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FLAT RANK 2 VECTOR BUNDLES ON GENUS 2 CURVES

VIKTORIA HEU AND FRANK LORAY

ABSTRACT. We study the moduli space of trace-free irreducible rank 2 connections
over a curve of genus 2 and the forgetful map towards the moduli space of under-
lying vector bundles (including unstable bundles), for which we compute a natural
Lagrangian rational section. As a particularity of the genus 2 case, connections as
above are invariant under the hyperelliptic involution : they descend as rank 2 log-
arithmic connections over the Riemann sphere. We establish explicit links between
the well-known moduli space of the underlying parabolic bundles with the classical
approaches by Narasimhan-Ramanan, Tyurin and Bertram. This allow us to explain
a certain number of geometric phenomena in the considered moduli spaces such as the
classical (16, 6)-configuration of the Kummer surface. We also recover a Poincaré fam-
ily due to Bolognesi on a degree 2 cover of the Narasimhan-Ramanan moduli space. We
explicitly compute the Hitchin integrable system on the moduli space of Higgs bundles
and compare the Hitchin Hamiltonians with those found by vanGeemen-Previato. We
explicitly describe the isomonodromic foliation in the moduli space of vector bundles
with slzC-connection over curves of genus 2 and prove the transversality of the induced
flow with the locus of unstable bundles.
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INTRODUCTION

Let X be a smooth projective curve of genus 2 over C. A rank 2 holomorphic
connection on X is the data (F,V) of a rank 2 vector bundle E — X together with a
C-linear map V : E — E ® QL satisfying the Leibniz rule. The trace tr (V) defines a
holomorphic connection on det (E); we say that (F, V) is trace-free (or a sly-connection)
when (det (E) , tr (V)) is the trivial connection (Ox,dz). From the analytic point of view,
(E, V) is determined (up to bundle isomorphism) by its monodromy representation, i.e.
an element of Hom (7 (X),SL2) /par, (up to conjugacy). The goal of this paper is
the explicit construction and study of the moduli stack €on(X) of these connections
and in particular the forgetful map (E,V) — E towards the moduli stack Bun (X) of
vector bundles that can be endowed with connections. Over an open set of the base, the
map bun : €on (X) — Bun (X) is known to be an affine A3-bundle. The former moduli
space may be constructed by Geometric Invariant Theory (see [51, 37, 38]) and we get
a quasi-projective variety Con®® (X) whose stable locus Con® (X) is open, smooth and
parametrizes equivalence classes of irreducible connections. In the strictly semi-stable
locus however, several equivalence classes of reducible connections may be identified to
the same point.
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The moduli space of bundles, even after restriction to the moduli space Bun'™(X)
of those bundles admitting an irreducible connection, is non Hausdorff as a topological
space, due to the fact that some unstable bundles arise in this way. We can start with
the classical moduli space Bun®® (X) of semi-stable bundles constructed by Narasimhan-
Ramanan (see [49]), but we have to investigate how to complete this picture with missing
flat unstable bundles.

Hyperelliptic descent. The main tool of our study, elaborated in Section 2,
directly follows from the hyperellipticity property of such objects. Denote by ¢ : X — X
the hyperelliptic involution, by 7 : X — P! the quotient map and by W the critical
divisor on P! (projection of the 6 Weierstrass points). We can think of P! = X/. as
an orbifold quotient (see [53]) and any representation p € Hom (7™ (X/¢), GL) of the
orbifold fundamental group, i.e. with 2-torsion around points of W, can be lifted on X
to define an element 7*p in Hom (m (X),SL2). As a particularity of the genus 2 case,
both moduli spaces of representations have the same dimension 6 and one can check
that the map Hom (7™ (X/1), GL) — Hom (7 (X),SLs) is dominant: any irreducible
SLs-representation of the fundamental group of X is in the image, is invariant under the
hyperelliptic involution ¢ and can be pushed down to X/¢.

From the point of view of connections, this means that every irreducible connection
(E,V) on X is invariant by the hyperelliptic involution ¢ : X — X. By pushing forward
(E, V) to the quotient X/i ~ P!, we get a rank 4 logarithmic connection that splits into
the direct sum 7, (E,V) = (E,,V,)®(Es, Vy) of two rank 2 connections. Precisely, each
E; has degree —3 and V; : E; — E; ® Qg (W) is logarithmic with residual eigenvalues 0
and % at each pole. Conversely, 7* (E£;,V;) is a logarithmic connection on X with only
apparent singular points: residual eigenvalues are now 0 and 1 at each pole, i.e. at each
Weierstrass point of the curve. After performing a birational bundle modification (an
elementary transformation over each of the 6 Weierstrass points) one can turn it into a
holomorphic and trace-free connection on X: we recover the initial connection (E, V).
In restriction to the irreducible locus, we deduce a (2 : 1) map ® : €on (X/1) — Con (X)
where €on (X/¢) denotes the moduli space of logarithmic connections like above. Moduli
spaces of logarithmic connections on P! have been widely studied by many authors. Note
that the idea of descent to P! for studying sheaves on hyperelliptic curves already appears
in work of S. Ramanan and his student U. Bhosle (see for example [57] and [8]).

One can associate to a connection (E,V) € €on(X/¢) a parabolic structure p on E
consisting of the data of the residual eigenspace p; C El,, associated to the %—eigenvalue
for each pole w; in the support of W. Denote by Bun (X/¢) the moduli space of such
parabolic bundles (E,p), i.e. defined by a logarithmic connection (E,V) € Con (X/¢).
In fact, the descending procedure described above can already be constructed at the
level of bundles (see [9]) and we can construct a (2: 1) map ¢ : Bun (X/i) — Bun (X)
making the following diagram commutative:

(1) Con (X/1) = Con (X)

bunl bunl

Bun (X/v) % Bun (X)

Vertical arrows are locally trivial affine A3-bundles in restriction to a large open set of
the bases.
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Narasimhan-Ramanan moduli space. Having this picture at hand, we study in
Section 3 the structure of Bun (X), partly surveying Narasimhan-Ramanan’s classical
work [49]. They construct a quotient map

NR : Bun®® (X) — P := 20|

defined on the open set Bun® (X) C Bun(X) of semi-stable bundles onto the 3-
dimensional linear system generated by twice the ©-divisor on Picl(X ). This map is
one-to-one in restriction to the open set Bun® (X) of stable bundles; it however iden-
tifies some strictly semi-stable bundles, as usually does GIT theory to get a Hausdorff
quotient. Precisely, the Kummer surface Kum(X) = Jac(X)/1; naturally parametrizes
the set of decomposable semi-stable bundles, and the classifying map NR provides an
embedding Kum(X) < PgNR as a quartic surface with 16 nodes. The open set of stable
bundles is therefore parametrized by the complement P§y \ Kum(X). Over a smooth
point of Kum(X), the fiber of NR consists in 3 isomorphism classes of semi-stable bun-
dles, namely a decomposable one Lo @ Ly 1 and the two non trivial extensions between
Lo and L 1. The latter ones, which we call affine bundles, are precisely the bundles
occurring in Bun(X) \ Bun™(X), where Bun(X) denotes the moduli space of rank
2 bundles over X that can be endowed with an irreducible trace-free connection. Over
each singular point of Kum(X), the fiber of NR consists in a decomposable bundle E.
(a twist of the trivial bundle by a 2-torsion point 7 of Jac(X)) and the (rational) one-
parameter family of non trivial extensions of 7 by itself. The latter ones we call (twists
of) unipotent bundles; each of them is arbitrarily close to E; in Bun (X). To complete
this classical picture, we have to add flat unstable bundles: by Weil’s criterion, these are
exactly the unique non-trivial extensions ¥ — Ey — 9~ where ¢ € Pic'(X) runs over
the 16 theta-characteristics ¥? = Kx. We call them Gunning bundles in reference to
[29]: connections defining a projective PGLg-structure on X (an oper in the sense of [5],
see also [6]) are defined on these very special bundles Ey, including the uniformization
equation for X. These bundles occur as non Hausdorff points of Bun (X): the bundles
arbitrarily close to Ey are precisely semi-stable extensions of the form ¥~! — E — 9.
They are sent onto a plane Iy C ]P’%R by the Narasimhan-Ramanan classifying map.
We call them Gunning planes: they are precisely the 16 planes involved in the classical
(16, 6)-configuration of Kummer surfaces (see [34, 26]). As far as we know, these planes
have had no modular interpretation so far. We supplement this geometric study with
explicit computations of Narasimhan-Ramanan coordinates, together with the equation
of Kum(X), as well as the 16-order symmetry group. These computations are done for
the genus 2 curve defined by an affine equation y? = x(x — 1)(z — r)(x — s)(z — t) as
functions of the free parameters (r, s,t).

The branching cover ¢ : Bun (X/¢) 21, Bun (X). In Section 5, we provide a
full description of this map which is a double cover of Bun™ (X) branching over the
locus of decomposable bundles, including the trivial bundle and its 15 twists. The 16
latter bundles lift as 16 decomposable parabolic bundles. If we restrict ourselves to the
complement of these very special bundles, we can follow the previous work of [2, 41]:
the moduli space Bun (X /1) of indecomposable parabolic bundes can be constructed
by patching together GIT quotients Buny(X/t) of pu-semi-stable parabolic bundles for
a finite number of weights pu € [0,1]%. These moduli spaces are smooth projective
manifolds and they are patched together along Zariski open subsets, giving Bun"? (X/v)
the structure of a smooth non separated scheme. In the present work, we mainly study
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a one-parameter family of weights, namely the diagonal family p = (u, w, @, p, pt, ).

For u = 1, the restriction map ¢ : Buni*(X/:) — Py is exactly the 2-fold cover of
2

P ramifying over the Kummer surface Kum(X). The space Buny; (X/¢) it is singular

for this special value p = % We thoroughly study the chart given by any % <p <
i which is a 3-dimensional projective space, that we will denote IP’%: it is naturally
isomorphic to the space of extensions studied by Bertram and Bolognesi [7, 14, 15].
The Narasimhan-Ramanan classifying map ¢ : IP’% -— IP’:)]{IR is rational and also related
to the classical geometry of Kummer surfaces. There is no universal bundle for the
Narasimhan-Ramanan moduli space P3NR, but there is one for the 2-fold cover IP’%. This
universal bundle, due to Bolognesi [15] is explicitly constructed in Section 4.3 from the
Tyurin point of view.

We establish a complete dictionary between special (in the sense of non stable)
bundles F in Bun(X) (listed in Section 3) and special parabolic bundles (E,p) in
PBun (X /1) allowing us to describe the geometry of the non separated singular schemes
Bun (X/¢) and Bun'™ (X).

Anticanonical subbundles and Tyurin parameters. In order to establish this
dictionary, we study in Section 4 the space of sheaf inclusions of the form Ox (—Kx) <
FE for each type of bundle F. This is a 2-dimensional vector space for a generic vector
bundle F and defines a 1-parameter family of line subbundles. Only two of these anti-
canonical subbundles are invariant under the hyperelliptic involution. In the generic
case, the fibres over the Weierstrass points of these two subbundles define precisely the
two possible parabolic structures p and p’ on E that arise in the context of hyperelliptic
descent. This allows us to relate our moduli space Bun (X/¢) to the space of t-invariant
extensions —Kx — F — Kx studied by Bertram and Bolognesi: their moduli space
coincides with our chart IP’?I;.

On the other hand, anticanonical morphisms provide, for a generic bundle F, a
birational morphism Ox (-Kx) ® Ox (—Kx) — E, or after tensoring by Ox (Kx), a
birational and minimal trivialisation Fy — FE. Precisely, this birational bundle map
consists in 4 elementary tranformations for a parabolic structure on the trivial bundle
Ey supported by a divisor belonging to the linear system |2Kx|. The moduli space of
such parabolic structures is a birational model for Bun(X) (from which we easily deduce
the rationality of this moduli stack).

We provide the explicit change of coordinates between the Tyurin parameters and
the other previous parameters.

Higgs bundles and the Hitchin fibration. Section 6 contains some applications
of our previous study of diagram (1) to the space of Higgs bundles $iggs over X, re-
spectively X /¢, which can be interpreted as the homogeneous part of the affine bundle
Con — Bun. We provide an explicit universal Higgs bundle for $iggs (X/¢) and we
compute the Hitchin Hamiltonians for the Hitchin system on $)iggs (X/¢). Using the
natural identification with the cotangent bundle T*Bun(X/¢) together with the dou-
ble cover ¢ : Bun(X/1) — Bun(X), we derive the explicit Hitchin map $Higgs(X) —
H(X,2Kyx) ; (E,0) — det(©) in a very direct way in Section 6.2. This allows us to
relate the six Hamiltonians described by G. van Geemen and E. Previato in [23] to the
three Hamiltonian coefficients of the Hitchin map.

