which the controllability hold. Obviously, this set is not empty: it suffices that T be large enough

and that the domain {(x, t) ∈ QT ; a(t) < x < b(t), t ∈ (0, T )} contains any rectangular domain

(a1, b1) × (0, T ) (i.e. that there exists a1 > 0, b1 > 0 such that a(t) ≤ a1 < b1 ≤ b(t) for all time

t ∈ [0, T ]) and then to apply (4).

The first contribution of this work is the extension of the well-known observability inequality

(4) to the non-cylindrical situation qT given by (6) under less restrictive conditions on the function

a and b. Precisely, if T > 2 and if the set qT contains a C1-curve γ whose variation satisfies

|γ′(t)| < 1 for all t ∈ [0, T ], then the following estimate turns out to be true :

‖ϕ(·, 0), ϕt(·, 0))‖2
H

≤ C

(

‖ϕ‖2
L2(qT ) + ‖Lϕ‖2

L2(0,T ;H−1(0,1))

)

, ∀ϕ ∈ Φ (7)
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where Φ = {ϕ : ϕ ∈ L2(qT ), ϕ = 0 on ΣT such that Lϕ ∈ L2(0, T ;H−1(0, 1))}. This so-called

generalized inequality observability implies by duality arguments the null controllability of (1)

with controls in L2(qT ) for qT given by (6).

The second contribution of this work is the introduction of a numerical method for the ap-

proximation of the control of minimal L2(qT )-norm. Usually (for instance see [16, 17, 21]), such

approximation is based on the minimization of the so-called conjugate functional :

min
(ϕ0,ϕ1)∈H

J⋆(ϕ0, ϕ1) =
1

2

∫∫

qT

|ϕ|2 dx dt+ < ϕ1, y0 >H−1(0,1),H1
0
(0,1) −

∫ 1

0

ϕ0 y1 dx. (8)

where (ϕ,ϕ0, ϕ1) solves (5). Here and in the sequel, we use the following duality pairing :

< ϕ1, y0 >H−1(0,1),H1
0
(0,1)=

∫ 1

0

∂x((−∆)−1ϕ1)(x) ∂xy0(x) dx (9)

where −∆ is the Dirichlet Laplacian in (0, 1). The well-posedness of this extremal problem -

precisely the coercivity of J⋆ over H - is given by the estimate (7). The control of minimal L2(qT )-

norm is then given by v = −ϕ 1qT
where ϕ solves (5) associated to (ϕ0, ϕ1), unique minimizer of

J⋆. Since, the domain qT evolves in time, the resolution of the wave equation by any usual time

marching method leads to some technicalities (at the level of the numerical implementation). We

therefore use, in the spirit of the works [9, 10], an equivalent formulation where the time and

the space variables are embedded in a time-space variational formulation, very appropriate to our

non-cylindrical situation. Specifically, we consider the following extremal problem over the variable

ϕ:

min
ϕ∈W

Ĵ⋆(ϕ) =
1

2

∫∫

qT

|ϕ|2 dx dt+ < ϕ1, y0 >H−1(0,1),H1
0
(0,1) −

∫ 1

0

ϕ0 y1 dx, (10)

with W =
{

ϕ : ϕ ∈ L2(qT ), ϕ = 0 on ΣT such that Lϕ = 0 ∈ L2(0, T ;H−1(0, 1))
}

. The unknown

is now the whole solution ϕ, constrained by the equality Lϕ = 0 in L2(0, T ;H−1(0, 1)). This

constraint is taken into account with a Lagrangian multiplier λ ∈ L2(0, T ;H1
0 (0, 1)) through a

mixed formulation in (ϕ, λ) solved using a conformal finite element approximation in time and

space.

This paper is organized as follows. In Section 2, we prove the generalized observability inequal-

ity (7) over the Hilbert space Φ (see Proposition 2.1) leading to the uniform controllability of (1) in

V . This is done by integrating the observability inequality (13) valid for any C1 curve γ from [0, T ]

to (0, 1) proven in [6]. In Section 3, we adapt [10] and introduce the mixed formulation (22) in the

variable (ϕ, λ) ∈ Φ×L2(0, T ;H1
0 (0, 1)) equivalent to the extremal problem (10). The variable λ can

be interpreted as a Lagrange multiplier for the equality constraint Lϕ = 0 in L2(0, T ;H−1(0, 1)).

We employ the estimate (7) to prove the well-posedness of this mixed formulation. In particular,

we prove an inf-sup condition for the pair (ϕ, λ). Moreover, it turns out that the multiplier λ,

unique solution of the mixed formulation, coincides with the controlled state y, solution of (1) (in

the weak-sense) (see section 3.1). This property allows to define Section 3.2 an another equiva-

lent extremal problem (the so-called primal problem, dual of the problem (10)) in the controlled

solution y only (see Proposition 3.1), without the introduction of any penalty parameter. The

corresponding elliptic problem in L2(0, T ;H1
0 (0, 1)) is solved by the way of a conjugate gradient

algorithm. Section 4 is devoted to the numerical approximation of the mixed formulation as well

as some numerical experiments. We emphasize the robustness of the approach leading notably to

the strong convergence of discrete sequence {vh} toward the controls for various geometries of qT .

Eventually, Section 5 concludes with some perspectives: in particular, we highlight the natural

extension of this work which consists in optimizing the control of (1) with respect to the support

qT .
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Figure 1: Time dependent domains qT included in QT .

2 A generalized observability inequality

Assume that qT takes the form (6). We define the vectorial space

Φ =
{

ϕ : ϕ ∈ L2(qT ), ϕ = 0 on ΣT such that Lϕ ∈ L2(0, T ;H−1(0, 1))
}

.

Endowed with the following inner product

(ϕ,ϕ)Φ =

∫∫

qT

ϕ(x, t)ϕ(x, t) dx dt+ η

∫ T

0

< Lϕ,Lϕ >H−1(0,1),H−1(0,1) dt, (11)

for any fixed η > 0, the space Φ is an Hilbert space.

In this section, we prove the following result.

Proposition 2.1 Assume that T > 2 and qT contains a C1-curve γ : [0, T ] → (0, 1) such that

• γ(t) ∈ (a(t), b(t)) for all t ∈ [0, T ], i.e. γ ⊂ qT

• 0 < |γ′(t)| < 1 for all t ∈ [0, T ].

Then, there exists C > 0 such that the following estimate holds :

‖ϕ(·, 0), ϕt(·, 0))‖2
H

≤ C

(

‖ϕ‖2
L2(qT ) + ‖Lϕ‖2

L2(0,T ;H−1(0,1))

)

, ∀ϕ ∈ Φ. (12)

Proof: We proceed in several steps:

Step 1: First, we write an observability inequality for initial data in V , when the observation is

taken on the curve γ ⊂ qT and Lϕ = 0. For T > 2, the following inequality is proved in [6]

‖ϕ(·, 0), ϕt(·, 0))‖2
V

≤ C

∫ T

0

‖ d
dt
ϕ(γ(t), t)‖2dt, ∀ϕ ∈W. (13)
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Step 2. Now we extend the observation in (13) from γ to qT . More precisely, we show that for

some constant C > 0,

‖ϕ(·, 0), ϕt(·, 0))‖2
V

≤ C

(

‖ϕt‖2
L2(qT ) + ‖ϕx‖2

L2(qT )

)

, (14)

for any ϕ ∈ W and initial data in V . Let us consider δ0 > 0 small enough such that γ(t) + δ0 ∈
(a(t), b(t)) for all t ∈ [0, T ]. In this case, we can define small translations of the curve γ, i.e.

γδ = γ + δ in such a way that γδ ⊂ qT for all δ < δ0. Obviously, γδ : [0, T ] → (0, 1) satisfies the

same properties stated for γ in the Step 1 above and (13) holds for all such curves with the same

constant. In particular, we have

‖ϕ(·, 0), ϕt(·, 0))‖2
V

≤ C

2δ0

∫ δ0

−δ0

∫ T

0

‖ d
dt
ϕ(γ(t) + δ, t)‖2dt dδ

≤ C

2δ0

∫∫

qT

‖ϕt(x, t) + γ′(t)ϕx(x, t)‖2dx dt

≤ C

2δ0
(1 + max

t∈[0,T ]
|γ′(t)|2)

(

‖ϕt‖2
L2(qT ) + ‖ϕx‖2

L2(qT )

)

.

Step 3. Here we show that we can substitute ϕx by ϕ in the right hand side of (14), i.e.

‖ϕ(·, 0), ϕt(·, 0))‖2
V

≤ C

(

‖ϕt‖2
L2(qT ) + ‖ϕ‖2

L2(qT )

)

, (15)

for any ϕ ∈ W and initial data in V . In fact, this requires also to extend slightly the observation

zone qT . Instead, we first argue that (14) must hold for a slightly smaller open set. Let ε > 0

small enough so that T − 2ε > 2 and it exists q̃T defined as

q̃T =

{

(x, t) ∈ QT ; ã(t) < x < b̃(t), t ∈ (ε, T − ε)

}

with (γ(t)− δ0, γ(t) + δ0) ⊂ (ã(t)− ε, b̃(t) + ε) ⊂ (a(t), b(t)) for all t ∈ [0, T ]. Therefore, (14) holds

when considering q̃T instead of qT . Now we introduce

η(x, t) =

{

t(T − t)(x− a(t))2(x− b(t))2, if (x, t) ∈ qT
0 otherwise.

Obviously, η ∈ C1 is supported in qT and there exists a constant C1, depending on ε, such that

‖ηt‖L∞ ≤ C1, ‖η2
x/η‖ ≤ C1. Moreover η > 0 and it is uniformly bounded below by a constant

C2 > 0 in q̃T .