The geometry of Con(X). The computations of the Tyurin parameters in Section
4.3 and their relation to the so-called apparent map on €on defined in Section 7.2 allow
us to construct an explicit rational section Bun (X) --» €on (X) which is regular over
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the stable open subset of Bun (X), and is, moreover, Lagrangian (see Section 7.3). In
other words, over the stable open set, the Lagrangian fiber-bundle €on (X) — Bun (X)
is isomorphic to the cotangent bundle T*Bun (X) (i.e. T*P3y) as a symplectic manifold.
Together with a natural basis of the space of Higgs bundles over X we thereby obtain a
universal connection parametrizing an affine chart of Con (X).

Isomonodromic deformations. On the moduli stack M of triples (X, E,V),
where X is a genus two curve, and (E,V) € €on*(X) a ¢-invariant but non trivial
slo-connection on X, isomonodromic deformations form the leaves of a 3-dimensional
holomorphic foliation, the isomonodromy foliation. It is locally defined by the fibers of
the analytic Riemann-Hilbert map, which to a connection associate its monodromy rep-
resentation. Our double-cover construction ® : €on(X /1) — €on(X) is compatible with
isomonodromic deformations when we let the complex structure of X vary. Therefore,
isomonodromic deformation equations for holomorphic SLs-connections on X reduce to
a Garnier system.

Hence in the moduli stack M, we can explicitly describe the isomonodromy foliation
Fiso as well as the locus of special bundles, for example the locus ¥ C M of connections
on Gunning bundles. We show that the isomonodromy foliation is transverse to the locus
of Gunning bundles by direct computation in Theorem 8.1. As a corollary, we obtain a
new proof of a result of Hejhal [30], stating that the monodromy map from the space of
projective structures on the genus two curves to the space of SLo-representations of the
fundamental group is a local diffeomorphism.

1. PRELIMINARIES ON CONNECTIONS

In this section, we introduce the objects and methods related to the notion of con-
nection relevant for this paper, such as parabolic logarithmic connections and their
elementary transformations. More detailed introductions can be found for example in

[55], [27] and [25].

1.1. Logarithmic connections. Let X be a smooth projective curve over C and £ —
X be a rank r vector bundle. Let D be a reduced effective divisor on X. Note that in
general, we make no difference in notation between a reduced effective divisor and its
support, as well as between the total space of a vector bundle and its locally free sheaf of
holomorphic sections. A logarithmic connection on E with polar divisor D is a C-linear
map

V:E— E®Q% (D)
satifying the Leibniz rule
V(f-s)=df®@s+[f-V(s)

for any local section s of E and fonction f on X. Locally, for a trivialization of F, the
connection writes V =dx + A where dx : Ox — Q}( is the differential operator on X
and A is a r X r matrix with coefficients in Qﬁ( (D), thus 1-forms having at most simple
poles located along D. The true polar divisor, i.e. the singular set of such a logarithmic
connection V is a subset of D. Depending on the context, we may assume them to be
equal. At each pole zy € D, the residual matrix intrinsically defines an endomorphism
of the fiber E,, that we denote Res,,V. Residual eigenvalues and residual eigenspaces
in E,, hence are well-defined.
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1.2. Twists and trace. As before, let E be a rank r vector bundle endowed with
a logarithmic connection V on a curve X. The connection V induces a logarithmic
connection tr (V) on the determinant line bundle det (E) over X with

Resg, tr (V) = tr (Resg, V)

for each zg € D. By the residue theorem, the sum of residues of a global meromorphic
1-form on X is zero. We thereby obtain Fuchs’ relation:

(2) deg (E) + Z tr (Resz, V) = 0.
xo€D

We can define the twist of the connection (E, V) by a rank 1 meromorphic connection
(L, () as the rank r connection (E’, V') with

(E'\V')=(E,V)®(L,{):=(FE®L,V®id, +idg ® ().
We have
det (E') =det (E) ® L®" and tr (V') =tr (V) @ (®".

If L — X is a line bundle such that L®" ~ Oy, then there is a unique (holomorphic)
connection Vj, on L such that the connection V%T is the trivial connection on L®" ~ Ox.
The twist by such a r-torsion connection has no effect on the trace: modulo isomorphism,

we have det (E') = det (E) and tr (V') = tr (V).

1.3. Projective connections and Riccati foliations. From now on, let us assume
the rank to be r = 2. After projectivizing the bundle E, we get a P!-bundle PE over
X whose total space is a ruled surface S. Since V is C-linear, it defines a projective
connection PV on PE and the graphs of horizontal sections define a foliation by curves
F on the ruled surface S. The foliation F is transversal to a generic member of the
ruling S — X and is thus a Riccati foliation (see [16], chapter 4). If the connection

locally writes
: <Z1> 4 <21> (a ﬁ) <Z1> 7
) z9 ¥ 1) zZ2

then in the corresponding trivialization (z1 : z2) = (1: 2) of the ruling, the foliation is
defined by the (pfaffian) Riccati equation

dz — B2+ (6 —a)z+~=0.

Tangencies between F and the ruling are concentrated on fibers over the (true) polar
divisor D of V. These singular fibers are totally F-invariant. According to the number
of residual eigendirections of V, the restriction of F to such a fibre is the union of a leaf
and 1 or 2 points.

Any two connections (F,V) and (E’, V') on X define the same Riccati foliation
if, and only if, (E',V') = (E,V) ® (L,() for a rank 1 connection (L,(). Conversely,
a Riccati foliation (S,F) is always the projectivization of a connection (E,V): once
we have chosen a lift F of S and a rank 1 connection ¢ on det (F), there is a unique
connection V on E such that trace (E) = ¢ and PV = F.
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1.4. Parabolic structures. A parabolic structure on E supported by a reduced divisor
D =x+ ... 4z, on X is the data p = (p1,...,pn) of a 1-dimensional subspace
pi € E,, for each z; € D. A parabolic connection is the data (E,V,p) of a logarithmic
connection (E, V) with polar divisor D and a parabolic structure p supported by D such
that, at each pole z; € D, the parabolic direction p; is an eigendirection of the residual
endomorphism Res,, V. For the corresponding Riccati foliation, p is the data, on the
ruled surface S, of a singular point of the foliation F for each fiber over D.

Remark 1.1. Note that our definition is non standard here: in the literature, a parabolic
structure on E is usually defined as the data p (a quasi-parabolic structure) together with
a collection of weights pp = (p1,. .., 1yn) € R™.

1.5. Elementary transformations. Let (E,p) be a parabolic bundle on X supported
by a single point xp € X. Consider the vector bundle £~ defined by the subsheaf of
those sections s of E such that s(x¢) € p. A natural parabolic direction on E~ is defined
by those sections of E which are vanishing at zo (and thus belong to E7). If z is a
local coordinate at z¢ and E is generated near g by (e, e2) with ej(zg) € p, then E~ is
locally generated by (eq, €) with €}, := zey and we define p~ C E~ |, to be Ce,(zg). By
identifying the sections of E' and E~ outside xg, we obtain a natural birational morphism
(see also [42])
elm, : F--» E".
In a similar way, we define the parabolic bundle (E*,p™) by the sheaf of those
meromorphic sections of E having (at most) a single pole at zy, whose residual part is
an element of p. The parabolic p™ then is defined by

pT = {s(xg) | s is a holomorphic section of E near zg}.

In other words, ET is generated by (€], es) with ¢ := %eland pt C ET|,, defined by
Ceg. The natural morphism
elm} : E--» E*
is now regular, but fails to be an isomorphism at x.
These elementary transformations satisfy the following properties:

e det (E*) = det (F) ® Ox (£[z0]),
. elmz‘v‘ro oelm, = id(gy) and elm, o elm‘fﬁO = 1d(g p)>

e elm; = Ox ([zo]) ® elm, .
In particular, positive and negative elementary transformations coincide for a projec-
tive parabolic bundle (PE,p). They consist, for the ruled surface S, in composing the
blowing-up of p with the contraction of the strict transform of the fiber [25]. This lat-
ter contraction gives the new parabolic p*. Elementary transformations on projective
parabolic bundles are clearly involutive.

More generally, given a parabolic bundle (E,p) with support D, we define the ele-
mentary transformations elm% as the composition of the (commuting) single elementary
transformations over all points of D. We define elmljgo for any subdivisor Dy C D in the
obvious way.

Given a parabolic connection (F,V,p) with support D, the elementary transfor-
mations elmli) yield new parabolic connections (E*, V¥, pT). In fact, the compatibility
condition between p and the residual eigenspaces of V insures that V= is still logarithmic.
The monodromy is obviously left unchanged, but the residual eigenvalues are shifted as
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follows: if A\; and Ay denote the residual eigenvalues of V at xg, with p contained in the
A1-eigenspace, then
e V7 has eigenvalues (\],\J) := (A1 — 1, \2),

e V7 has eigenvalues (A, Ay ) := (A1, A2 + 1),
and p* is now defined by the )\ét—eigenspace.
Finally, if the parabolic connections (F,V,p) and <E~3,§,ﬁ> are isomorphic, then

one can easily check that (E*,V*, p*) and <E~7i,6i,ﬁi) are also isomorphic. This

will allow us to define elementary transformations elmli) on moduli spaces of parabolic
connections.

1.6. Stability and moduli spaces. Given a collection g = (u1,--- , py,) of weights
w; € [0,1] attached to p;, we define the parabolic degree with respect to p of a line
subbundle L — FE as
degh™ (L) = deg (L) + 3 i
piCL
(where the summation is taken over those parabolics p; contained in the total space of
L C E). Setting

degh™ (E) = deg (E) + 3 i
=1

(where the summation is taken over all parabolics), we define the stability index of L by

ind,, (L) := deg)," (F) — 2degp™ (L) .

The parabolic bundle (E,p) is called semi-stable (resp. stable) with respect to p if
ind,, (L) > 0 (resp. > 0) for each line subbundle L C E.

For vanishing weights uy = ... = p, = 0, we get the usual definition of (semi-)stability
of vector bundles. We say a bundle is strictly semi-stable if it is semi-stable but not
stable. A bundle is called unstable if it is not semi-stable.

Semi-stable parabolic bundles admit a coarse moduli space Bunj” which is a normal
projective variety; the stable locus Bunj, is smooth (see [46]). Note that tensoring by
a line bundle does not affect the stability index. In fact, if S denotes again the ruled
surface defined by PF, line bundles L — E are in one to one correspondence with
sections o : X — S, and for vanishing weights, ind,, (L) is precisely the self-intersection
number of the curve C := o (X) C S (see also [43]). For general weights, we have

i (D) = #C-C) 4 3 pi— X
pi¢C pi€C
For weighted parabolic bundles (F,p, i), it is natural to extend the definition of
elementary transformations as follows. Given a subdivisor Dy C D, define
elm$0 : (Eapa H) -2 (E/ap,au’,)
by setting
M(: 1 — if p; € Dy,
’ pi i pi & Do.
When L' — E’ denotes the strict transform of L, we can easily check that
ind,y (L") = indy (L).
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Therefore, ehnf)0 acts as an isomorphism between the moduli spaces Bun;’ and Bunj;
(resp. Bunj, and Bunz,). A parabolic connection (E,V,p) is said to be semi-stable

(resp. stable) with respect to p if
ind,, (L) > 0 (resp. > 0) for all V-invariant line subbundles L C FE.

In particular, irreducible connections are stable for any weight p € [0,1]". Semi-stable
parabolic connections admit a coarse moduli space Conff which is a normal quasi-
projective variety; the stable locus Cony, is smooth (see [51]).

2. HYPERELLIPTIC CORRESPONDENCE

Let X be the smooth complex projective curve given in an affine chart of P! x P!
by
V=z(@x—-1(z—7r)(x—s)(x—1t).

Denote its hyperelliptic involution, defined in the above chart by (z,y) — (z,—y), by
t: X — X and denote its hyperelliptic cover, defined in the above chart by (x,y) — x,
by # : X — P! Denote by W = {0,1,r,s,t,00} the critical divisor on P! and by
W = {wp, w1, wy, ws, Wy, Weo } the Weierstrass divisor on X, i.e. the branching divisor
with respect to .

Consider a rank 2 vector bundle E — P! of degree —3, endowed with a logarithmic
connection V: F —- E® Q]%Dl (W) having residual eigenvalues 0 and % at each pole. We
fix the parabolic structure p attached to the %—eigenspaces over W. After lifting the
parabolic connection (E, V, 2) via m: X — P!, we get a parabolic connection on X

<E’ — X,%,T)) =" (E—) Pl,z,g).

We have det (E) ~ Ox (—3Kx) and the residual eigenvalues of the connection v

ESE® Qﬁ( (W) are 0 and 1 at each pole, with parabolic structure p defined by the
1-eigenspaces. After applying elementary transformations directed by p, we get a new
parabolic connection:

elm*vi, : (E,%,T)) --» (E,V,p)

which is now holomorphic and trace-free.

Recall from the introduction that we denote by €on (X/¢) the moduli space of log-
arithmic rank 2 connections on P! with residual eigenvalues 0 and % at each pole in W,
and we denote by €on (X) the moduli space of trace-free holomorphic rank 2 connec-
tions on X. Since to every element (E,V) of €on(X/¢), the parabolic structure p is
intrinsically defined as above, we have just defined a map B

o - Con(X/t) — Con(X)
'{(E,Z,B) = (B,V).

Roughly counting dimensions, we see that both spaces of connections have same dimen-
sion 6 up to bundle isomorphims. We may expect to obtain most of all holomorphic
and trace-free rank 2 connections on X by this construction. This turns out to be true
and will be proved along Section 2.1. In particular, any ¢rreducible holomorphic and
trace-free rank 2 connection (F,V) on X can be obtained like above. Note that the
stability of E is a sufficient condition for the irreducibility of V.
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2.1. Topological considerations. By the Riemann-Hilbert correspondence, the two
moduli spaces of connections considered above are in one-to-one correspondence with
moduli spaces of representations. Let us start with Con (X) which is easier. The mon-
odromy of a trace-free holomorphic rank 2 connection (F,V) on X gives rise to a mon-
odromy representation, namely a homomorphism p : 71 (X,w) — SLy. In fact, this
depends on the choice of a basis on the fiber E,,. Another choice will give the conjugate
representation MpM ~! for some M € GLy. The class [p] € Hom (71 (X, w),SL2) /pGL,
however is well-defined by (E,V). Conversely, the monodromy [p] characterizes the
connection (F,V) on X modulo isomorphism, which yields a bijective correspondence

RH : €on (X) — Hom (m (X, w),SLs) /paL,

which turns out to be complex analytic where it makes sense, i.e. on the smooth part.
Yet this map is highly transcendental, since we have to integrate a differential equation
to compute the monodromy. Note that the space of representations only depends on the
topology of X, not on the complex and algebraic structure.

In a similar way, parabolic connections in €on (X/¢) are in one-to-one correspondence
with faithful representations p : 7™ (X /1) — GLg of the orbifold fundamental group
(killing squares of simple loops around punctures, see the proof of theorem 2.1 below).
Thinking of P! = X /¢ as the orbifold quotient of X by the hyperelliptic involution, these
representations can also be seen as representations

P (Pl\w,x) — GLs9

with 2-torsion monodromy around the punctures, having eigenvalues 1 and —1.
If x = 7 (w), the branching cover 7 : X — X/t induces a monomorphism

Tyt (X, w) = 79 (X /0, z)

whose image consists of words of even length in the alphabet of a system of simple gener-
ators of m§™® (X /1, ). This allows to associate, to any representation p : 7™ (X /i, z) —
GL; as above, a representation pom, : w1 (X, w) — SLy. We have thereby defined a map
&P hetween corresponding representation spaces, which makes the following diagram
commutative

(3) Con (X/1) i Hom (7™ (X /1, ), GLa) /paL,

lq> =

Con (X) i Hom (71 (X, w) ,SL2) /pGL,-

~

We now want to describe the map ®*P. The quotient 7¢™ (X/1,z) / 7, (71 (X, w)) ~ Zo
acts (by conjugacy) as outer automorphisms of 71 (X, w). It coincides with the outer
action of the hyperelliptic involution .

Theorem 2.1. Given a representation [p] € Hom (m (X),SLa) /pcL,, the following
properties are equivalent:

(a) [p] is either irreducible or abelian;

(b) [p] is t-invariant;

(c) [p] is in the image of ®*°P.
If these properties are satisfied, then [p| has 1 or 2 preimages under ®*°P, depending on
whether it is diagonal or not.
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Proof. We start making explicit the monomorphism 7, and the involution ¢. Let x €
P\ W and w € X one of the two preimages. Choose simple loops around the punctures
to generate the orbifold fundamental group of P! \ W with the standard representation

W=rn=r=1=17=7%=1\
and 071775Vt Yeo = 1

Even words in these generators can be lifted as loops based in w on X, generating the
ordinary fundamental group of X. Using the relations, we see that 71 (X, w) is actually
generated by the following pairs

{oq =M {az = Y5V

P (X /1, x) = <707’V1,%%,%,%o

Pr="2m B2 =Yoo
and they provide the standard presentation
(4) T (X, w) = (a1, B, az, B2 | o, Bil[az, Be] = 1),
where (o, 3] = a;fBia; 1 . 1 denotes the commutator. In other words, the monomor-

phism 7, is defined by oy — o1 et cetera (see Figure 1).

FICURE 1. Elements of m (P*\ W, z) that lift as the generators of 71 (X, w).

After moving the base point to a Weierstrass point, w = w; say, the involution ¢ acts
as an involutive automorphism of 71 (X, w;): it coincides with the outer automorphism
given by 7;-conjugacy. For instance, for i = 1, we get

{al — ozl_l {OQ — 70[2_17_1
Y R T e

Let us now prove (a)<(b). That irreducible representations are ¢-invariant already
appears in the last section of [24]. Let us recall the argument given there. There is a

with 5 = B ;! B,
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natural surjective map
v Hom(ﬂ'l (X) 7SL2) /PGL2 — Hom (7‘(‘1 (X) 7SL2) //PGL2 =X

to the GIT quotient x, usually called character variety, which is an affine variety. The
singular locus is the image of reducible representations. There can be many different
classes [p] over each singular point. The smooth locus of x however is the geometric
quotient of irreducible representations, which are called stable points in this context.
The above map W is injective over this open subset. The involution ¢ acts on x as a
polynomial automorphism and we want to prove that the action is trivial. First note
that the canonical fuchsian representation given by the uniformisation H — X must
be invariant by the hyperelliptic involution ¢ : X — X. The corresponding point in
x therefore is fixed by ¢. On the other hand, the definition of x only depends on the
topology of X and, considering all possible complex structures on X, we now get a large
set of fixed points Yfuchsian C X- Those fuchsian representations actually form an open
subset of Hom (71 (X),SLoR) //s1,r, and thus a Zariski dense subset of x. It follows
that the action of ¢ is trivial on the whole space x. By injectivity of W, any irreducible
representation is t-invariant.

In other words, if an irreducible representation p is defined by matrices A;, B; € SLo,
i = 1,2 with [Ay, By] - [Ag, Ba] = I, then there exists M € GLy satisfying:

5) {M‘lAlM = A]? {M‘lAQM =CAy'C™!

3 _ -1 4—-1
M~'BiM = B;* M~'B,M = CB; ' with C = By 'A]{'ByAs,.

Since the action of ¢ is involutive, M? commutes with p and is thus a scalar matrix. The
matrix M has two opposite eigenvalues which can be normalized to £1 after replacing
M by a scalar multiple. There are exactly two such normalizations, namely M and — M.

It remains to check what happens for reducible representations. In the strict re-
ducible case (i.e. reducible but not diagonal), there is a unique common eigenvector
for all matrices Aq, B, As, Bo; the representation p restricts to it as a representation
71 (X) — C* which must be t-invariant. This (abelian) representation must therefore
degenerate into {£1}. It follows that any reducible t-invariant representation is abelian.
For abelian representations though, the action of ¢ is simply given by

Ap—)Ai_l and Bﬂ—)Bi_l for i=1,2.

Hence all reducible t-invariant representations are abelian and, up to conjugacy, we have:

e cither Ay, By, Ay, By are diagonal and one can choose M = (1) (1) ,
e or Ay, By, As, By are upper triangular with eigenvalues +1 (projectively unipo-

tent) and M = <(1) _01> works.

Let us now prove (b)<>(c). Given arepresentation [p] € Hom (79" (X/.) , GL2) /pGL,
its image under ®%P is (-invariant, i.e. the action of ¢ coincides in this case with the
conjugacy by p (71) € GLa. Conversely, let [p] € Hom (m (X),SL2) /pgL, be t-invariant,
ie. *p=M"1-p- M for some M € GLy as in (5). From the cases discussed above, we
know that M can be chosen with eigenvalues £1. Then setting

My:= AM M,:= By'A\BiM
M1 = M Mt = AlBlMAQBQ
MT = BlM Moo = AlBlMAQ
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we get a preimage of [p]. The preimage depends only of the choice of M. Any other
choice writes M’ := C M with C commuting with p. In the general case, i.e. when p is
irreducible, we get two preimages given by M and —M. However, when p is diagonal, we
get only one preimage, because the anti-diagonal matrices M and —M are conjugated
by a diagonal matrix (commuting with p). O

Corollary 2.2. The Galois involution of the double cover ®*°P is given by

{ Hom (W(frb (X/L) s GLQ) /PGL2 — Hom (ﬂ?rb (X/L) s GLQ) /PGL2 }
(6] — [—p] '
So far, Theorem 2.1 provides an analytic description of the map ®: although ®%P is
a polynomial branching cover, the Riemann-Hilbert correspondence is only analytic. In
the next section, we will follow a more direct approach providing algebraic informations
about ®. However, note that we can already deduce the following:

Corollary 2.3. An irreducible trace-free holomorphic connection (E,V) on X is invari-
ant under the hyperelliptic involution: there exists a bundle isomorphism h : E — *E
conjugating V with 1*V. We can moreover assume hot*h =idg and h is unique up to
a sign.

Remark 2.4. Note that h acts as —id on the determinant line bundle det (E) =
det (\*E) ~ O.

Each Weierstrass point w € X is fixed by ¢ and the restriction of h to the fibre
E, = "FE, is an automorphism with simple eigenvalues £1.

2.1.1. Symmetry group. The 16-order group of 2-torsion characters Hom(m(X), {£1})
acts on the space of representations Hom (71 (X)), SL2) /paL, by multiplication (chang-
ing signs of matrices A;, B;’s). This corresponds to the action of 2-torsion rank one
connections on the moduli space €on (X): the unique unitary connection on a 2-torsion
line bundle is itself 2-torsion; if we twist a SLs-connection by this 2-torsion one, we get
a new SLo-connection. Together with the involution of Corollary 2.2, we get a 32-order
group acting on Hom (ﬂi’rb (X/e) ,GLQ) /PGL, also by changing signs of matrices M;’s
(only even change signs). The generators are described as follows

(AI,BlaA2aB2) (MOaMlaMTaMSaMtaMOO)

OX([U)O] - [wl]) (_a+’+a+) (_a ’+a+,+a+)
OX([wl] - [wr]) (+a_’+a+) (+a_’_a+a+a+)
OX( ’U)s] - [wt]) (+a+’_a+) (+a+’+a_, a+)
OX([wt] - [woo]) (+a+’+a_) (+a+’+a+, a_)

OX (+’+’+a+) (_a_’_a_a_a_)

The quotient for this action identifies with one of the two connected components of
Hom (m; (X),PGL2) /paL,, namely the component of those representations that lift to
SLy. We have seen in Theorem 2.1 that the fixed point set of the Galois involution of
®'°P is given by diagonal representations. We can also compute the fixed point locus of
Ox ([wg] — [w1]) for instance.

Proposition 2.5. The fized points of the action of Ox([wo] — [w1]) (with its unitary
connection) on the space of representations Hom (m1 (X),SL2) /paL, s parametrized by:

0 1 0 b 0
A1 = :|:I, Bl = <_1 O> s A2 = <8 al) (md BQ = (O bl)

with (a,b) € C* x C*.
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2.2. A direct algebraic approach. Let (E,V) be a holomorphic trace-free rank 2
connection on X. As in Corollary 2.3, let h be a V-invariant lift to the vector bundle E
of the action of ¢ on X. Following [9] and [10], we can associate a parabolic logarithmic
connection (E, vV, 2) on P! with polar divisor W and a natural choice of parabolic
weights p. Let us briefly recall this construction. The isomorphism h induces a non-
trivial involutive automorphism on the rank 4 bundle 7, E on P!. The spectrum of such
an automorphism is {—1,+1} with respective multiplicities 2, which yields a splitting
7+ = E @© E' with E denoting the h-invariant subbundle.