Multiplying the equation of ϕ by ηϕ and integrating by parts we easily obtain

∫∫

qT

η|ϕx|2 dx dt =

∫∫

qT

η|ϕt|2 dx dt+

∫∫

qT

(ηtϕϕt − ηxϕϕx) dx dt

≤
∫∫

qT

η|ϕt|2 dxdt+
‖ηt‖L∞(qT )

2

∫∫

qT

(|ϕ|2 + |ϕt|) dx dt

+
1

2

∫∫

qT

(
η2

x

η
ϕ2 + ηϕ2

x) dx dt.

Therefore,

∫∫

qT

η|ϕx|2 dx dt ≤ C

∫∫

qT

(|ϕt|2 + |ϕ|2) dx dt,
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for some constant C > 0, and we obtain

‖ϕx‖2
L2(q̃T ) ≤ C−1

2

∫∫

qT

η|ϕx|2 dx dt ≤ C−1
2 C

∫∫

qT

(|ϕt|2 + |ϕ|2) dx dt.

This combined with (14) for q̃T provides (15).

Step 4. Here we prove that we can remove the second term in the right hand side of (15), i.e.

‖ϕ(·, 0), ϕt(·, 0))‖2
V

≤ C‖ϕt‖2
L2(qT ), (16)

for any ϕ ∈ W and initial data in V . Note that, for each time t ∈ [0, T ] and each ω ⊂ Ω we have

the following regularity estimate

∫ b(t)

a(t)

|ϕ(x, t)|2dx ≤ ‖ϕ(·, 0), ϕt(·, 0))‖2
H
, for all t ∈ [0, T ]

Therefore, integrating in time, we easily obtain

‖ϕ‖2
L2(qT ) ≤ T‖ϕ(·, 0), ϕt(·, 0))‖2

H
.

We now substitute this inequality in (14)

‖ϕ(·, 0), ϕt(·, 0))‖2
V

≤ C

(

‖ϕt‖2
L2(qT ) + ‖ϕ(·, 0), ϕt(·, 0))‖2

H

)

. (17)

Inequality (16) is finally obtained by contradiction. Assume that it is not true. Then, there

exists a sequence (ϕk(·, 0), ϕk
t (·, 0)))k>0 ∈ V such that

‖ϕk(·, 0), ϕk
t (·, 0))‖2

V
= 1, ∀k > 0

‖ϕk
t ‖2

L2(qT ) → 0, as k → ∞.

Therefore, there exists a subsequence, still denoted by the index k, such that (ϕk(·, 0), ϕk
t (·, 0)) →

(ϕ⋆(·, 0), ϕ⋆
t (·, 0)) weakly in V and strongly in H (by the compactness of the inclusion V ⊂ H).

Passing to the limit in the equation we easily see that the solution associated to (ϕ⋆(·, 0), ϕ⋆
t (·, 0)),

ϕ⋆ must vanish at qT and therefore, by (15), ϕ⋆ = 0. In particular this is in contradiction with

(17) since it implies that the right hand side in (17) vanishes as k → ∞ while the left hand side is

bounded by below.

Step 5. We now write (16) with respect to the weaker norm. In particular, we obtain

‖ϕ(·, 0), ϕt(·, 0))‖2
H

≤ C‖ϕ‖2
L2(qT ), (18)

for any ϕ ∈ Φ with Lϕ = 0.

Let η ∈ Φ be the solution of Lη = 0 and initial data (∆−1ϕt(·, 0), ϕ(·, 0)) ∈ V where ∆

designates the Dirichlet Laplacian in (0, 1). Let us write η(x, t) = η(x, 0) +
∫ t

0
ϕ(x, s) ds, for all

(x, t) ∈ QT . Then, inequality (16) on η and the fact that ∆ is an isomorphism from H1
0 (0, 1) to

L2(0, 1), provide

‖(ϕ(·, 0), ϕt(·, 0), )‖2
H

= ‖(∆−1ϕt(·, 0), ϕ(·, 0))‖2
V

≤ C‖ηt‖2
L2(qT ) = C‖ϕ‖2

L2(qT ).

Step 6. Here we finally obtain (12). Given ϕ ∈ Φ we can decompose it as ϕ = ϕ1 + ϕ2 where

ϕ1, ϕ2 ∈ Φ solve

{

Lϕ1 = Lϕ,

ϕ1(·, 0) = (ϕ1)t(·, 0) = 0

{

Lϕ2 = 0,

ϕ2(·, 0) = ϕ(·, 0), (ϕ2)t(·, 0) = ϕt(·, 0).
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From Duhamel’s principle, we can write

ϕ1(·, t) =

∫ t

0

ψ(·, t− s, s)ds

where ψ(x, t, s) solves, for each value of the parameter s ∈ (0, t),

{

Lψ(·, ·, s) = 0,

ψ(·, 0, s) = 0, ψt(·, 0, s) = Lϕ(·, s).

Therefore,

‖ϕ1‖2
L2(qT ) ≤

∫ T

0

‖ψ(·, ·, s)‖2
L2(qT )ds ≤ C

∫ T

0

‖ψ(·, 0, s), ψt(·, 0, s))‖2
H
ds

≤ C‖Lϕ‖2
L2(0,T ;H−1(0,1)) (19)

Combining (19) and estimate (18) for ϕ2 we obtain

‖ϕ(·, 0), ϕt(·, 0))‖2
H

= ‖ϕ2(·, 0), (ϕ2)t(·, 0))‖2
H

≤ C‖ϕ2‖2
L2(qT )

≤ C
(

‖ϕ‖2
L2(qT ) + ‖ϕ1‖2

L2(qT )

)

≤ C
(

‖ϕ‖2
L2(qT ) + ‖Lϕ‖2

L2(0,T ;H−1)

)

. (20)

✷

In the cylindrical situation, a generalized Carleman inequality valid the wave equation with

variable coefficients have been obtained in [9] (see also [25]). To our knowledge, the extension of

Proposition 2.1 to the wave equation with variable coefficients is still open and a priori can not

be obtained by the method used in this section.

3 Control of minimal L2(qT )-norm: a mixed reformulation

We now adapt in this section the work [10] and present a mixed formulation based on the optimality

conditions associated to the extremal problem (8) (section 3.1). From a numerical point of view,

this mixed formulation is very appropriate to the non-cylindrical situation considered in this work.

Very interestingly, this mixed formulation then allows to derive the dual formulation of the extremal

problem (10) which consists in optimizing directly with respect to the controlled solution y (without

the introduction of any penalty parameter) (see section 3.2).

3.1 Mixed reformulation of the controllability problem

As described at length in [10], the starting point of the reformulation is the dual problem (8). Thus,

in order to avoid the minimization of the functional J⋆ with respect to the initial data (ϕ0, ϕ1),

we now present a direct way to approximate the control of minimal square integrable norm, in the

spirit of the primal approach developed in [9]. Since the variable ϕ, solution of (5), is completely

and uniquely determined by the data (ϕ0, ϕ1), the main idea of the reformulation is to keep ϕ as

main variable and consider the following extremal problem:

min
ϕ∈W

Ĵ⋆(ϕ) =
1

2

∫∫

qT

|ϕ|2 dx dt+ < ϕt(·, 0), y0 >H−1(0,1),H1
0
(0,1) −

∫ 1

0

ϕ(·, 0) y1dx, (21)

where

W =
{

ϕ : ϕ ∈ L2(qT ), ϕ = 0 on ΣT such that Lϕ = 0 ∈ L2(0, T ;H−1(0, 1))
}

.



3 CONTROL OF MINIMAL L2(QT )-NORM: A MIXED REFORMULATION 8

W is an Hilbert space endowed with the same inner product than Φ . The minimization of Ĵ⋆

is evidently equivalent to the minimization of J⋆ over H. Remark that from (12) the property

ϕ ∈W implies that (ϕ(·, 0), ϕt(·, 0)) ∈ H, so that the functional Ĵ⋆ is well-defined over W .

The main variable is now ϕ submitted to the constraint equality Lϕ = 0 as an L2(0, T ;H−1(0, 1))

function. This constraint is addressed introducing a Lagrangian multiplier λ ∈ L2(0, T ;H1
0 (Ω)) as

follows:

We consider the following problem : find (ϕ, λ) ∈ Φ × L2(0, T ;H1
0 (0, 1)) solution of

{

a(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

b(ϕ, λ) = 0, ∀λ ∈ L2(0, T ;H1
0 (0, 1)),

(22)

where

a : Φ × Φ → R, a(ϕ,ϕ) =

∫∫

qT

ϕϕdx dt (23)

b : Φ × L2(0, T ;H1
0 (0, 1)) → R, b(ϕ, λ) =

∫ T

0

< Lϕ, λ >H−1(0,1),H1
0
(0,1) dt (24)

=

∫∫

QT

∂x(−∆−1(Lϕ)) · ∂xλ dx dt (25)

l : Φ → R, l(ϕ) = − < ϕt(·, 0), y0 >H−1(0,1),H1
0
(0,1) +

∫ 1

0

ϕ(·, 0) y1dx. (26)

We have the following result :

Theorem 3.1 (i) The mixed formulation (22) is well-posed.

(ii) The unique solution (ϕ, λ) ∈ Φ × L2(0, T ;H1
0 (0, 1)) is the unique saddle-point of the La-

grangian L : Φ × L2(0, T ;H1
0 (0, 1)) → R defined by

L(ϕ, λ) =
1

2
a(ϕ,ϕ) + b(ϕ, λ) − l(ϕ). (27)

(iii) The optimal function ϕ is the minimizer of Ĵ⋆ over Φ while the optimal function λ ∈
L2(0, T ;H1

0 (0, 1)) is the state of the controlled wave equation (1) in the weak sense (associated

to the control −ϕ 1qT
).