In local coordinates, the automorphism h acts on 7w, F in the following way. If U C X
is a sufficiently small open set outside of the critical points, we have I' (7 (U) , 7. E) =
I'(U,E)®TI'(¢(U),E) and h permutes both direct summands. Locally at a Weierstrass
point with local coordinate y, one can choose sections e; and ey generating E such that
h(e1) = e; and h(ez) = —eg (recall that h has eigenvalues £1 in restriction to the
Weierstrass fiber). On the corresponding open set of P!, the bundle 7, E is generated
by (e1,ea,ye1,yes), and we see that (ej,yes) spans the h-invariant subspace. Since the
connection V on F is h-invariant, we can choose the sections e; and es; above to be
horizontal for V. Then considering the basis e; = e; and e, = yes of E, we get

Vey =Ve; =0 and ZQ:VyeQ:dy®eQ:d—yy®Q:%i—x®Q
so that V is logarithmic with eigenvalues 0 and % To each pole in W, we associate the
parabolic p; defined by the eigenspace with eigenvalue %, with the natural (in the sense

of [10]) parabolic weight y; = 1.

(B.9.5) <" (EV.p)< " =(EV) < " =BV (BT
T eigy eigy T
(E.Y.p) < "> (EV)—(EY) s E YY)~ (E.Y)< > (E.Y.p)

\/d log(ﬂ)@elm&

Table 1: Hyperelliptic descent, lift and involution.

However, since we consider the rank 2 case, this general construction can also be
viewed in the following way (summarized in Table 1): Denote by p the parabolic struc-
ture on E defined by the h-invariant directions over W = {wq, wy, w,, ws, Wy, Woo } and
associate the natural homogenous weight p = 0. In the coordinates above, the basis
(e1,e5) generates the vector bundle E after one negative elementary transformation in
that direction. Now the hyperelliptic involution acts trivially on the parabolic logarith-
mic connection on X defined by

<E~7, 6,13, ﬁ) = elmy, (E,V,p, u)

and we have
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2.2.1. Galois involution and symmetry group. With the notations above, let (E', V') be
the connection on P! we obtain for the other possibility of a lift of the hyperelliptic
involution on (E — X,V), namely for i’ = —h. It is straightforward to check that
the map from (E',V’,p') to (E,V,p) and vice-versa is obtained by the elementary

transformations elm% over P!, followed by the tensor product with a certain logarithmic

rank 1 connection y/dlog (W) over P! we now define:

There is a unique rank 1 logarithmic connection (L,¢) on P! having polar divisor
W and eigenvalues 1; note that L = Op1 (—6). We denote by dlog (W) this connection
and by y/dlog (W) its unique square root. In a similar way, define y/dlog (D) for any
even order subdivisor D C W.

The Galois involution of our map ® : Con (X/t) — Con(X) is therefore given by

dlog (W) ® elm& :Con (X/1) — Con (X /1) .

There is a 16-order group of symmetries on Bun (X) (resp. €on (X)) consisting
of twists with 2-torsion line bundles (resp. rank 1 connections). It can be lifted as a
32-order group of symmetries on Bun (X /1) (resp. €on(X/t)), namely those transfor-
mations y/dlog (D) ® elm}, with D C W even. For instance, if D = w; + w;, then
its action on €on (X/¢t) corresponds via ® to the twist by the 2-torsion connection on
Ox (w; + w; — Kx). In particular, it permutes the two parabolics (of p and p’) over w;
and wj.

3. FLAT VECTOR BUNDLES OVER X

In this section, we provide a description of the space of trace-free holomorphic con-
nections on a given flat rank 2 vector bundle E over the genus 2 curve X. We first
review the classical construction of the moduli space of semi-stable such bundles due to
Narasimhan and Ramanan. We then present the special (in the sense of flat but not sta-
ble) bundles and explain how they arise in the Narasimhan-Ramanan moduli space. The
16-order group of 2-torsion points of Jac(X) is naturally acting on Bun (X) by tensor
product, preserving each type of bundle. We compute this action for explicit coordinates
in Section 3.6 along with explicit equations of the Kummer surface of strictly semi-stable
bundles. Moreover, we describe the set of connections on each of these bundles and the
quotient of the irreducible ones by the automorphism group. This is summarized in Ta-
ble 2; columns list for each type of bundle the projective part PAut(E) = Aut(FE)/g,,of
the bundle automorphism group, the affine space of connections and lastly the mod-
uli space of irreducible connections up to bundle automorphism. Here G,, denotes the
multiplicative group (C*,-) and G, denotes the additive group (C,+).

Crucial for the understanding of the rest of the present paper is the case of Gunning
bundles, where we explain the notion of two vector bundles being arbitrarily close in
PBun(X), which, as we will see, is responsable for the classical geometry of the Kummer
surface of strictly semi-stable bundles in Myg.

3.1. Flatness criterion. Recall the well-known flatness criterion for vector bundles
over curves [58, 1].

Theorem 3.1 (Weil). A holomorphic vector bundle on a compact Riemann surface
is flat, i.e. it admits a holomorphic connection, if and only if it is the direct sum of
indecomposable bundles of degree 0.
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bundle type E PAut(E) | connections moduli
stable E 1 A3 A3
decomposable Ly® Ly I G, At C? x C*
affine Ly — FE — Lal 1 A3 0
trivial+twists Eo, E; PGLy(C) A® Clogunun) \ Vi = 4012}
unipotent+twists T—oFE—>T Gq Al C? x C*
Gunning v — By — 971 | HO(X, Q%) A® A3

Table 2: Bundle automorphisms and moduli spaces of irreducible connections.

In our case of rank 2 vector bundles F over a genus 2 curve X with trivial determi-
nant bundle det (E) = Ox, Weil’s criterion demands that either E is indecomposable,
or it is the direct sum of degree 0 line bundles. We get the following list of flat bundles:

e stable bundles (forming a Zariski-open subset of the moduli space),

e decomposable bundles of the form F = L @ L~ where L € Jac (X) is a degree
0 line bundle,

e strictly semi-stable indecomposable bundles,

e Gunning bundles.

We recall that a Gunning bundle over X is an unstable indecomposable rank 2
vector bundle with trivial determinant bundle. There are precisely 16 such bundles: for
each of the 16 line bundles L € Pic! (X) such that L®? = O (Kx) there is a unique
indecomposable extension 0 - L — E — L~! — 0 of L™! by L.

Given a flat bundle F, and a sls-connection V on E, any other sls-connection writes

V' =V+6

where 6 € H (Homo, (sl(F) ® QY)) is a Higgs field. Here, s[(E) denotes the vector
bundle whose sections are trace-free endomorphisms of E. On the other hand, by the
Riemann-Roch Theorem and Serre Duality we have

(6) h’ (sl (E) ® Q) = 3 - genus (X) — 3+ hO (s[(E))

(sl (E) is self-dual). Since there is no natural choice for the initial connection V, the
set of connections on E is an affine space. We will see in the following that for generic
bundles we have h? (sl (E)) = 0 and the moduli space of sla-connections on E is A% in
this case. There are, however, flat bundles with non-trivial automorphisms for which
the moduli space of sla-connections will be a quotient of some A™ by the automorphism
group, yet the dimension of this quotient is always 3, as suggested by (6).

3.2. Semi-stable bundles and the Narasimhan-Ramanan theorem. Two semi-
stable vector bundles of same rank and degree over a curve are called S-equivalent, if the
graded bundles associated to Jordan-Holder filtrations of these bundles are isomorphic.
In our case, i.e. rank 2 bundles with trivial determinant bundle, we get that

e two stable bundles are S-equivalent if and only if they are isomorphic;

e two strictly semi-stable bundles are S-equivalent if and only if there is a line
bundle L € Jac (X) such that each of the two bundles is an extension either of
L' by L or of L by L.

To a semi-stable bundle E, we associate (following [49]) the set

Cp={L € Pic"(X) |l (X,E® L) > 0}.
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Equivalently, L € Cg if and only if there is a non-trivial (and thus injective) homomor-
phism L~ — E of locally free sheaves. For stable bundles, the quotient F/; -1 then is
necessarily locally free and hence defines an embedding of the total space of L™! into
the total space of E. The set Cp then parametrizes line subbundles of degree —1.

Narasimhan and Ramanan proved that this set C'r is the support of a uniquely
defined effective divisor Dg on Pict (X) linearly equivalent to 20, where

© = {[p] | p € X} C Pic! (X)

is the locus of effective divisors of degree 1, naturally parametrized by the curve X
itself. Moreover, for strictly semi-stable bundles, the divisor Dg only depends on the
Jordan-Holder filtration, i.e. on the S-equivalence class of E. We thus get a map

NR : Myg — P (H? (Pic' (X),0(20)))
from the moduli space of S-equivalence classes to the linear system |20] on Pic! (X).

Theorem 3.2 (Narasimhan-Ramanan). The map NR defined above is an isomorphism.
Let m : &€ — T be a smooth family of semi-stable rank 2 wvector bundles with trivial
determinant over X. Then the map ¢ : T — Mnr associating tot € T the S-equivalence
class of By = w1 (t) is a morphism.

In particular, the moduli space of stable bundles naturally identifies with a Zariski
open proper subset of Myr ~ P3. A stable bundle has no non-trivial automorphism:
we have Aut (E) = C* acting by scalar multiplication in the fibres (see [28], thm 29).
Therefore, the moduli space of holomorphic connections V : E — E ® Q}( on a given
stable bundle E is an A>-affine space. Note that all holomorphic connections on a stable
bundle are irreducible.

3.3. Semi-stable decomposable bundles. Let E = Ly @ L;' with Ly € Jac(X).
Given L € Pic! (X), non-trivial sections of E ® L come from non-trivial sections of
Lo® L or Ly Y@ L. We promtly deduce that

DE:L()@—i-Lal@

where Ly - © denotes the translation of © by Ly for the group law on Pic(X). A
special case occurs for the 16 torsion points L2 = Oy for which Ly = Ly ! and hence
Dg =2(Lo - ©) is not reduced.

The moduli space of semi-stable decomposable bundles naturally identifies with the
Kummer variety

Kum (X) := Jac (X) /¢,

the quotient of the Jacobian Jac (X) by the involution ¢ : Ly +— *Lg = L 1. The
Narasimhan-Ramanan classifying map provides a canonical embedding

NR : Kum (X) := Jac (X) /v — Mnr

and the image is a quartic surface in Mygr ~ P3. The moduli space of stable bundles
identifies with the complement of this surface. The 16 torsion points L(Q) = Ox of the
Jacobian are precisely the fixed points of the involution ¢ and yield 16 conic singularities
on Kum (X).
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3.3.1. The 2-dimensional family of decomposable bundles. When L% # Oyx, the corre-
sponding rank 2 bundle E' = Lo ® Ly ! lies on the smooth part of Kum (X). Non-scalar
automorphisms come from the independent action of Gy, on the two direct summands:
we get a G,-action on P (E).

Given a connection on Lg, we easily deduce a totally reducible connection Vg on
E (preserving both direct summands). Any other connection will differ from V by a
Higgs bundle: V =V + 6 where 0 : E — E ® QL is Ox-linear and may be represented
in the matrix way

Oé:Lo—)LQ(X)Ql,

[« B . Lr—1 1
0—( —a> with B: Ly — Lo ®Qx,
v 7:L0—>L61®Q§(.

Under our assumption that L% # Ox, our space of connections is parametrized by C2 x
(C}; ><(C,1y. Since E has no degree 0 subbundle other than Ly and L ! reducible connections
on E are precisely those for which one of the two direct summands is invariant, i.e. 8 =0
or v = 0. The G,,-action is trivial on « but not on the two other coefficients: the quotient

(Cé X (C}/ /Gy, is C* after deleting reducible connections (for which § =0 or v =0). The

moduli space of irreducible connections on E is thus given by C? x C*.
The involution ¢ preserves those connections that are irreducible or totally reducible.
The moduli space of L-invariant connections is C2 x C.

3.3.2. The trivial bundle and its 15 twists. All 16 special decomposable bundles are
equivalent to the trivial one after twisting by a convenient line bundle. Let us study the
case F = Ox ® Ox which admits the trivial connection Vo = d. Any other connection
is obtained by adding a Higgs bundle of the matrix form

v -
(here, a trivialization of E is chosen). Our space of connections is parametrized by
C2 x (C% X C,Zy but now the group acting is Aut (PE) = PGLs.

Since the trivial connection is PGLo-invariant, the data of a connection V =d + 6
is equivalent to the data of the Higgs field @ itself. Moreover, the determinant map

det : H (sl (B) @ Q) = H (Qx ® Q) ; 06— —(a®@a+B®7)

is invariant under the PGLg-action. Through this map, we claim the following.

9:(0‘ 5) with  «, 8,7 € H? (X, Q%)

Proposition 3.3. The moduli space of irreducible trace-free connections on the triv-
ial bundle of rank 2 over X coincides with the open set in H° (X, Q}( ® Qk) of those
quadratic differentials that are not the square w ® w of a holomorphic 1-form w.

Proof. Note that in our usual coordinates on X, we have
de d

H° (X, Q}() = Vectc <—x,x—x> .
y oy

The eigendirections of § define a curve C' on the total space X x P! of the projec-
tivized trivial bundle (for eigendirections to make sense, we have to compose 6 by local
isomorphisms F ® Q}( — FE; the resulting curve C' does not depend on this choice). In
a concrete way, for each vector v € F, we compute the determinant v A §(v). Under
trivializing coordinates (1 : z) € P! we find that C is defined by

C : —y+2za+228=0.
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It follows that C has bidegree (2,2) in X x P! (i.e. with respect to the variables (y, z))
and is invariant by the hyperelliptic involution ¢. Hence it defines a bidegree (1,2) curve
C C P! x P! (i.e. with respect to the variables (z,2)). It is easy to check that C' is
reducible if and only if V is reducible. In the irreducible case, the curve C definesa (2 : 1)-
map P! — PL whose Galois involution may be normalized to z — —z under the PGLy-
action. After this normalization, we get that o = 0 and the involution ¢ lifts as (z, y, z) —
(x,—y,—z). in particular, z = 0 and z = oo are the two t-invariant subbundles. This
normalization is unique up to action of the dihedral group Do, (preserving z € {0,00}).
Clearly, the determinant —f ® +y is invariant and determines V up to this action since,
in genus 2, any quadratic form splits as a product det (§) = —f ® ~. Finally, one can
easily check that the following properties are equivalent:

V (or 0) is reducible,

the (1,2) curve C splits,

the determinant det (#) viewed on P. has a double zero,

the determinant det (6) (viewed on X) is a square.

0

It may be of interest to pursue the discussion of the proof above in the reducible
case. In this case, C' is reducible and has a bidegree (0, 1)-factor which is V-invariant.

We can normalize
_ (o B
o= (O _a>.

The gauge freedom is given by the group of upper-triangular matrices and we are led to
the following cases

(1) @ # 0 and B is not proportional to « (in particular # 0); the monodromy is
affine but non-abelian and the curve C splits as a union of irreducible bidegree
(0,1) and (1,1) curves.

(2) a # 0 and S is proportional to a: we can normalize § = 0; the monodromy is
diagonal and the curve C' splits as a union of two bidegree (0, 1) curves and one
(1,0) curve located at the vanishing point of a.

(3) @ = 0 and 8 # 0; the monodromy is unipotent but non-trivial and the curve
C splits as a union of a bidegree (0, 1) curve with multiplicity 2 and a bidegree
(1,0) curve located at the vanishing point of 3.

(4) o =0 and § = 0 and we get the trivial connection (the curve C has vanishing
equation and is not defined).

The determinant map det defined above takes values in the set of quadratic differentials

over X. Those are of the form

vy + 11T + V21'2

B z(x—1)(x—r)(z—s)(x—1)
It is a square, say det (§) = —a ® «, if and only if v? = 4ygry. In this case, « is uniquely
defined up to a sign. It follows that a fiber det™* (v) of the determinant map above is

dz ® dx.

e a unique irreducible connection (up to PGLa-isomorphism) if v7 # 4iyvs;

e the union of two reducible connections of type (1) (upper and lower triangular
once « is fixed) and a reducible connection of type (2) over a smooth point of
the cone v? = 4yuy;

e the union of the trivial connection (4) and a l-parameter family of reducible
connections of type (3) over the singular point vy = v; = vy = 0.
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The moduli space of (-invariant connections on the trivial bundle thus is not separated.
Note that we obtain a double-cover of the moduli space of t-invariant but non trivial
connections on the trivial bundle by considering the family of connections of the form

0 8

where one of the coefficients g, 51,7,71 € C is normalized to 1 (with the obvious
transition maps). Here § = 50%9” + ﬁlxdf and v = ’yod?’3 + ’ylx%x.

3.4. Semi-stable indecomposable bundles. In this case, the bundle is a non-trivial
extension 0 — Lo — E — Ly' — 0 for some Ly € Jac(X). Tt is S-equivalent in the
sense of Narasimhan-Ramanan to the corresponding trivial extension. For fixed L, the
moduli space of such extensions is isomorphic to PH! (X , Lg) which, by Serre duality,

identifies with PHC (X Lo 2% Q}() Again, the discussion splits into two cases.

3.4.1. The 1-dimensional family of unipotent bundles and its 15 twists. When L2 = Oy,
the moduli space of non-trivial extensions 0 - Ox — E — Ox — 0 is parametrized by
PH! (X, Ox) ~ PH? (X, Q}() ~ P! we call unipotent bundles such bundles E. Following
[44], the automorphism group of E is Aut (E) = Gy, x G,. The action of G, is faithfull
in restriction to each fiber F,,, unipotent and fixing the unique subbundle Ox C FE; the
action of G,, is scalar as usual.

For a convenient open covering (U;) of X, the bundle E is defined by a matrix

cocycle of the form
=0 )

where (b;;) € H'(X,Ox) is a non trivial scalar cocycle. Moreover, from the short exact
sequence

0 — H(X, Q%) — HY(X,C) — H(X,0x) — 0,
(bij) may be lifted to H! (X, C), so that F is flat: the local connections dy over U; glue
together to form a global connection (non-canonical) Vy with unipotent monodromy.
Conversely, if a connection (F, V) has unipotent monodromy, defined by say

. 1 aq . 1 b1 . 1 a9 . 1 b2
(o 1) o=l 8) =0 ) 2o )

(with respect to the standard basis (4)), then E is either the trivial bundle, or a unipotent
bundle; in fact, we are in the former case if, and only if, (a1, b1, ag,be) is the period data
of a holomorphic 1-form on X.

Proposition 3.4. Let V be a unipotent connection on E like above. Then the general
connection on E can be described as

V = Vo + Ai01 + Ao + 303 + Aaby
with (\;) € C* so that the Gq-action is given by

)\1 )\1
A9 A2 — ¢\

€ A3 - A3 + 2chg — 02)\1
)\4 )\4

Moreover, reducible (resp. unipotent) connections are given by \y = 0 (resp. A\; = Ay =
0). The moduli space of irreducible connections on E identifies with C* x C2.
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Proof. A general trace-free connection on F is defined by a collection

d+6; where Gi:<ai 5i>

Vi T
are matrices of holomorphic 1-forms on U; satisfying the compatibility condition
—1 —1
Hj = Mij HZMZJ + Mij dMZ]

on U; NU; or, equivalently,

o —a; = biji
(7) Bi—Bi = —2bjoi+ b3y
Yi— = 0

When a; = v; = 0, we precisely obtain all those connections with unipotent monodromy
on E; the second equation (7) then tells us that (3;) defines a global holomorphic 1-form
B e HO(X,QL).

When ~; = 0, we get all reducible connections on E. The first equation (7) tells
us that (a;) defines a global holomorphic 1-form a € H°(X,QY). To solve the second
equation (7), we need that the image under Serre duality

HY(X,0x)x H'(X,Q%) — HYX,0%) 5 C
( (bij) , ) = (bij)

is the zero cocycle. In other words, a must belong to the orthogonal (b;;)* (with respect
to Serre duality). In this case, we can solve (f3;), and the solution is unique up to addition
by a global holomorphic 1-form S.

Irreducible connections occur for v # 0 (note that the third equation (7) states
that (7;) is a global 1-form). Then, the first equation (7) imposes that v € (b;;) (the
orthogonal for Serre duality). Therefore, the collection (o) solving the cocycle (b;;) is
unique up to the addition of a global holomorphic 1-form o € HY(X, Q}() Finally, to
solve the second equation in (3;), we have to insure that the cocycle

( —Qbij()éi + sz’)/ ) € Hl(X, Q}()

?

is zero, which can be achieved by conveniently using the freedom « when solving the
first equation. Precisely, if we add some global 1-form « to the collection («;), then
we translate the previous cocycle by (—2b;;a). For a convenient choice of a (or (o)),
the cocycle becomes trivial. Note that we still have the freedom to add any 1-form «
belonging to the orthogonal (bij)L. At the end, we can find a solution (8;) which is
unique up to addition by a global holomorphic 1-form 8 € H°(X, Q).

Given an irreducible connection as above, defined by (o), (8;) and v # 0, and given
a global holomorphic 1-form 8 ¢ (bij)L, it follows from above case-by-case discussion
that any connection V on F takes the form

a B v 20 0 v 0 B
ClX—i-)\1<7 _ai>+)\2<0 _7>+)\3<0 0>+)\4<0 0

over charts U;, for convenient scalars A;. Unipotent bundle automorphisms are given in
. (1 . . .

these charts by a constant matrix <0 i), with ¢ € C not depending on U;, and it is

straightforward to check that the action on A; is the one of the statement. U



FLAT RANK 2 VECTOR BUNDLES OVER GENUS 2 CURVES 23

3.4.2. Affine bundles. When L% £ Oy, then PH (X, LaQ ® Qﬁ() reduces to a single
point: there is only one non-trivial extension of L, L'by Lo up to isomorphism. Following
[44], the automorphism group of such a bundle F is Aut (E) = C*. In particular, we have
PAut (E) = {1} and the space of holomorphic connections on E up to automorphisms is
an affine A® space with homogeneous part H° (sl(E) ® Q) ~ C®.

A curious phenomenon occurs for affine bundles E: all connections on E are re-
ducible, none of them is totally reducible. Indeed, Lg is the unique subbundle of degree
0, but is not invariant by the hyperelliptic involution. Therefore, the vector bundle E
itself is not (-invariant. This implies that the monodromy of a connection V on F can
be neither irreducible, nor totally reducible. Note that this phenomenon does not occur
for higher genus (see [32], Prop. (3.3), p.70). Note further that even if affine bundles do
not allow hyperelliptic descent, we can see them in smooth charts of the moduli space
of flat bundles using Tyurin’s approach (see Section 4.1).

3.5. Unstable and indecomposable: the 6 + 10 Gunning bundles. There are 16
theta characteristics, i.e. square-roots of Q}( = Ox(Kx). They split into

e 6 odd theta characteristics Ox ([w;]), i = 0,1,r,s,t,00;

e 10 even theta characteristics Ox ([w;] + [w;] — [woo]), @ # J # 0.
Given a theta characteristic 9, there is a unique non-trivial extension 0 — ¥ — Ey —
9~ — 0 up to isomorphism, which is called the Gunning bundle Ey associated to .
We talk about even or odd Gunning bundle depending on the nature of ¥. We have
Aut (Ey) ~ Gy, x H? (X, Q) (see [44]); the group HY (X, Q%) is acting by unipotent
bundle automorphisms on fibers E|,, fixing the subbundle 9.

A connection V on E necessarily satisfies Griffiths transversality with respect to the
flag 0 C ¥ C Ey and defines an "oper” (see [5]). Following [29], the data of V up to
automorphism of F is equivalent to the data of a projective structure on X. Moreover,
any two projective structures differ on X by a quadratic differential: once a projective
structure has been chosen, the moduli space identifies with H? (X, Ox (2K x)). However,
there is no natural choice of ”origin”, i.e. there is no canonical projective structure on X
from an algebraic point of view (see [40]). The moduli space of (irreducible) connections
on Ey is therefore an A®-affine space.