Proof - We easily check that the bilinear form a is continuous over Φ×Φ, symmetric and positive

and that the bilinear form b is continuous over Φ × L2(0, T ;H1
0 (0, 1)). Furthermore, assuming

that T is large enough, the continuity of the linear form l over Φ is a direct consequence of the

generalized observability inequality (12):

|l(ϕ)| ≤ ‖(y0, y1)‖V

√

Cmax(1, η−1)‖ϕ‖Φ, ∀ϕ ∈ Φ.

Therefore, the well-posedness of the mixed formulation is a consequence of the following two

properties (see [5]):

• a is coercive on N (b), where N (b) denotes the kernel of b :

N (b) = {ϕ ∈ Φ such that b(ϕ, λ) = 0 for every λ ∈ L2(0, T ;H1
0 (0, 1))}.

• b satisfies the usual ”inf-sup” condition over Φ × L2(0, T ;H1
0 (0, 1)): there exists δ > 0 such

that

inf
λ∈L2(0,T ;H1

0
(0,1))

sup
ϕ∈Φ

b(ϕ, λ)

‖ϕ‖Φ‖λ‖L2(0,T ;H1
0
(0,1))

≥ δ. (28)
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From the definition of a, the first point is clear : for all ϕ ∈ N (b) = W , a(ϕ,ϕ) = ‖ϕ‖2
W .

Let us check the inf-sup condition (28). For any fixed λ0 ∈ L2(0, T ;H1
0 (0, 1)), we define the

(unique) element ϕ0 such that Lϕ0 = −∆λ0 in QT and such that ϕ0(·, 0) = 0 in L2(0, 1) and

ϕ0,t(·, 0) = 0 in H−1(0, 1). ϕ0 is therefore solution of the wave equation with source term −∆λ0 ∈
L2(0, T ;H−1(0, 1)), null Dirichlet boundary condition and zero initial state. We then use the

following estimate (see for instance Chapter 1 in [19]): there exists a constant CΩ,T > 0 such that

‖ϕ0‖L2(QT ) ≤ CΩ,T ‖ − ∆λ0‖L2(0,T ;H−1(0,1)) ≤ CΩ,T ‖λ0‖L2(0,T ;H1
0
(0,1)). (29)

Consequently, ϕ0 ∈ Φ. In particular, we have b(ϕ0, λ0) = ‖λ0‖2
L2(0,T ;H1

0
(0,1))

and

sup
ϕ∈Φ

b(ϕ, λ0)

‖ϕ‖Φ‖λ0‖L2(QT )
≥ b(ϕ0, λ0)

‖ϕ0‖Φ‖λ0‖L2(QT )

=
‖λ0‖2

L2(0,T ;H1
0
(0,1))

(

‖ϕ0‖2
L2(qT ) + η‖λ0‖2

L2(0,T ;H1
0
(0,1))

)
1
2 ‖λ0‖L2(0,T ;H1

0
(0,1))

.

Combining the above two inequalities, we obtain

sup
ϕ0∈Φ

b(ϕ0, λ0)

‖ϕ0‖Φ‖λ0‖L2(0,T ;H1
0
(0,1))

≥ 1
√

C2
Ω,T + η

and, hence, (28) holds with δ =
(

C2
Ω,T + η

)− 1
2 .

The point (ii) is due to the symmetry and to the positivity of the bilinear form a. (iii). The

equality b(ϕ, λ) = 0 for all λ ∈ L2(0, T ;H1
0 (0, 1)) implies that Lϕ = 0 as an L2(0, T ;H−1(0, 1))

function, so that if (ϕ, λ) ∈ Φ × L2(0, T ;H1
0 (0, 1)) solves the mixed formulation, then ϕ ∈ W and

L(ϕ, λ) = Ĵ⋆(ϕ). Finally, the first equation of the mixed formulation reads as follows :
∫∫

qT

ϕϕdx dt+

∫ T

0

< Lϕ, λ >H−1,H1
0
dt = l(ϕ), ∀ϕ ∈ Φ,

or equivalently, since the control of minimal L2(qT ) norm is given by v = −ϕ 1qT
,

∫∫

QT

−v1qT
ϕdx dt+

∫ T

0

< Lϕ, λ >H−1,H1
0
dt = l(ϕ), ∀ϕ ∈ Φ.

But this means that λ ∈ L2(0, T,H1
0 (0, 1)) is solution of the wave equation in the transposition

sense. Since (y0, y1) ∈ V and v ∈ L2(qT ), λ must coincide with the unique weak solution to (1). ✷

Therefore, Theorem 3.1 reduces the search of the control of square minimal norm to the res-

olution of the mixed formulation (22), or equivalently to the search of the saddle point for L. In

general, it is very convenient (actually in the case considered here, it is necessary) to ”augment”

the Lagrangian (see [14]), and consider instead the Lagrangian Lr defined for any r > 0 by






Lr(ϕ, λ) :=
1

2
ar(ϕ,ϕ) + b(ϕ, λ) − l(ϕ),

ar(ϕ,ϕ) := a(ϕ,ϕ) + r‖Lϕ‖2
L2(0,T ;H−1(0,1)).

(30)

Since a(ϕ,ϕ) = ar(ϕ,ϕ) on W , the Lagrangian L and Lr share the same saddle-point.

Remark 1 The result of this section remains true if we define the space W such that Lϕ belongs

to L2(QT ). This allows to avoid scalar product over the space H−1(0, 1) (which is more involve

to deal with at the numerical viewpoint, see Section 4.3). The estimate (12) remains true and the

multiplier λ ∈ L2(QT ) is a controlled solution of (1) in the sense of the transposition. As for the

boundary situation, we may also work with (ϕ(·, 0), ϕt(·, 0)) in H1
0 (0, 1)×L2(0, 1) leading naturally

to Lϕ = 0 as an L2(QT ) function: however, the controls we then get are a priori only in H−1(qT )

[19, Chapter 7, Section 2].
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Remark 2 The estimate (12) may also be used to extend the work [9] to the non-cylindrical

situation. [9] considers the pair (y, v) solution of (1-3) which minimize the following L2-weighted

functional

J(y, v) :=
1

2

∫∫

QT

ρ2(x, t)|y|2 dx dt+
1

2

∫∫

qT

ρ2
0(x, t)|v|2 dx dt

for any weights ρ, ρ0 ∈ C(QT ,R
⋆
+). Assuming |ρ| and |ρ0| uniformly positive by below, the

unique minimizer (y, v) is expressed in term of the auxiliary variable p ∈ P := {p : ρ−1Lp ∈
L2(QT ), ρ−1

0 p ∈ L2(qT ), p = 0 onΣT } as follows :

y = −ρ−2Lp, v = ρ−2
0 p 1qT

on QT

where p is the solution of the variational formulation

∫∫

QT

ρ−2LpLq dx dt+

∫∫

qT

ρ−2
0 p q dx dt =

∫ 1

0

y1q(·, 0)dx− < y0, qt(·, 0) >H1
0
(0,1),H−1(0,1), ∀q ∈ P.

The well-posedness of this formulation is given by the estimate (12).

3.2 Dual problem of the extremal problem (21)

The mixed formulation allows to solve simultaneously the dual variable ϕ, argument of the conju-

gate functional (21), and the Lagrangian multiplier λ. Since λ turns out to be the controlled state

of (1), we may qualify λ as the primal variable of the controllability problem. We derive in this

section the corresponding extremal problem involving only that variable λ.

For any r > 0, let us define the linear operator Ar from L2(0, T ;H1
0 (0, 1)) into L2(0, T ;H1

0 (0, 1))

by

Arλ := −∆−1(Lϕ), ∀λ ∈ L2(0, T ;H1
0 (0, 1))

where ϕ ∈ Φ is the unique solution to

ar(ϕ,ϕ) = b(ϕ, λ), ∀ϕ ∈ Φ. (31)

Notice that the assumption r > 0 is needed here in order to guarantee the well-posedness of (31).

Precisely, for any r > 0, the form ar defines a norm equivalent to the norm on ϕ.

We have the following important lemma :

Lemma 3.1 For any r > 0, the operator Ar is a strongly elliptic, symmetric isomorphism from

L2(0, T ;H1
0 (0, 1)) into L2(0, T ;H1

0 (0, 1)).

Proof- From the definition of ar, we easily get that ‖Arλ‖L2(0,T ;H1
0
(0,1)) ≤ r−1‖λ‖L2(0,T ;H1

0
(0,1))

and the continuity of Ar. Next, consider any λ′ ∈ L2(0, T ;H1
0 (0, 1)) and denote by ϕ′ the cor-

responding unique solution of (31) so that Arλ
′ := −∆−1(Lϕ′). Relation (31) with ϕ = ϕ′ then

implies that
∫ T

0

< Arλ
′, λ >H1

0
(0,1),H1

0
(0,1) dt = ar(ϕ,ϕ

′) (32)

and therefore the symmetry and positivity of Ar. The last relation with λ′ = λ and the estimate

(12) imply that Ar is also positive definite.

Finally, let us check the strong ellipticity of Ar, equivalently that the bilinear functional

(λ, λ′) →
∫ T

0
< Arλ, λ

′ >H1
0
(0,1),H1

0
(0,1) dt is L2(0, T ;H1

0 (0, 1))-elliptic. Thus we want to show

that
∫ T

0

< Arλ, λ >H1
0
(0,1),H1

0
(0,1) dt ≥ c ‖λ‖2

L2(0,T ;H1
0
(0,1)), ∀λ ∈ L2(0, T ;H1

0 (0, 1)) (33)
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for some positive constant c. Suppose that (33) does not hold; there exists then a sequence {λn}n≥0

of L2(0, T ;H1
0 (0, 1)) such that

‖λn‖L2(0,T,H1
0
(0,1)) = 1, ∀n ≥ 0, and lim

n→∞

∫ T

0

< Arλn, λn >H1
0
(0,1),H1

0
(0,1) dt = 0.

Let us denote by ϕn the solution of (31) corresponding to λn. From (32), we then obtain that

lim
n→∞

‖Lϕn‖L2(0,T,H−1(0,1)) = 0, lim
n→+∞

‖ϕn‖L2(qT ) = 0 (34)

and thus limn→∞

∫ T

0
< −∆−1(Lϕ), λn >H1

0
(0,1),H1

0
(0,1) dt = 0 for all ϕ ∈ Φ (and so the L2(0, T ;H1

0 (0, 1))-

weak-convergence of λn toward 0).

From (31) with ϕ = ϕn and λn, we have

∫ T

0

< −r∆−1(Lϕn) − λn,−∆−1(Lϕ) >H1
0
(0,1),H1

0
(0,1) dt+

∫∫

qT

ϕn ϕdx dt = 0, ∀ϕ ∈ Φ. (35)

We define the sequence {ϕn}n≥0 as follows :











Lϕn = r Lϕn + ∆λn, in QT ,

ϕn(0, ·) = ϕn(1, ·) = 0, in (0, T ),

ϕn(·, 0) = ϕn,t(·, 0) = 0, in (0, 1)

so that, for all n, ϕn is the solution of the wave equation with zero initial data and source

term r Lϕn + ∆λn in L2(0, T ;H−1(0, 1)). Using again (29), we get ‖ϕn‖L2(qT ) ≤ CΩ,T ‖rLϕn +

∆λn‖L2(0,T ;H−1(0,1)), so that ϕn ∈ Φ. Then, using (35), we get

‖ − r∆−1(Lϕn) − λn‖L2(0,T ;H1
0
(0,1)) ≤ CΩ,T ‖ϕn‖L2(qT ).

Then, from (34), we conclude that limn→+∞ ‖λn‖L2(0,T ;H1
0
(0,1)) = 0 leading to a contradiction and

to the strong ellipticity of the operator Ar. ✷

The introduction of the operator Ar is motivated by the following proposition :

Proposition 3.1 Let ϕ0 ∈ Φ the unique solution of

ar(ϕ0, ϕ) = l(ϕ), ∀ϕ ∈ Φ

and let J⋆⋆ : L2(0, T ;H1
0 (0, 1)) → L2(0, T ;H1

0 (0, 1)) the functional defined by

J⋆⋆(λ) =
1

2

∫ T

0

< Arλ, λ >H1
0
(0,1),H1

0
(0,1) dt− b(ϕ0, λ).

The following equality holds :

sup
λ∈L2(0,T ;H1

0
(0,1))

inf
ϕ∈Φ

Lr(ϕ, λ) = − inf
λ∈L2(0,T ;H1

0
(0,1))

J⋆⋆(λ) + Lr(ϕ0, 0).

Proof- For any λ ∈ L2(0, T ;H1
0 (0, 1)), let us denote by ϕλ ∈ Φ the minimizer of ϕ → Lr(ϕ, λ).

ϕλ satisfies the equation

ar(ϕλ, ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ

and can be decomposed as follows : ϕλ = ψλ + ϕ0 where ψλ ∈ Φ solves

ar(ψλ, ϕ) + b(ϕ, λ) = 0, ∀ϕ ∈ Φ.
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We then have

inf
ϕ∈Φ

Lr(ϕ, λ) = Lr(ϕλ, λ) = Lr(ψλ + ϕ0, λ)

=
1

2
ar(ψλ + ϕ0, ψλ + ϕ0) + b(ψλ + ϕ0, λ) − l(ψλ + ϕ0)

:= X1 +X2 +X3

with










X1 =
1

2
ar(ψλ, ψλ) + b(ψλ, λ) + b(ϕ0, λ)

X2 = ar(ψλ, ϕ0) − l(ψλ), X3 =
1

2
ar(ϕ0, ϕ0) − l(ϕ0).

From the definition of ϕ0, X2 = 0 while X3 = Lr(ϕ0, 0). Eventually, from the definition of ψλ,

X1 = −1

2
ar(ψλ, ψλ) + b(ϕ0, λ) = −1

2

∫ T

0

< Arλ, λ >H1,H1 dt+ b(ϕ0, λ)

and the result follows. ✷

From the ellipticity of the operator Ar, the minimization of the functional J⋆⋆ over L2(0, T,H1
0 )

is well-posed. It is interesting to note that with this extremal problem involving only λ, we are

coming to the primal variable, controlled solution of (1) (see Theorem 3.1, (iii)). Due to the

constraint (3), the direct minimization of the null controllability problem by a penalty method

with respect to the controlled state is usually avoided in practice. Here, any constraint equality is

assigned to the variable λ.

From the symmetry and ellipticity of the operator Ar, the conjugate gradient algorithm is very

appropriate to minimize J⋆⋆, and consequently solve the mixed formulation (22). The conjugate

gradient algorithm reads as follows :

(i) Let λ0 ∈ L2(0, T ;H1
0 (0, 1)) be a given function.

(ii) Compute ϕ0 ∈ Φ solution to

ar(ϕ
0, ϕ) + b(ϕ, λ0) = l(ϕ), ∀ϕ ∈ Φ

and g0 = −∆−1(Lϕ0) then set w0 = g0.

(iii) For n ≥ 0, assuming that λn, gn and wn are known, compute ϕn ∈ Φ solution to

ar(ϕ
n, ϕ) = b(ϕ,wn), ∀ϕ ∈ Φ

and gn = −∆−1(Lϕn) and then

ρn = ‖gn‖2
L2(0,T ;H1

0
(0,1))/(g

n, wn)L2(0,T ;H1
0
(0,1)).

Update λn and gn by

λn+1 = λn − ρnw
n, gn+1 = gn − ρngn.

If ‖gn+1‖L2(0,T ;H1
0
(0,1))/‖g0‖L2(0,T ;H1

0
(0,1)) ≤ ε, take λ = λn+1. Else, compute

γn = ‖gn+1‖2
L2(0,T ;H1

0
(0,1))/‖gn‖2

L2(0,T ;H1
0
(0,1))

and update wn via

wn+1 = gn+1 + γnw
n.

Do n = n+ 1 and return to step (iii).
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As mentioned in [15] where this approach is discussed at length for Navier-Stokes type systems,

this algorithm can be viewed as a sophisticated version of Arrow-Hurwicz-Uzawa type method.

Concerning the speed of convergence of the conjugate gradient algorithm (i)-(iii), it follows

from for instance [12] that

‖λn − λ‖L2(0,T ;H1
0
(0,1)) ≤ 2

√

ν(Ar)

(

√

ν(Ar) − 1
√

ν(Ar) + 1

)n

‖λ0 − λ‖L2(0,T ;H1
0
(0,1)), ∀n ≥ 1

where λ minimizes J⋆⋆. ν(Ar) = ‖Ar‖‖A−1
r ‖ denotes the condition number of the operator Ar.

Eventually, once the above algorithm has converged we can compute ϕ ∈ Φ as solution of

ar(ϕ,ϕ) + b(ϕ, λ) = l(ϕ), ∀ϕ ∈ Φ.

4 Numerical approximation and experiments

4.1 Some domains qT

Let us first describe the domains qT ⊂ QT := (0, 1) × (0, T ) in which the control is supported we

shall use in our numerical experiments.

Let γi
T : (0, T ) → (0, 1) be four C∞ functions defined as follows

γ0
T (t) =

3

10
, t ∈ (0, T ), (36)

γ1
T (t) =

1

2
+

1

10
cos

(

πt

T

)

, t ∈ (0, T ), (37)

γ2
T (t) =

β − α

T
t+ α, t ∈ (0, T ), (38)

γ3
T (t) =

1

2
+

1

4
cos

(

8πt

T

)

, t ∈ (0, T ). (39)

In what follows we choose in (38) α = 0.2 and β = 0.8.

Remark that for values of the controllability time T which are larger than 2 and i ∈ {0, 1, 2} we

have that |∂tγ
i
T (t)| < 1 for every t ∈ (0, T ) and that, if T ≤ 2π, there exist some values of t ∈ (0, T )

such that |∂tγ
3
T (t)| ≥ 1. Hence γi

T satisfies the hypotheses of Proposition 2.1 for i ∈ {0, 1, 2} and

does not satisfy these hypotheses for i = 3.

For each i ∈ {0, 1, 2, 3}, let ai
T , b

i
T : (0, T ) → (0, 1) be two functions defined by

ai
T (t) = γi

T (t) − δ0, biT (t) = γi
T (t) + δ0, t ∈ (0, T ). (40)

for some δ0 > 0 small enough. We then define the corresponding domains qi
T as follows :

qi
T =

{

(x, t) ∈ QT ; ai
T (t) < x < biT (t), t ∈ (0, T )

}

, i ∈ {0, 1, 2, 3}. (41)

Remark that, in the definition of ai
T and biT , we may consider time-dependent value for δ0. Figure

2 display the domains qi
T defined by (41) with the controllability time T = 2.2 and δ0 = 10−1.

4.2 Discretization

We now turn to the discretization of the mixed formulation (22) assuming r > 0.

Let then Φh and Mh be two finite dimensional spaces parametrized by the variable h such that

Φh ⊂ Φ, Mh ⊂ L2(0, T ;H1
0 (0, 1)), ∀h > 0.
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Figure 2: The time dependent domains qi
T , i ∈ {0, 1, 2, 3} defined by (41).