Recall that the Narasimhan-Ramanan classifying map is defined only for semi-stable
bundles and thus not for Gunning bundles. This has the following geometric reason: We
say two rank 2 vector bundles E and E’ with trivial determinant over X are arbitrarily
close if there are smooth families of vector bundles (E});car and (E});ear over X such
that E; = Ej for each t # 0 and Ey = E, Ey = E’. By the Narasimhan-Ramanan-
theorem, two arbitrarily close semi-stable vector bundles are S-equivalent. It turns out
that the Gunning bundle Ey is arbitrarily close to any semi-stable extension 0 — ¢¥~! —
E’ — 19 — 0 (see Proposition 3.5). These are precisely the semi-stable bundles whose
corresponding divisor D ~ 20 (see Section 3.2) passes through the point ¢ on Pic! (X).
They define a 2-plane in Myg which we will call Gunning plane and denote it by ILy.

The intersection of 11y with the Kummer surface is easily described as

Iy NKum (X) = {Lo® L' | Loe v O}

In fact, the 16 Gunning planes IIy are well-known; each of them is tangent to the
Kummer surface along a conic passing through 6 of the 16 nodes. The above description
gives a natural parametrization of the hyperelliptic cover of this marked conic by the
curve X itself (via the © divisor). Precisely, for each Ily, the 6 corresponding nodes



24 V.HEU AND F.LORAY

are those parametrized by the 2-torsion points ¥~! ® O ([w;]) where w; runs over the
six Weierstrass points. Conversely, through each node pass 6 of the 16 planes. This
so-called (16,6) configuration is classical (see [34, 26]) as well as the interpretation in
terms of the moduli space of vector bundles (see [49, 14]). However, the interpretation
of Ily in terms of semi-stable bundles arbitrarily close to Gunning bundles seems to be
new so far.

Proposition 3.5. Given two extensions
0-L—Ey—L —-0 and 0L - E,—-L—0

of the same (but permuted) line bundles, there are two deformations Fy and Ej of these
bundles (parametrized by A') such that Ey ~ E; fort # 0.

Proof. The vector bundles Ey and Ej, are respectively defined by a cocycle of the form

aij bij aij 0
® (0 dz’j) and (Cz‘j dij

for a convenient open covering (U;) of X. Here, (a;;) and (d;;) are cocycles respectively
defining L and L'. We claim that this can be achieved with only two Zariski open sets
X = Uy UU; so that we can neglect the cocycle condition. Before proving this claim, let
us show how to conclude the proof. Consider the deformations E; and FE; respectively

defined by
aij bij aij tbij
(t%‘ dz’j) and (Cz’j dij )

They define the same vector bundle up to isomorphism for ¢ # 0 since these cocycles are
conjugated by the automorphism of L ¢ L’ defined in the matrix way by (é (1)> On

the other hand, we clearly have E; — Ey and E} — E{, when ¢t — 0. For a general open
covering, these matrices fail to satisfy the cocycle condition A;;A;,Ax; = I; this is why
we need to work with only two open sets.

Although it might be standard, let us prove the claim. Up to tensoring by a very

ample line bundle L = Ox <l~)>, we may assume that L, L', Ey and Ej, are all generated

by global holomorphic sections. Choose one such section s; for L; it is then easy to
construct another section sy such that the corresponding (effective) divisors D; and
D5 have disjoint support. Indeed, given any non-zero section ss, for any common zero
with s; one can find some section s non-vanishing at that point: one can then perturbe
S9 := sg+e€-s. This means that L may be trivialized on each open set U; = X \ supp (D),
1 = 1,2, and therefore defined with respect to this covering by a single cocycle a12. In a
similar way, we can construct sections o1 and oo of Ey such that the two sections s; A o;
of det (Ep) have disjoint zeroes. In other words, possibly by deleting more points in the
open sets U;, the vector bundle Ey can simultaneously be trivialized on each of these
open sets, and is therefore defined by a cocycle of the above form. To deal simultaneously
with L’ and Ej, the easiest way is to consider the zero set of sections s; A o; A s, A o} of
det (Ep @ Ej). Finally, the same manipulation can be done with sections §; of the ample
bundle L: considering the zeros of sections s; A o; A s, A o A §; of det <E0 ® Ej® f/)
we can assume that the sections oy, s;, s, and §; have no common zeroes for ¢ = 1,2.
Tensoring with L' we have constructed bases (s;, o) (resp. (o), s%)) of E|y, (resp.

1771

E'|y,) with ¢ = 1,2 such that the corresponding cocyles of E and E’ respectively are of
the form (8). O
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In particular, two semi-stable rank 2 bundles are arbitrarily close if and only if they
are S-equivalent.

3.6. Computation of a system of coordinates. In this section, we construct coor-
dinates on the Narasimhan-Ramanan moduli space allowing us to express explicitly the
Kummer surface of strictly semi-stable bundles as well as the involutions of the moduli
space given by tensor products with 2-torsion line bundles.
For all computations, the curve X is the smooth compactification of the affine com-
plex curve defined by
Xy =zx-1)(z—r)(z—s)(z—1t)

where 0,1,7,s,t € C are pair-wise distinct; we denote by oo the point at infinity.
Let us first calculate a basis of H?(Pic!(X), Ox (20)) in order to introduce explicit
projective coordinates on the three-dimensional projective space
Pir := PH?(Pic' (X), Ox (20)).

Since Pic!(X) is birationally equivalent to the symmetric product X ), rational func-
tions on Pic!(X) can be conveniently expressed as symmetric rational functions on X x X.

The pull-back of the divisor © C Pic}(X) (resp. © + [o00] C Pic?(X)) to X x X is
A + 00 + 009, where

e A is the anti-diagonal {(P,Q) € X x X | Q = «(P)},

e 00 is the divisor {oco} x X and

e 00y the divisor X x {oo}.

The pull-back to X x X of 20, viewed as a divisor on Pic!(X) is then (see Figure 2):
2A + 2001 + 2007.
Lemma 3.6. Let (P, P2) = ((x1,y1), (x2,y2)) be coordinates of X x X. Then
HY (X x X, 0¢™(2A + 2001 4 2002)) = Vectc(1, Sum, Prod, Diag)

with
1:(P,P) — 1
Sum : (P, Py) — x1+ x2
(9) Prod: (P, Py) +— xix9,
Diag : (P, P2) + (%)2—($1+$2)3+(1+01)(~"31+$2)2+

+x132(21 + 22) — (01 + 02) (21 + 22)
where 01,09 and o3 are the following constants: o1 = r+s+t,o9 = rs+st+tr,o3 = rst.
Proof. We have h(X x X, O™ (2A + 2001 +2003)) = h” (Pic(X),0(20)) = 4 (see [49]
or [47]). The function Diag can be rewritten as
Diag = ;=5 [~2u1y2 — 2(1 + o1)afa3 — (02 + 03)(2F + 23)
+(z1 + x2) - (HU%DU% + (01 4 02)z122 + 03)]

The expression of Diag in (9) shows that it has no poles off the anti-diagonal and the
infinity (and in particular no poles on the diagonal). From the expression (10) follows

(10)
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easily that Diag has polar divisor 2A + 2007 4+ 2009. Indeed, if u; is the local parameter
for X7 near ooy defined by x1 = #, then the principal part of the generating functions
1

is given by
1 T 3
1, Sum=— + w9, Prod:—g and Diagw—g—%—i—---
uj uj uy U

As a section of HO(Pic!(X), Ox (20)), the function 1 vanishes twice along © while the
other ones do not vanish identically on ©. O

Pic?(X)

FIGURE 2. X? as a rational cover of Jac(X).

In the sequel, denote by (v : v1 : ve : v3) the projective coordinate on IP’3NR repre-

senting the function
vo + v1 - Sum + vo - Prod 4 vs - Diag.

In order to compute the strictly semi-stable locus, namely the Kummer surface
embedded in Mg, it is enough to consider the image in IP)%R of decomposable semi-
stable bundles. Let L = Ox ([P;]+[Ps]—[c0]) € Pic!(X) be a line bundle such that L? #
Ox (Kx) and denote by L the associated degree 0 bundle L = Ox ([P;] + [Py] — 2[c0]).
Let us now calculate the explicit coordinates of the corresponding Narasimhan-Ramanan
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divisor L -© + L~ - © on Pic'(X), which is linearly equivalent to the divisor 20 (see
Section 3.3). The first component L - © is parametrized by

X = Pic!(X) 5 Q= [Py] + [Py] + Q) — 2[oc)].
Setting [Py] + [Ps] + [Q] —2[o0] ~ [P1] + [Pa] — [00], we get that [P;] + [Po] +[Q] belongs

to the linear system [P;]+ [P2] + [oc]. This latter one is generated by the two functions 1
and f(P) := i’ffi}l i{“m/? on the curve. Therefore, [P;] + [P2] — [0c] € L - © (the support

of) if, and only if, f(P;) = f(P,); this gives the following equation for P = (x1,y;) and

Py = (x2,92):
Y, T B Yty Yyt B Yy T Y2

Ty —T1 Ty — T2 Ty T Ty — T
The equation for the other component L~1.0 is deduced by changing signs Y, =~ Yy, for

1 = 1,2. Taking into account the two equations, we get an equation for L-©+L'. 0:
<gl+y1 Y, TYy2 Y, tu1 g2+y2) (—g1+y1 —y, T2 —Y, Y1 —g2+yz> —0

T]—x1 Ty —T2 To—T1 Lo —T2

T —T1 T —T2 To—T1 Lo—T2

which, after reduction, writes

(11) =Diag(Py,Py)-1 + Prod(Py, Py)-Sum — Sum(Py,Py)-Prod + 1-Diag = 0
Remark 3.7. The symmetric form of this equation 1s due to the fact that for any vector
bundle E € Mxr and any line bundle L € Pic! (X) such that hW(X, E ® ) L) > 0, the

divisor Dg associated to E and the divisor L- @—l—L L. O associated to LEBL L intersect
precisely in L and (L) on Pic'(X).

Hence, according to equation (11), the Kummer embedding
Jac(X) — Kum(X) C P3g
Ox ([B1] + [Bo] = 2[oc]) = (v : 0120 03)
is explicitely given by
(12) (v : vy :ve:v3) = (—Diag(Py,Py) : Prod(P,,Py) : —Sum(P;:Py) : 1)
One can now eliminate parameters Py and P, from (12) as follows: express y y, in terms
of functions z; + z, and z;x, and variable vg/vs3, so that the square can be replaced by

2
<2122) = H (w? = (21 + zo)w + 2y2) ;
w=0,1,7r,s,t
then replace 2,25 and x; + xy by v1/vs and —v2/vs respectively. We get
Kum (X) :
0= (vovg — v%)Q -1

—2[[(o1 + o2)v1 + (02 + 03)v2] (vov2 — v})

+ 2(vo + o1v1)(vo + v1)v1 + 2(02v1 + 03V2) (V1 + 02)01] U3
—203(vova — v1) + [[(01 + 02)?v1 + (02 + 03)%v2] (v1 + v2

— (o1 + 03)%v1v9 + 4[(09 + 03)v0 — 0302 vl] v3

—203 [(01 + 02)v1 — (02 + 03) V9] v3

—|—0§ . vé‘.
Here, we see that v3 = 0 is a (Gunning-) plane tangent to Kum (X) along a conic. In
the formula above as in the following, we denote:
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‘0’1:T+S+t, 09 =18+ st +tr, 03:Tst.|

Following formula (12), we can compute the locus of the trivial bundle Ey
and its 15 twists E; := Ey ® Ox (1), where 7 = [w;] — [w;] with ¢ # j.

| E, | (vo : vy :vg i v3) |
E[wo]*[uu] (7“8 +st4+rt:0:—1:

—_
~—|

)
)t
(r+t)s:rt:—r—t:
(s+t)r:st:—s—t:

rs:—r—s:

E[wt}f[woo} (t2 . —t . 1 . 0) E[wr}_[ws}

rs:t:—1—1t:

[ -
S— [ —| - | N—"

—_

| E; | (vo: v :vp:v3) | Bl —fw,] | (r(st+s+1t):0:—r:1)
Ey (1:0:0:0) Elgl—fw,] | (s(rt+74+1):0: —s5:1)
E[wo]*[woo] (O :0:1: O) E[wo]*[wt] (t(rs —+7r 4+ S) 0 —t: 1)
E[wl],[woo] (1 c—1:1: O) E[wl],[wr] ((1 + T)St ro—1—r: 1)
Bl l-fwa] | % :=1:1:0) || Epylojuwg | (A+8)rt:s:—1—5:1)
E[ws],[woo] (82 c—s:1:0) E[w1]—[wt] (L+¢ 1