Then, we can introduce the following approximated problems : find (ϕh, λh) ∈ Φh ×Mh solution

of
{

ar(ϕh, ϕh) + b(ϕh, λh) = l(ϕh), ∀ϕh ∈ Φh

b(ϕh, λh) = 0, ∀λh ∈Mh.
(42)

The well-posedness of this mixed formulation is again a consequence of two properties : the

coercivity of the bilinear form ar on the subset Nh(b) = {ϕh ∈ Φh; b(ϕh, λh) = 0 ∀λh ∈ Mh}.
Actually, from the relation

ar(ϕ,ϕ) ≥ r

η
‖ϕ‖2

Φ, ∀ϕ ∈ Φ

the form ar is coercive on the full space Φ, and so a fortiori on Nh(b) ⊂ Φh ⊂ Φ. The second

property is a discrete inf-sup condition : there exists δh > 0 such that

inf
λh∈Mh

sup
ϕh∈Φh

b(ϕh, λh)

‖ϕh‖Φh
‖λh‖Mh

≥ δh. (43)

For any fixed h, the spaces Mh and Φh are of finite dimension so that the infimum and supremum

in (43) are reached: moreover, from the property of the bilinear form ar, it is standard to prove

that δh is strictly positive (see Section 4.5). Consequently, for any fixed h > 0, there exists a

unique couple (ϕh, λh) solution of (42). On the other hand, the property infh δh > 0 is in general

difficult to prove and depends strongly on the choice made for the approximated spaces Mh and

Φh. We shall analyze numerically this property in Section 4.5.

The finite dimensional and conformal space Φh must be chosen such that Lϕh belongs to

L2(0, T,H−1(0, 1)) for any ϕh ∈ Φh. This is guaranteed for instance as soon as ϕh possesses

second-order derivatives in L2
loc(QT ). Therefore, a conformal approximation based on standard

triangulation of QT requires spaces of functions continuously differentiable with respect to both

variables x and t.

We introduce a triangulation Th such that QT = ∪K∈Th
K and we assume that {Th}h>0 is a

regular family. We note

h := max{diam(K),K ∈ Th}
where diam(K) denotes the diameter of K. Then, we introduce the space Φh as follows :

Φh = {ϕh ∈ Φh ∈ C1(QT ) : ϕh|K ∈ P(K) ∀K ∈ Th, ϕh = 0 on ΣT }
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where P(K) denotes an appropriate space of polynomial functions in x and t. In this work, we

consider for P(K) the reduced Hsieh-Clough-Tocher (HCT for short) C1-element. This is a so-called

composite finite element and involves 9 degrees of freedom, namely the values of ϕh, ϕh,x, ϕh,t on the

three vertices of each triangle K. We refer to [8] page 356 and to [2, 20] where the implementation

is discussed.

We also define the finite dimensional space

Mh = {λh ∈ C0(QT ), λh|K ∈ Q(K) ∀K ∈ Th, λh = 0 on ΣT }

where Q(K) denotes the space of affine functions both in x and t on the element K. For any h > 0,

we have Φh ⊂ Φ and Mh ⊂ L2(0, T ;H1
0 (0, 1)).

For each combination of domains (qT , QT ) described in Section 4.1 we consider six levels of

triangulations Th (numbered from ♯0 to ♯5, from coarser to finer). The number of triangles for

some examples of domains qT which will be used the experiments are summarized in Table 1. In

Figure 3 we display the meshes ♯1 corresponding to geometries described in Figure 2.

♯ Mesh 0 1 2 3 4 5

q0T=2.2 207 828 3 312 13 248 52 992 211 968

q0T=2 198 792 3 168 12 672 50 688 202 752

q1T=2.2 150 600 2 400 9 600 38 400 153 600

q2T=2.2 179 716 2 864 11 456 45 824 183 296

q2T=2 177 708 2 832 11 328 45 312 181 248

q3T=2.2 464 1 856 7424 29 696 118 784 475 136

Table 1: Number of triangles for different meshes and different control domains qi
T
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Figure 3: Meshes ♯1 associated with the domains qi
T=2.2 : i = 0, 1, 2, 3 from left to right.

4.3 Change of the norm ‖ · ‖L2(H−1) over the discrete space Φh

In contrast to [10] where the boundary controllability is considered with the constraint Lϕ = 0 as

an L2(QT ) function, the equality Lϕ = 0 in Φ is assumed in the weaker space L2(0, T ;H−1(0, 1)).

It is not straightforward to handle numerically the scalar product over H−1 which appears in the

mixed formulation (42). However, at the finite dimensional level of the discretization, since all the
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norms are equivalent, a classical trick (see for instance [3, 4]) consists in replacing, for any fixed h,

the norm ‖Lϕh‖L2(0,T ;H−1(0,1)) by the norm ‖Lϕh‖L2(QT ), up to a constant.

In order to do that, first remark that if there exist two constants C0 > 0 and α > 0 such that

‖ψh‖2
L2(QT ) ≥ C0h

α‖ψh‖2
L2(0,T ;H1

0
(0,1)), ∀ψh ∈ Φh (44)

then a similar inequality it holds for weaker norms. More precisely, we have

‖ϕh‖2
L2(0,T ;H−1(0,1)) ≥ C0h

α‖ϕh‖2
L2(QT ), ∀ϕh ∈ Φh. (45)

Indeed, to obtain (45) it suffices to take ψh(·, t) = (−∆)
1
2ϕh(·, t) in (44). That gives

∫ T

0

∥

∥

∥
(−∆)−

1
2ϕh(·, t)

∥

∥

∥

2

L2(0,1)
dt ≥ C0h

α

∫ T

0

∥

∥

∥
(−∆)−

1
2ϕh,x(·, t)

∥

∥

∥

2

L2(0,1)
dt.

Since −∆ is a self-adjoint positive operator and ϕh ∈ Φh ⊂ H1
0 (QT ) we can integrate by parts in

both hand-sides of the above inequality and hence we deduce estimate (45). We highlight that the

term C0h
α (and so C0 and α) does not depend on T .

Assuming that (44) (and consequently (45)) holds (the constants C0, α > 0 will be approxi-

mated numerically in Section 4.4), we may consider, for any fixed h > 0, the following equivalent

definitions of the form ar,h and bh over the finite dimensional spaces Φh × Φh and Φh × Mh

respectively :

ar,h : Φh × Φh → R, ar,h(ϕh, ϕh) = a(ϕh, ϕh) + rC0h
α

∫∫

QT

LϕhLϕhdxdt (46)

bh : Φh ×Mh → R, bh(ϕh, λh) =

∫∫

QT

Lϕhλhdxdt. (47)

Let nh = dim Φh,mh = dimMh and let the real matrices Ar,h ∈ Rnh,nh , Bh ∈ Rmh,nh ,

Jh ∈ Rmh,mh and Lh ∈ Rnh,1 be defined by

ar,h(ϕh, ϕh) = 〈Ar,h{ϕh}, {ϕh}〉R
nh ,Rnh , ∀ϕh, ϕh ∈ Φh, (48)

bh(ϕh, λh) = 〈Bh{ϕh}, {λh}〉R
mh ,Rmh , ∀ϕh ∈ Φh,∀λh ∈Mh, (49)

∫∫

QT

λhλh dx dt = 〈Jh{λh}, {λh}〉R
mh ,Rmh , ∀λh, λh ∈Mh, (50)

l(ϕh) = 〈Lh, {ϕh}〉, ∀ϕh ∈ Φh (51)

where {ϕh} ∈ Rnh,1 denotes the vector associated to ϕh and 〈·, ·〉R
nh ,Rnh the usual scalar product

over Rnh . With these notations, the problem (42) reads as follows : find {ϕh} ∈ Rnh,1 and

{λh} ∈ Rmh,1 such that

(

Ar,h BT
h

Bh 0

)

R
nh+mh,nh+mh

( {ϕh}
{λh}

)

R
nh+mh,1

=

(

Lh

0

)

R
nh+mh,1

. (52)

The matrix Ar,h as well as the mass matrix Jh are symmetric and positive definite for any h > 0

and any r > 0. On the other hand, the main matrix of order mh + nh in (52) is symmetric but

not positive definite. We use exact integration methods developed in [13] for the evaluation of the

coefficients of the matrices. The system (52) is solved using the direct LU decomposition method.

Let us also mention that for r = 0, although the formulation (22) is well-posed, numerically,

the corresponding matrix A0,h is not invertible. In the sequel, we shall consider strictly positive

values for r.
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Once the approximation ϕh is obtained, an approximation vh of the control v is given by

vh = −ϕh 1qT
∈ L2(QT ). The corresponding controlled state yh may be obtained by solving (1)

with standard forward approximation (we refer to [9], Section 4 where this is detailed). Here, since

the controlled state is directly given by the multiplier λ, we simply use λh as an approximation of

y and we do not report here the computation of yh.

4.4 Numerical approximation of C0 and α in (45).

In order to approximate the values of the constants C0, α appearing in (44)-(45) we consider the

following problem :

find α > 0 and C0 > 0 such that sup
ϕh∈Φh

‖ϕh‖2
L2(0,T ;H1

0
(0,1))

‖ϕh‖2
L2(QT )

≤ 1

C0hα
, ∀h > 0. (53)

Since Φh is a finite dimensional space, the supremum is, for any fixed h > 0, the solution of

the following eigenvalue problem :

∀h > 0, γh = sup

{

γ : Kh{ψh} = γJh{ψh}, ∀{ψh} ∈ Rmh \ {0}
}

(54)

where Kh ∈ Rnh,nh and Jh ∈ Rnh,nh are the matrices defined by

〈Kh{ψh}, {ψh}〉R
nh ,Rnh =

∫∫

QT

ψh,xψh,xdxdt, ∀ψh, ψh ∈ Φh,

〈Jh{ψh}, {ψh}〉R
nh ,Rnh =

∫∫

QT

ψhψhdxdt, ∀ψh, ψh ∈ Φh.