((

(

(

The Gunning planes Iy are the planes passing through 6 of these 16 singular points.
Precisely, the odd Gunning plane with ¥ = [w;] is passing through all E, with 7 =
[w;] — [w;] (including the trivial bundle Ey for i = j); for an even Gunning plane with
¥ = [w;] + [w;] — [wg] ~ [w] + [wp] — [wy], where {i,7,k,[,m,n} = {0,1,7,s,t,00}, we
get

B~y Ewg)—fwn)> Elwi)~(w)
E E Bl

In particular, we can derive explicit equations, for instance:

} € Mgy ~fwr] = w4+ fwim] ~[wn] -

wi]=[wm]> Hwm]—[wn]s wn]

H[wo] v = 0

H[wl] v +vy +v3 =0

H[woo} V3 = 0
H[wo}_‘_[wﬂ_[ww] vo +v1 = (rs+ st +rt)vs

We can also compute the 16-order linear group given by twisting the general bun-
dle E by a 2-torsion line bundle Ox (1), 7 = [w;] — [w;], by looking at the induced
permutation on Kummer’s singular points. For instance, we get

®Eluwg) - [weol
_—

(vg : w1 : v :v3) ((o2 4+ 03)v1 + 0302 : 03V3 : Vg — (02 + 03)v3 : V1)

1 o1+4+03 o9 0 r
(v'v'v'U)®E[w1]7[w°d(v'v'1)'v)- -1 -1 0 o2
0o-v1.02.73 0o-vV1.02.73 1 0 _1 _(O_1+O_3)
0 1 1 1

One can find in [34, 26] classical equations for Kummer surfaces which are nicer than
the above one, but they require coordinate changes that are non-rational in (r, s,t). For
instance, we can choose Eo, Efy)—[wi]s Fluwi]—jwe] @0 Elug—w.] @S @ projective frame
so that the Gunning bundles Ilj,,1, Mjy,), o] and i) fwi]—[wee] Pecome coordinate
hyperplanes. The Kummer equation therefore becomes quadratic in each coordinate.
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However, to reach the nice form given in §54 (page 83) of [34], we must choose square
roots o = rst and %2 = (r — 1)(s — 1)(t — 1). Then, setting

(up : uy @ ug :uz) = ((vg + v1 — o2v3) : Py : (v + v2 + v3) : afvs),
we get the new equation
Kum (X) :
0= (ugug + u%u%) + B2 (ugu% + u%ug) +a? (u%u% + u%ug)
—20 (ugug — uyus) (ugug + urug) — 2a (ugus — urug) (upuy — ugus)
—2af (upuy + ugus) (uoug + ugug) — 2 (01 + 09 — 203 — 2) uguU2U3.

In these coordinates, the translations computed above simply become:

O Fuig) —[woo]
(ug : uy @ ug @ ug) ——— (u2 1 uz : up : uy)

©Fw, ]~ [wool

(ug : uy s ug @ ug) (uy @ —ug : —us : ug).

Another classical presentation of the Kummer surface consists in normalizing the
action of the finite translation group to be generated by double-transpositions of variables
and double-changes of signs. Then the equation of the Kummer surface takes the very
nice form (see §53 page 80-81 of [34])

(13) (tg + t1 + 5 + 13) + 2D (tot1tats3)
+A(t313 + 13t3) + B(t3t3 + t313) + C (1313 + t§t3) = 0

with coefficients A, B, C, D satisfying the following relation

4- A - B*-C?+ABC+D*=0.

Note that any coordinate change commuting with the (already normalized) actions
of By —[wee] @0 Eyy]— s in the coordinates (ug : ug : uz : ug) takes the form

to a b c d U
t1| _|-b a d -—c Uy
tsl "l ¢ d a b| |w
t3 d —c =b a us

If, moreover, we want to normalize the action of all the translation group to the one
given in the table below for example,

| T |(7f0:7f117f2:7f3)®E7—|
0 (to:tlitgitg)
wWo| — |[Weo (tg:tg:to:tl)
wi| — |Weo b1 —to: —t3:to

~
—
~
o
| ee | oe
o~
w
|
~
Do

~
no
~
W
|
o~
o
|
~
—
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then the variables a, b, ¢, d have to satisfy (up to a common factor):

a = rst(r—s)B+tyd —rt(r —1)6 — stpy

b = —st(s—1)y+rtBé
¢c = tr—s)af—t(r—1)ad
d = —tlr—=1(s=1)(r—s)a+t(s—1)ay

where «, 3,7, satisfy
o =rst, B2 = (r—1)(s—1)(t—1), ¥* = r(r—1)(r—s—(r—t) and §* = s(s—1)(s—7r)(s—t).

The coefficients of the resulting Kummer equation (13) are

s(t—1)+(t—s r+4(r—t

" A = —pepiies) poo _pr(d
r—1)+(r—s r(s—t)+(r—s
C = o=ty D = —qrepes),

The five ¢t-polynomials occuring in the Kummer equation (13) are fundamental in-
variants for the action of the translation group and define a natural map ]P’3NR — Pt
whose image is a quartic hypersurface (see [18], Proposition 10.2.7).

Corollary 3.8. The quartic in P* defined by the natural map PgNR — P* is a coarse
moduli space of S-equivalence classes of semi-stable P*-bundles over X.

Remark 3.9. Recall that a P'-bundle S over X is called semi-stable if #(s,s) > 0 for
every section s : X — S. If E is a rank 2 vector bundle over X such that PE =S, then
the (semi-)stability of S is equivalent to the semi-stability of E [4].

Proof. Let T be a smooth parameter space and S — X x T a family of P'-bundles over
X. Denote by 77 the projection X x T — T. The P'-bundle S lifts to a rank 2 bundle
€ — X x T such that det(€) = m;Ox and P€ = S. This vector bundle is unique up
to tensor product with 7}.(L) where L is a 2-torsion line bundle on X. According to
Theorem 3.2, the classification map 7" — Myg then is a morphism as is its composition
with the natural map PgNR — P*. The resulting morphism 7' — P* no longer depends
on the choice of £. U

4. ANTICANONICAL SUBBUNDLES

We will now enrich our point of view of hyperelliptic decent by its relations to the
classical approaches of Tyurin [56] (see also [36]) and Bertram [7], as well as more recent
works of Bolognesi [14, 15]. By our main construction (see Section 2), we see Bun (X/¢)
as the moduli space of hyperelliptic parabolic bundles (E, p) together with the forgetful
map

PBun (X/i1) — Bun (X); (E,p) — E.
The Bertram-Bolognesi point of view (see Section 4.2) arises from the moduli space
of hyperelliptic flags (E,L) with E D L ~ O(—Kx): Bertram considered in [7] the
projective space of non-trivial extensions

0—0(-Kx) —F—0(Kx) —0

on which the hyperelliptic involution acts naturally. Bertram’s moduli space is the
invariant hyperplane, i.e. the set of hyperelliptic extensions.
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Tyurin however considers rank 2 vector bundles with trivial determinant over X that
can be obtained from Ox(—Kx) @ Ox(—Kx) by positive elementary transformations
on a parabolic structure carried by a divisor in |2Kx|. Again we obtain a moduli space,
which is a rational two-cover of an open set of Bun(X). It will turn out later (see
Section 5.6), that the moduli spaces for each of these points of view are all birationally
equivalent.

Let FE be a flat vector bundle with trivial determinant bundle on X. Given an irre-
ducible connection V on E, Corollary 2.3 provides a lift h : E — *E of the hyperelliptic
involution ¢ : X — X whose action on the Weierstrass fibers is non-trivial, with two dis-
tinct eigenvalues +1. Consider the set of line subbundles O (—Kx) < E and how h acts
on it. In Section 4.1, we will prove that a generic F € Bun (X) carries a 1-parameter
family of such subbundles, only two of them being h-invariant:

e L™ C E on which h acts as id;+,
e I~ C E on which h acts as —id;-.

In the generic case, the two parabolic structures p and p’ discussed in Sections 2.2 and
2.2.1 are therefore respectively defined by the fibres over the Weierstrass points of the
line subbundles L™ and L~ of E. We also investigate the non generic case. The results
are summarized in Table 3.

parabolic

degenerate invariant structures p*

bundle type Tg;furin subbundles (up to autom.)

determined by L*

stable off Gunning planes | ) 2 out of 2
generic on Il LT = Ox(—[w]) 1 out of 2
stable on I}, N1}y, LT = Ox(—[wi]), L~ = Ox(—[w,]) 0 out of 2
generic decomposable 0 1 out of 1
Lo & Lo with L? = Ox Lt =Ly, L™ =L 1 out of 1
generic unipotent LT =0x 2 out of 2
special unipotent Lt =0x, L™ = 0(—[w]) 1 out of 2
twists of unipotent LT = Ox ([wi] — [w;]) 1 out of 2
affine 0 0 out of 0
even Gunning bundle LT =L =0x(9) 2 out of 2
odd Gunning bundle Lt =0x(9) 2 out of 2

Table 3: Invariant Tyurin subbundles for the different types of bundles. By definition
non-degenerate subbundles are isomorphic to Ox(—Kx).

4.1. Tyurin subbundles. Let (E,V) be an irreducible trace-free connection over X,
and let h : E — *F be the lift of the hyperelliptic involution ¢ : X — X given by
Corollary 2.3. Recall that h acts non-trivially with two distinct eigenvalues on each
Weierstrass fiber F|,,. The involution ¢ acts linearly on O (—Kx) and therefore h acts
on HY (Hom (O (—Kx), E)). Since it is involutive, this action induces a splitting

H° (Hom (O (-Kx),E))=H"® H™

into eigenspaces (relative to +1 eigenvalues). We call Tyurin subbundle of E the line sub-
bundles L obtained by saturation of the inclusion of locally trivial sheaves O (—Kx) — E



32 V.HEU AND F.LORAY

defined by any non zero element ¢ € H° (Hom (O (-Kx),E)). In the following, we
prefer to consider ¢ as a holomorphic map from the total space of O (—Kx) to the
total space of E. From this point of view, if z1,...,z, are the points of X such
that 90|(9(*KX)$. is identically zero, then the corresponding Tyurin subbundle L sat-
isfies L ~ (’)X([éul] +...[zn] — Kx). In other words, if ¢ is injective (as a map between
total spaces of vector bundles), then L ~ Ox (—Kx). We say that a Tyurin subbundle
L C E is degenerate if L # Ox (—Kx).

Proposition 4.1. Let E and h be as above. The vector space H® (Homo, (O (—Kx), E))
is 2-dimensional except in the following cases

o F is either unipotent, or an odd Gunning bundle, and then the dimension is 3,
e F is the trivial bundle, and then the dimension is 4.

If E is not an even Gunning bundle, the images of these morphisms span the vector
bundle E at a generic point. The two eigenspaces H™ and H~ then have positive di-
mension; they correspond to morphisms into two distinct h-invariant subbundles, LT
and L~. There are no other h-invariant Tyurin subbundles.

Remark 4.2. As we shall see in Section 4.1.6, in the case of even Gunning bundles,
the eigenspaces HT and H~ still have positive dimension, but the associated h-invariant
subbundles L™ and L~ are equal.

Proof. First we have Hom (O (—Kx),E) ~ F ® Ox (Kx) and by the Riemann-Roch
formula h° (E ® Ox (Kx)) — hY (E) = 2. Here, we use Serre duality and the fact that
E is selfdual (because rank (E) = 2 and det (E) = Ox). We promptly deduce that
hY (E® Ox (Kx)) > 2 and > 2 if and only if E has non-zero sections or, equivalently,
if it contains a subbundle L of the form L = Ox, Ox ([p]) or deg (L) > 1. Because of
flatness (see Section 3), the only possibilities are actually L = Ox or Ox ([w]) for some
Weierstrass point w € X.

When the image of a 2-dimensional subspace of H? (Hom (Ox (—Kx), E)) is degen-
erate, i.e. contained in a proper subbundle L C F, then h° (L ® Ox (Kx)) = 2 which im-
plies L = Ox or L = 9, a theta characteristic. Yet in the cases when L is trivial or an odd
theta characteristic, we have h? (Hom (Ox (—=Kx), E)) > 2 = h? (Hom (Ox (-Kx), L))
and thus not all morphisms take values into L: we get enough freedom to span F at a
generic point.