We then can choose C0 and α in (53) such that C0h
α = γ−1

h , where γh solves the problem (54).

Figure 4 displays γ−1
h corresponding to the matrices Kh and Jh associated to the domains QT and

q0T for the six levels of mesh and T = 2.2. The values of constants C0 and α which provide the

best fitting are C0 ≈ 1.48 × 10−2 and α = 2.1993. As expected, we also check that the constant

γh (and so C0 and α) does not depend on T nor on the controllability domain. From now on, we

use these numerical values in the bilinear form ar,h defined by (46).

10
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10
−1

10
−7

10
−6

10
−5

10
−4

Figure 4: Values of γ−1
h vs. h (•). The line represents C0h

α for C0 ≈ 1.48× 10−2 and α ≈ 2.1993.
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4.5 The discrete inf-sup test

In order to solve the mixed formulation (42), we first test numerically the discrete inf-sup condition

(43). Taking η = r > 0 in (11) so that ar,h(ϕ,ϕ) = (ϕ,ϕ)Φ for all ϕ,ϕ ∈ Φ, it is readily seen (see

for instance [7]) that the discrete inf-sup constant satisfies

δh := inf

{√
δ : BhA

−1
r,hB

T
h {λh} = δ Jh{λh}, ∀ {λh} ∈ Rmh \ {0}

}

. (55)

As in the case of boundary controls (see [10]), the matrix BhA
−1
r,hB

T
h is symmetric and positive

definite so that the real δh defined in term of the (generalized) eigenvalue problem (55) is, for

any fixed value of the discretization parameter h, strictly positive. This eigenvalue problem is

solved using the power iteration algorithm (assuming that the lowest eigenvalue is simple): for

any {v0
h} ∈ Rnh such that ‖{v0

h}‖2 = 1, compute for any n ≥ 0, {ϕn
h} ∈ Rnh , {λn

h} ∈ Rmh and

{vn+1
h } ∈ Rmh iteratively as follows :

{

Ar,h{ϕn
h} +BT

h {λn
h} = 0

Bh{ϕn
h} = −Jh{vn

h}
, {vn+1

h } =
{λn

h}
‖{λn

h}‖2
.

The scalar δh defined by (55) is then given by : δh = limn→∞(‖{λn
h}‖2)

−1/2.

Table 2 reports the values of δh for various mesh sizes h, for r = 10−1 and r = 10−3 and for

qT = q22.2. As expected, we check that δh decreases as h → 0 and increases as r → 0. More

importantly, this table suggests that the sequence δh remains uniformly bounded by below with

respect to h. This property remains true for other control domains qT , as emphasized by Figure 5.

♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

r = 10−1 18.8171 17.5466 17.0642 16.8880 16.8254

r = 103 0.6981 0.8374 0.9246 0.9964 1.0826

Table 2: δh vs. h for qT = q22 , r = 10−1 and r = 103.

We may conclude that the finite elements we use do ”pass” the discrete inf-sup test. As we

shall see in the next section, this fact implies the convergence of the sequence ϕh and λh.

10
−2

10
−1

12

14

16

18

20

22

24

• q0T with T = 2.2;

+ q0T with T = 2;

◭ q1T with T = 2;

� q2T with T = 2.2;

� q2T with T = 2.

◮ q3T with T = 2.2.

Figure 5: Values of δh vs. h for different control domains qi
T and r = 10−1.
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4.6 Numerical experiments for qT = q2
2 and comparison with the explicit

solution

We first consider the domain qT = q22 (see Figure 2) corresponding to an oblique band of length

2δ0 = 0.2 and T = 2. We define also the following three initial data in V := H1
0 (0, 1) × L2(0, 1):

(EX1) y0(x) = sin(πx), y1(x) = 0, x ∈ (0, 1),

(EX2) y0(x) = e−500(x−0.8)2 , y1(x) = 0, x ∈ (0, 1),

(EX3) y0(x) =
x

θ
1(0,θ)(x) +

1 − x

1 − θ
1(θ,1)(x), y1(x) = 0, θ ∈ (0, 1), x ∈ (0, 1).

In the case where the domain qT depends on the variable t, there is no in general exact solution

of the mixed formulation (22). However, we can obtain a semi-explicit representation (using

Fourier decomposition) of the minimizer (ϕ0, ϕ1) of the conjugate functional J⋆ (see (8)), and

consequently of the corresponding adjoint variable ϕ, the control of minimal square integrable

norm v = −ϕ 1qT
and finally the controlled state y solution of (1-3). In practice, the obtention of

the Fourier representation amounts to solve a symmetric linear system. We refer to the Appendix

for the details. This allows to evaluate precisely the error ‖v − vh‖L2(qT ) with respect to h and

confirm the relevance of the method.

Table 3 and 4 collects some numerical values for r = 10−1 and r = 103 respectively correspond-

ing to the initial data (EX1). In the Tables, κ denotes the condition number associated to the

linear system (52), independent of the initial data (y0, y1). The convergence of ‖v − vh‖L2(qT ),

‖Lϕh‖L2(0,T ;H−1(0,1)) and ‖y− λh‖L2(qT ) toward zero as hց 0 is clearly observed. This is fully in

agreement with the uniform discrete inf-sup property we have observed in Section 4.5. We obtain

the following rates of convergence with respect to h for r = 10−1 and r = 103 respectively :

r = 10−1 : ‖v − vh‖L2(qT ) ≈ O(h1.3), ‖Lϕh‖L2(0,T ;H−1(0,1)) ≈ O(h1.3), ‖y − λh‖L2(QT ) ≈ O(h1.94)

r = 103 : ‖v − vh‖L2(qT ) ≈ O(h1.09), ‖Lϕh‖L2(QT ) ≈ O(h1.04), ‖y − λh‖L2(QT ) ≈ O(h2.01).

We refer to Figure 6 which highlights for r = 10−1 the polynomial convergence of the sequences

‖y−λh‖L2(QT ) (”�”) and ‖v−vh‖L2(q2
T

) (”•”) with respect to h. The previous rates suggests that

the value of the parameter r has a restricted influence.

♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

‖vh‖L2(qT ) 5.370 5.047 4.893 4.815 4.776

‖Lϕh‖L2(0,T ;H−1(0,1)) 2.286 9.43 × 10−1 3.76 × 10−1 1.5 × 10−1 6.15 × 10−2

‖v − vh‖L2(qT ) 2.45 × 10−1 9.65 × 10−2 4.32 × 10−2 2.29 × 10−2 1.10 × 10−2

‖y − λh‖L2(QT ) 5.63 × 10−3 1.57 × 10−3 4.04 × 10−4 1.03 × 10−4 2.61 × 10−5

κ 2.46 × 107 2.67 × 108 2.96 × 109 3.03 × 1010 3.08 × 1011

Table 3: Example EX1; qT = q22 ; r = 10−1.

The convergence of the method is also observed for the initial data (EX2), mainly supported

around x = 0.8 and the less regular data (EX3). Table 5 collects numerical values associated to

(EX2), qT = q22 and r = 10−1. We obtain the following rates :

‖v − vh‖L2(qT ) ≈ e5.85h1.4, ‖Lϕh‖L2(QT ) ≈ e7.96h1.31, ‖y − λh‖L2(QT ) ≈ e1.508h1.62

Figure 7 displays other QT the dual variable ϕh and the primal variable λh for qT = q22.2. The

figures are obtained with the mesh ♯3. As expected, theses variable are mainly concentrated along

the characteristics starting from x = 0.8.
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♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

‖vh‖L2(qT ) 4.1796 4.6185 4.7589 4.7557 4.7291

‖Lϕh‖L2(0,T ;H−1(0,1)) 0.0391 0.0322 0.0162 0.0078 0.0037

‖v − vh‖L2(qT ) 2.4977 1.1341 0.5617 0.2418 0.1201

‖y − λh‖L2(QT ) 9.23 × 10−2 4.56 × 10−2 7.70 × 10−3 1.71 × 10−3 4.46 × 10−4

κ 6.12 × 108 1.44 × 1010 1.51 × 1011 1.55 × 1012 1.54 × 1013

Table 4: Example EX1; qT = q22 ; r = 103.
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Figure 6: Example EX1; r = 10−1; qT = q22.2; Norms ‖v − vh‖L2(qT ) (•) and ‖y − λh‖L2(QT ) (�)

vs. h.
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Figure 7: Example EX2; r = 10−1; qT = q22.2 : Functions ϕh (Left) and λh (Right) over QT .

Similarly, Table 6 gives the value corresponding to the third example EX3, here with θ = 1/2.

We obtain

‖v − vh‖L2(qT ) ≈ e1.69h0.53, ‖Lϕh‖L2(QT ) ≈ e2.88h0.56, ‖y − λh‖L2(QT ) ≈ e−1.41h1.32.

Table 7 gives the numerical results for the Example EX3 with θ = 1/3. We get

‖v − vh‖L2(qT ) ≈ e1.54h0.47, ‖Lϕh‖L2(QT ) ≈ e2.91h0.54, ‖y − λh‖L2(QT ) ≈ e−1.52h1.29.

Figure 8 displays the dual variable ϕh and the primal variable λh for qT = q22.2 and EX3 with
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♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

‖vh‖L2(qT ) 4.8469 7.6514 10.9905 12.6256 12.9022

‖Lϕ‖L2(0,T ;H−1(0,1)) 3.13 × 101 2.91 × 101 1.82 × 101 6.8984 1.9257

‖v − vh‖L2(qT ) 8.4949 6.6975 3.2515 6.24 × 10−1 5.31 × 10−2

‖y − λh‖L2(QT ) 5.98 × 10−2 2.78 × 10−2 8.97 × 10−3 2.01 × 10−3 5.38 × 10−4

Table 5: Example EX2; qT = q22 ; r = 10−1.

♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

‖vh‖L2(qT ) 4.807 4.756 4.707 4.689 4.685

‖Lϕh‖L2(0,T ;H−1(0,1)) 3.858 2.965 1.881 1.232 8.61 × 10−1

‖v − vh‖L2(qT ) 1.4382 8.73 × 10−1 6.24 × 10−1 4.24 × 10−1 3.25 × 10−1

‖y − λh‖L2(QT ) 6.86 × 10−3 3.55 × 10−3 1.19 × 10−3 4.64 × 10−4 1.96 × 10−4

Table 6: Example EX3 with θ = 1/2; r = 10−1; qT = q22 .

θ = 1/3. The figures are again plotted with the mesh ♯3.

♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

‖vh‖L2(qT ) 5.350 5.263 5.195 5.172 5.165

‖Lϕh‖L2(0,T ;H−1(0,1)) 4.230 3.339 2.095 1.382 1.022

‖v − vh‖L2(qT ) 1.3571 9.78 × 10−1 6.91 × 10−1 5.13 × 10−1 3.69 × 10−1

‖y − λh‖L2(QT ) 7.12 × 10−3 3.23 × 10−3 1.19 × 10−3 4.82 × 10−4 2.12 × 10−4

Table 7: Example EX3 with θ = 1/3; r = 10−1; qT = q22 .
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Figure 8: Example EX3 with θ = 1/3; r = 10−1; qT = q22.2 : Functions ϕh (Left) and λh (Right).
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4.7 Various domains qT with same measure: comparison of the L2-norm

The optimization of the support domain qT is particularly relevant in the time dependent situation.

As a first step in this direction, we compare numerically in this section the L2(qT )-norm of the

control vh for various domain qT having the same measure. Along this section, we take r = 10−1

and T = 2.2. The four domains we consider are qi
T=2.2 for i = 0, 1, 2, 3 and are described in Section

4.1.

Table 8 reports the L2 norms of vh = −ϕh1qi
T

obtained with the finer mesh (mesh ♯5, see Table

1) associated to each domain.

Initial data q0T q1T q2T q3T
EX1 4.3677 3.8770 4.4808 5.5967

EX2 11.9994 12.0973 10.6268 11.2624

EX3, θ = 1/3 3.9946 4.5026 5.0132 5.0369

Table 8: L2-norm ‖vh‖L2(qT ) for qT = qi
2.2, i ∈ {0, 3} for initial data EX1-EX3.

Figure 9 displays the dual variable ϕh and the primal one λh associated to the initial data EX2

and control domains q3T .

0

0.5

1

0

1

2

−200

−150

−100

−50

0

50

x
t

0

0.5

1

0

1

2

−1

−0.5

0

0.5

1

1.5

x
t

Figure 9: Example EX2: qT = q32.2 - Function ϕh (Left) and λh (Right) over QT .

Figure 10 displays the dual variable ϕh and the primal one λh associated to the initial data

EX3, θ = 1/3 and control domains q3T .

We remark that any of these domains provides minimal norm controls for every initial data

EX1-EX3. In fact, we suspect that the domains minimizing the L2-norm of the control of minimal

L2-norm are strongly connected with the set generated by the characteristics of the initial data.

This questions will be investigated in a future study.

4.8 Behavior of the control as δ0 ց 0

The approach we have developed is valid for any support qT satisfying the hypothesis of Proposition

2.1, in particular arbitrarily thin domain. In this Section we study numerically the evolution of

the norm of the controls of minimal L2-norm supported in a time dependent domain qT when

the measure of these domains goes to 0. Precisely, we consider smaller and smaller values to the

parameter δ0 defining the ”thickness” of the domains qT as specified by (40)-(41).
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Figure 10: Example EX3, θ = 1/3: qT = q32.2 - Function ϕh (Left) and λh (Right) over QT .

In Table 9 we give the L2 and L2(H−1) norms of the controls obtained for the initial data EX1

and control domains q2T=2 for δ0 =
10−1

2i
for values of i ∈ {0, 1, 2, . . . , 6}. The numerical values

suggest that both norms of the controls are not uniformly bounded (by above) with respect to δ0;

this indicates that the L2-controllability of (1) with control supported on the curve γ2
T=2 (see 38)

does not hold. Similar behaviors are obtained for the other domains considered in Section 4.1 when

δ0 ց 0. This does not contradict the result of [6] where the H−1(∪t∈(0,T )γ(t)×{t})-controlability

is proved in the limit situation.

δ0 10−1 10−1/2 10−1/22 10−1/23 10−1/24 10−1/25 10−1/26

♯ triangles 68 740 68 464 68 402 68 728 68 422 68 966 68 368

‖vh‖L2(qT ) 4.8308 7.3308 11.5743 18.8056 29.7354 47.3157 123.9704

‖vh‖L2(H−1) 0.0035 0.0042 0.0066 0.0107 0.0170 0.0270 0.0704

Table 9: Example EX1; qT = q22 ; Norms of the control vh obtained for the EX1 for control

domains q22 for different values of δ0.

4.9 Other cases

In order to illustrate our approach in a more challenging case we consider the wave equation with

a non-constant velocity of propagation c and control supported in a time dependent domain :







ytt − (c(x)yx)x = v 1qT
, (x, t) ∈ QT

y(x, t) = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1).

(56)

We take the velocity c ∈ C∞(0, 1) given by

c(x) =







1, x ∈ [0, 0.45]

∈ [1, 5], (c′(x) > 0), x ∈ (0.45, 0.55)

5, x ∈ [0.55, 1].

(57)

Note that the Fourier expansion developed in Appendix A does not apply in this case. Although

the inequality (12) is open in this more general case, the solution of the mixed formulation (22)
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still provides convergent approximations {vh} of controls. Figure 11 depicts the dual variable ϕh

and the primal variable λh corresponding to the approximation of the control for problem (56), for

initial data given by EX3 with θ = 1/3 and control domain q22 . The augmentation parameter is

r = 10−1.
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Figure 11: Example EX3, θ = 1/3: qT = q22 for a non-constant velocity of propagation - Function

ϕh (Left) and λh (Right) over QT .

Since the control acts in a time dependent domain, the geometric controllability condition can

hold for values of the controllability time T which are smaller than 2 (we refer to [18]). Figure

12 displays ϕh and λh corresponding to the exmaple EX3 for θ = 1/3, T = 1 and qT = q21 .

We mention that in this section the domains QT are discretized using uniform meshes formed by

triangles of size h ≈ 10−2.
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Figure 12: Example EX3, θ = 1/3: qT = q21 - Function ϕh (Left) and λh (Right) over QT .

Another, even more challenging situation is the approximation of controls for problem (56) for

shorter controllability times. In Figure 13 we display the results obtained for the initial data EX3,

domain q2T=1 and the velocity of propagation is non constant in space and given by (57).

Analyzing the evolution of the norm of λh with respect to the time, in all the three exam-

ples considered in these section it seems to have the controllability, although the hypotheses of
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Figure 13: Example EX3, θ = 1/3: qT = q21 for a non-constant velocity of propagation - Function

ϕh (Left) and λh (Right) over QT .

Proposition 2.1 are not completely fulfilled.

4.10 Conjugate gradient for J⋆⋆

We illustrate here the Section 3.2: we minimize the functional J⋆⋆ : L2(QT ) → R with respect to

the variable λ. We recall that this minimization corresponds exactly to the resolution of the mixed

formulation (22) by an iterative Uzawa type procedure. The conjugate gradient algorithm is given

at the end of Section 3.2. In practice, each iteration amounts to solve a linear system involving

the matrix Ar,h of size nh = 4mh (see (52)) which is sparse, symmetric and positive definite. We

use the Cholesky method.

We consider the singular situation given by the example EX3 with θ = 0.3, T = 2 and

qT = q22 . We take ε = 10−10 as a stopping threshold for the algorithm (that is the algorithm

is stopped as soon as the norm of the residue gn at the iterate n satisfies ‖gn‖L2(0,T ;H1
0
(0,1)) ≤

10−10‖g0‖L2(0,T ;H1
0
(0,1))) or as the number of iterations is greater than 1000. The algorithm is

initiated with λ0 = 0 in QT . Table 10 and 11 display the results for r = 10−1 and r = 103.

We first check that this iterative method gives exactly the same approximation λh than the

previous direct method (where (52) is solved directly) since, from Proposition (3.1) problem (22)

coincides with the minimization of J⋆⋆ for r > 0. Then, we observe that the number of iterates

is sub-linear with respect to the dimension mh = card({λh}) of the approximated problem. Once

again, this is in contrast with the behavior of the conjugate gradient algorithm when this latter is

used to minimize J⋆ with respect to (ϕ0, ϕ1) (see [21]).

Figure 14 displays the evolution of the residue ‖gn‖L2(0,T ;H1
0
(0,1))/‖g0‖L2(0,T ;H1

0
(0,1)) with re-

spect to the iteration n for two values of the augmentation parameter : r = 10−1 and r = 103. The

computation has been done with the level mesh ♯3. As expected, we check that a larger value of r

improves significantly the convergence of the algorithm: recall that the gradient of J⋆⋆ in L2(H1)

is given by: ∇J⋆⋆(λ) = Arλ−∆−1(Lϕ0) := −∆−1(Lϕ) and that r acts on the term ‖Lϕ‖L2(H−1).

For a fixe level of mesh, we observe however a lower error ‖λh − y‖L2(QT ) for r = 10−1.
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♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

♯ iterate 307 414 624 967 1000

‖λh − y‖L2(QT ) 1.28 × 10−2 4.77 × 10−3 1.5 × 10−3 6.2 × 10−4 3.52 × 10−6

Table 10: Conjugate gradient algorithm. EX3 with θ = 1/3, for control domain q22 and r = 10−1.

♯ Mesh 1 2 3 4 5

h 7.18 × 10−2 3.59 × 10−2 1.79 × 10−2 8.97 × 10−3 4.49 × 10−3

♯ iterate 87 105 119 140 166

‖λh − y‖L2(QT ) 1.15 × 10−1 5.2 × 10−2 1.65 × 10−2 6.03 × 10−3 2.89 × 10−3

Table 11: Conjugate gradient algorithm. EX3 with θ = 1/3, for control domain q22 and r = 103.
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Figure 14: Example EX3. Evolution of the residue ‖gn‖L2(0,T ;H1
0
(0,1))/‖g0‖L2(0,T ;H1

0
(0,1)) w.r.t.

the iterate n.

5 Concluding remarks and perspectives

We have extended in this work the contribution [10] to a non-cylindrical situation where the support

of the controls depend on the time variable. The numerical approximation is based on a direct

resolution of the controllability problem through a mixed formulation involving the dual adjoint

variable and a Lagrange multiplier, which turns out to coincide with the primal state of the wave

equation to be controlled. The well-posedness of this mixed formulation is the consequence of a

generalized observability inequality deduced from [6] (and equivalent to the controllability of the

equation). The approach leads to a variational formulation over time-space functional Hilbert

space without distinction between the time and the space variable and is very appropriate to

non-cylindrical situations.

At the practical level, the discrete mixed time-space formulation is solved in a systematic way

in the framework of the finite element theory: in contrast to the classical approach, there is no need

to take care of the time discretization nor of the stability of the resulting scheme, which is often

a delicate issue. The resolution amounts to solve a sparse symmetric linear system. As discussed

in [10], Section 4.3 (but not employed here), the space-time discretization of the domain allows an

adaptation of the mesh so as to reduce the computational cost and capture the main features of

the solution.
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The numerical experiments reported in this work suggest a very good behavior of the approach:

the strong convergence of the sequences {vh}h>0, approximation of the controls of minimal square

integrable norm, are clearly observed as the discretization parameter h tends to zero (as the

consequence of the uniform inf-sup discrete property).

As briefly discussed in Section 4.7, this work opens now the possibility to optimize the control

v of minimal L2(qT )-norm with respect the support qT (equivalently in our case, with respect to

the curves a and b, see (6)) in the spirit of [22, 23, 24]: for any (y0, y1) ∈ H, T > 0 and L ∈ (0, 1),

the problem reads :

inf
qT ∈CL

‖vqT
‖L2(qT ), CL = {qT : qT ⊂ QT , |qT | = L|QT | and such that (12) holds}

where vqT
denotes the control of minimal L2(qT ) norm for (1) distributed over qT .

Eventually, we also mention that this approach which consists in solving directly the optimality

conditions of a controllability problem may be employed to solve inverse problems where, for

instance, the solution of the wave equation has to be recovered from a partial observation, typically

localized on a sub-domain qT of the working domain: actually, the optimality conditions associated

to a least-square type functional can be expressed as a mixed formulation very closed to (22). These

last two issues will be analyzed in a future work.

A Appendix: Fourier expansion of the control of minimal

L2(qT )-norm and its corresponding controlled solution

We explain the semi-explicit computation in term of Fourier series of (ϕ0, ϕ1), initial data of the

adjoint solution ϕ (see (5)) and unique minimizer in H of J⋆ defined by (8). This allows to expand

in term of Fourier series the control of minimal L2(qT )-norm for (1) given by v = −ϕ 1qT
, and

then expand the correspond controlled solution y. These expansion are very useful to check and

quantify the convergence of the sequence (ϕh, λh)h>0, solution of the discrete mixed formulation

(42) with respect to the discretization parameter.

First, we assume the the minimizer (ϕ0, ϕ1) ∈ L2(0, 1) × H−1(0, 1) of (8) takes the following

expansion :

(ϕ0(x), ϕ1(x)) =
∑

p>0

(ap, bp) sin(pπx) (58)

leading to

ϕ(x, t) =
∑

p>0

(

ap cos(pπt) +
bp
pπ

sin(pπt)

)

sin(pπx). (59)

We get

∫∫

qT

|ϕ|2 dx dt =
∑

p,q>0

apaq

∫∫

qT

cos(pπt) cos(qπt) sin(pπx) sin(qπx) dx dt

+
∑

p,q>0

apbq

∫∫

qT

cos(pπt)
sin(qπt)

qπ
sin(pπx) sin(qπx) dx dt

+
∑

p,q>0

bpaq

∫∫

qT

sin(pπt)

pπ
cos(qπt) sin(pπx) sin(qπx) dx dt

+
∑

p,q>0

bpbq

∫∫

qT

sin(pπt)

pπ

sin(qπt)

qπ
sin(pπx) sin(qπx) dx dt

(60)
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We also have
∫ 1

0

ϕ0(x)y1(x) dx =
∑

p>0

ap

∫ 1

0

y1(x) sin(pπx) dx (61)

and < ϕ1, y0 >=H−1,H1=
∫ 1

0
vx(x)y0,x dx with

vx(x) =
∑

p>0

bp

[
∫ 1

0

∫ y

0

sin(pπs) ds dy −
∫ x

0

sin(pπs)ds

]

=
∑

p>0

bp
cos(pπx)

pπ

so that

< ϕ1, y0 >H−1,H1
0
=

∑

p>0

bp

∫ 1

0

y0,x(x)
cos(pπx)

pπ
dx. (62)

The optimality equation associated to the functional J⋆ (see 8) then reads

DJ(ϕ0, ϕ1) · (ϕ0, ϕ1) =

∫∫

qT

ϕϕdx dt+ < ϕ1, y0 >H−1,H1
0
−

∫ 1

0

ϕ0 y1 dx = 0, ∀(ϕ0, ϕ1) ∈ H

(63)

and can be rewrite in term of the (ap, bp)p>0 as follows :

<

( {ap}p>0

{bp}p>0

)

,M(qT )

( {ap}p>0

{bp}p>0

)

>=<

( {ap}p>0

{bp}p>0

)

,F(y0, y1) >, ∀(ap, bp) ∈ l2 × h−1

(64)

where M(qT ) denotes a symmetric positive definite matrix derived from the relation (60) and

F(y0, y1) a vector derived from the relation (61-62). The resolution of the infinite dimensional

system (64) (reduced to a finite dimension one by truncation of the sums) allows an approximation

of the minimizer (ϕ0, ϕ1) of J given by (8), and then of ϕ, solution both of the boundary value

problem (5) and of the mixed formulation formulation (22). We recall that the corresponding

control is given by v = −ϕ 1qT
.

The corresponding controlled solution y can also be expanded in the Fourier series as y(x, t) =
∑

p>0 bp(t) sin(pπx) where bp solves the equation



















b′′p(t) + (pπ)2bp(t) =
∑

q>0

(aq cos(qπt) + bq sin(qπt))cp,q(t) := fp(t), t ∈ (0, T ),

∑

p>0

bp(0) sin(pπx) = y0(x),
∑

p>0

b′p(0) sin(pπx) = y1(x)
(65)

where

cp,q(t) = 2

∫ b(t)

a(t)

sin(pπx) sin(qπx) dx (66)

bp is given explicitly by

bp(t) =C1p cos(pπt) +
C2p

pπ
sin(pπt)

+
1

pπ

(

sin(pπt)

∫ t

0

cos(pπs)fp(s)ds− cos(pπt)

∫ t

0

sin(pπs)fp(s)ds

) (67)

where (C1p, C2p)p>0 are the Fourier’s coefficients of the initial data (y0, y1).
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Masson, Paris, 1988. Contrôlabilité exacte. [Exact controllability], With appendices by E.

Zuazua, C. Bardos, G. Lebeau and J. Rauch.

[20] A. Meyer, A simplified calculation of reduced hct-basis functions in a finite element context,

Comput. Methods Appl. Math., 12 (2012), pp. 486–499.

[21] A. Münch, A uniformly controllable and implicit scheme for the 1-D wave equation, M2AN

Math. Model. Numer. Anal., 39 (2005), pp. 377–418.

[22] , Optimal design of the support of the control for the 2-D wave equation: a numerical

method, Int. J. Numer. Anal. Model., 5 (2008), pp. 331–351.

[23] A. Münch and F. Periago, Optimal distribution of the internal null control for the one-

dimensional heat equation, J. Differential Equations, 250 (2011), pp. 95–111.

[24] F. Periago, Optimal shape and position of the support for the internal exact control of a

string, Systems Control Lett., 58 (2009), pp. 136–140.

[25] P.-F. Yao, On the observability inequalities for exact controllability of wave equations with

variable coefficients, SIAM J. Control Optim., 37 (1999), pp. 1568–1599.


	Introduction
	A generalized observability inequality
	Control of minimal L2(qT)-norm: a mixed reformulation
	Mixed reformulation of the controllability problem
	Dual problem of the extremal problem (21)

	Numerical approximation and experiments
	Some domains qT
	Discretization
	Change of the norm "026B30D "026B30D L2(H-1) over the discrete space h
	Numerical approximation of C0 and  in (45).
	The discrete inf-sup test
	Numerical experiments for qT = q22 and comparison with the explicit solution
	Various domains qT with same measure: comparison of the L2-norm
	Behavior of the control as 00
	Other cases
	Conjugate gradient for J

	Concluding remarks and perspectives
	Appendix: Fourier expansion of the control of minimal L2(qT)-norm and its corresponding controlled solution