Now, given two morphisms ¢; : Ox (-Kx) — FE for i = 1,2, taking values into
two different subbundles L; C E, L1 # Lo, we get a morphism @1 @ 9 : Ox (—Kx) @
Ox (—Kx) — E whose image spans the vector bundle E at all fibers but those corre-
sponding to the (effective) zero divisor of 1 A @3 : Ox (—2Kx) — Ox. Such a divisor
takes the form [P]+[¢ (Py)] 4 [P2] + [t (P2)] for some Py, P, € X. We thus get an isomor-
phism between the 2-dimensional vector space Vectc (o1, p2) C H? (Hom (Ox (—-Kx), E))
and the fiber of E over each point of X \ {P,¢(P1), P, t(P)}. In particular, over
a Weierstrass point w # Pp, P», we have E|, ~ Vectc (p1,92) and since the action
h on H° (Hom (Ox (—Kx), E)) is non-trivial, neither H* nor H~ is reduced to {0}.
Moreover, 1 and o cannot belong to a common eigenspace of the action of h on
H (Hom (Ox (-Kx), E)). In other words, any two morphisms belonging to the same
eigenspace H* take image in the same subbundle, say L*.

Let now L be a Tyurin subbundle distinct from L+ and L™: L is generated by
© = 1 + o for some 1 € HT and o € H™. Again, there is a Weierstrass point w
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where 1 A 9 does not vanish: the action of A is homothetic on the ¢; with opposite
eigenvalues and cannot fix the direction C- ¢ (w). Thus L is not h-invariant. g

Note that if the line subbundles LT are non-degenerate, their fibres over the Weier-
strass points define the parabolic structures p*. As we shall see, any flat vector bundle
FE has degenerate Tyurin subbundles; some of them can be h-invariant, even in the stable
case.

In the following paragraphs, we will study the Tyurin subbundles for each type of
bundle, following the list of Section 3. The reader might want to skip the non stable
cases at first, and refer to them later, when needed.

4.1.1. Stable bundles. When FE is stable, any holomorphic connection on F is irreducible.
Since the only bundle automorphisms of E are homothecies, the same bundle isomor-
phism h : E — *FE works for all connections and it therefore only depends on the
bundle (up to a sign). The two h-invariant Tyurin bundles Lt and L~ depend (up to
permutation) only on E.

Consider two elements ¢ T, p~ € H? (Hom (O (-Kx), F)) generating L™ and L~ (at
a generic point) and consider the divisor div (™ A ™) = [P] + [t (P)] + [Q] + [t (Q)].
This divisor DL € |2Kx| is an invariant of the bundle, we call it the Tyurin divisor.
Let Dy € |20] be the divisor on Pic! (X) defined by Narasimhan-Ramanan (see Section
3.2).

Proposition 4.3. Let E be stable. Then the divisor Dg 1s the intersection between the
divisor D and the natural embedding X — ©; P+ [P] on Pic! (X):

DL = Dy - ©.

For each point P of the support of DL, there is exactly one subbundle Lp = Ox (—[P])
of E. These are precisely the degenerate Tyurin subbundles. Such a degenerate Tyurin
subbundle Lp is h-invariant if, and only if, P = w is a Weierstrass point. This happens
precisely when E lies on the odd Gunning plane 11},

Proof. First note that DL = div (o1 A ¢2) for any basis (¢1,¢2) of the vector space
H° (Hom (O (-Kx), E)). A point P € X belongs to the support of DZ if and only
if +(P) does. This is equivalent to the fact that ¢t and ¢~ are colinear at ¢ (P).
Equivalently, there is a morphism ¢p € HY (Hom (O (—Kx), F)) which vanishes at ¢ (P)
(and can be completed to a basis with ¢ or ¢ ). By stability of the vector bundle F, the
morphism ¢p cannot vanish elsewhere. Denote by Lp the line subbundle corresponding
to pp. Finally, we have P € Dg if and only if there is a line subbundle Lp of E such
that Lp ~ O ([t (P]) — Kx) = O (—[P]). On the other hand, P belongs to the support
of Dg.O if and only if there is a line subbundle Lp ~ O (—[P]) of E. Since these divisors
are generically reduced, we can conclude by continuity that Dg = Dpg.0.

Now suppose E has two line subbundles Lp. A linear combination of the two
corresponding homomorphisms in H? (Hom (O (-=Kx), E)) then would have a double
zero at P, which is impossible by stability of E. So for each point P in the support
of DL, we get a unique subbundle Lp ~ Ox (—[P]) and there are no other degenerate
Tyurin subbundles.

Finally, note that the finite set of (at most 4) degenerate Tyurin subbundles must
be h-invariant. Thus such a bundle Lp is invariant if, and only if, P is (-invariant. [

Corollary 4.4. When E is stable and outside of odd Gunning planes 11y, there are
exactly two h-invariant subbundles LT, L~ ~ O (=Kx) in E that are invariant under the
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hyperelliptic involution h. The two parabolic structures p and p' defined in Sections 2.2
and 2.2.1 then are precisely the fibres over the Weierstrass points of two line subbundles
L*,

Another important consequence of the proposition above is the Tyurin parametriza-
tion of the moduli space of stable bundles (see section 4.3) which relies on the following

Corollary 4.5. When E is stable and the Tyurin divisor DL = [P]+[. (P)]+[Q]+[t (Q)]
is reduced (4 distinct points), then the natural map

ot :O(-Kx)®0O(-Kx) = E

is a positive elementary transformation for the parabolic structure defined over DL =
[P+ [t (P)] + [Q] + [t (Q)] by the fibres of the line subbundles Lp, L,py, Lo and L)
over the corresponding points.

Remark 4.6. When E belongs to an odd Gunning plane I, then one of the two h-
invariant Tyurin subbundles is degenerate, say L~ = Ox (—[w]), and fails to determine
the parabolic structure p~ over the Weierstrass point w. When E € I, NIy, then the
two h-invariant Tyurin subbundles are degenerate and neither pT, nor p~ are determined
by these bundles.

4.1.2. Generic decomposable bundles. Let E = Lo@Ly ", where Ly = O ([P] + [Q] — Kx)
is not 2-torsion: L% # Ox. There is (up to scalar multiple) a unique morphism ¢ :
O(-Kx) — Lo (vesp. ¢' : O(~Kx) — Lg') vanishing at [P] + [Q] (resp. [¢(P)] +
[t(Q)]). They generate all Tyurin subbundles and they are the only degenerate ones.
Clearly, neither Lo nor L !is invariant. The projective part G,, of the automorphism
group Aut (E) fixes both Lo and L 1 and acts transitively on the remaining part of the
family. Any involution h interchanges Lo and L ! while it fixes two generic members
LT and L~ of the family. The parabolic structures are defined by the fibres of these two
bundles over the Weierstrass points. Another choice of lift i’ = gohog™!, g € Aut (E),
just translates the two subbundles L* by g¢. Finally, up to automorphism, there is a
unique tnvariant Tyurin bundle, and thus a unique parabolic structure.

4.1.3. The trival bundle and its 15 twists. When E is the trivial bundle, the space of
morphisms H? (Hom (O (—~Kx), E)) is 4-dimensional and generated by 2-dimensional
subspaces H? (Hom (O (-Kx),Ox)) for two distinct embeddings Ox < E. We get 1-
parameter family of degenerate Tyurin sub bundles formed by all embeddings Ox — F.
Given any irreducible connection, the corresponding lift A fixes only two (degenerate)
subbundles (see Section 3.3.2). The two parabolic structures are defined by the line
bundles associated to these two embeddings Ox < E. Therefore, up to automorphism,
there is exactly one parabolic structure on the trivial vector bundle.

When E = Lo® Lo with Lo = O ([w;] + [wj] — Kx) and ¢ # j, then the vector space
H (Hom (O (-Kx), E)) is 2-dimensional and all Tyurin subbundles are degenerate in
this case: they form the 1-parameter family of subbundles L «— E with L ~ Ly. Still
Aut (E) = GLy (C) acts transitively on them. Recall that the two parabolic structures
pT on E can be deduced from the case of trivial bundles just by permuting the role
of the two parabolics over w; and w; with respect to p* and p~ (see Section 2.2.1).
Each parabolic structure is thus distributed on two embeddings L «— E with L ~ L.
Since Aut (E) acts 2-transitively on the family of such line subbundles, there is a unique
parabolic structure up to automorphisms.
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4.1.4. Unipotent bundles and their 15 twists. Let 0 - Ox — E — Ox — 0 be a
non-trivial extension. Here the space of morphisms H (Hom (O (—Kx), E)) has dimen-
sion 3 and the subbundle Ox C FE is responsible for this extra dimension: the space
HC (Hom (O (—~Kx),Ox)) has dimension 2. There are many lifts h of the hyperelliptic
involution ¢ since there are non-trivial automorphisms on F: any other lift is, up to
a sign, given by go ho g~! for some g € Aut (E). But once h is fixed, we can apply
Proposition 4.1 and get that there are exactly two h-invariant Tyurin subbundles L*,
one of them is the unique embedding Ox — E. Possibly replacing h by —h, we may
assume LT = Oyx.

Let o be a non-zero element of H (Hom (O (-Kx), F)) taking values in L and
vanishing at say [P]+ [t (P)]. Let ¢~ be a non-zero element of H’ (Hom (O (-Kx), E))
taking values in L. Consider the divisor defined by zeroes of o™ A ¢ ™: as an element
of the linear system |2Kx]|, it takes the form [P] + [¢ (P)] + [Q] + [¢ (Q)] including the
vanishing divisor of ¢T. Since ¢~ is unique up to a constant, the divisor [Q] + [+ (Q)] is
an invariant of the bundle, while [P] + [¢ (P)] can be chosen arbitrarily by switching to

another ™.

Proposition 4.7. The divisor [Q] + [t (Q)] characterizes the extension E: we thus get
a natural identification between the space P (H° (Hom (O (Kx)))") parametrizing exten-
sions and P (H° (Hom (O (Kx)))) parametrizing those divisors [Q] + [t (Q)].

The bundle L~ is degenerate if, and only if, [Q] + [t (Q)] = 2[w;] where w; is a
Weierstrass point. In this case, L~ = Ox (—[w;]) (and ¢~ vanishes at w;).

Proof. The morphism ¢~ defines a natural morphism
dj+®¢ :0Ox @0 (-Kx) = E

whose determinant map vanishes at [Q] + [t (Q)]. When @ # ¢(Q), this is a positive
elementary transformation on the vector bundle Ox ® O (—Kx) for a parabolic structure
defined over [Q]+[¢ (Q)]. None of the two parabolics can be contained in the total space of
the destabilizing line subbundle Ox, otherwise ¥ would be unstable. Moreover, the two
parabolics cannot both be contained in a same line subbundle isomorphic to O (—Kx),
otherwise E would be decomposable. Up to automorphism of the bundle Ox O (—Kx),
there is a unique parabolic structure over [Q]+ [« (Q)] satisfying these conditions. Hence
E is well determined by the divisor [Q] 4 [t (Q)]. This provides a natural identification
as stated, outside of the 6 special bundles for which @ = ¢(Q) = w;; it extends by
continuity at those points.

Since F is semi-stable and indecomposable, we have deg (L~) < 0. In the degenerate
case, the only possibility is that ¢~ has a single zero, at say @, and L~ = Ox (—[¢ (Q)]).
But L~ being h-invariant, @ = ¢ (Q) has to be a Weierstrass point, w; say. Conversely, if
Q = w;, we can chose P # w; making sure that ¢ doesn’t vanish at w;. The two sections
T and ¢~ are however colinear at w; and there is a linear combination ¢ = ¢~ + A\p™
vanishing at w;. The corresponding Tyurin subbundle L of E then is isomorphic to
Ox (—[w;]) and thus invariant under the hyperelliptic involution. Since L* are the only
invariant Tyurin subbundles, we have L™ = L ~ Ox (—[wj;]). O

The two hyperelliptic parabolic structures associated to h are defined by these two
bundles, except for the 6 special extensions FE for which L~ is degenerate. Consider
now another lift A’ of the hyperelliptic involution, given by ' = go ho ¢! for some
automorphism g € Aut (E). The I/-invariant Tyurin subbundles then are L™ and g (L™)
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since Aut (E) fixes the subbundle L™ ~ Oyx. Yet the G,-part of Aut (E) acts transi-
tively on the set on non-degenerate Tyurin subbundles. Therefore, there are exactly two
hyperelliptic parabolic structures on E up to automorphism.

Remark 4.8. In the geometric picture, the 1-parameter family of extensions (Ey),cpr
of the trivial line bundle can be seen as the tangent cone to the Kummer surface after
blowing up the singular point corresponding to the trivial bundle. The strict transform
of the Gunning plane Iy, then intersects this P! in a unique point which is the bundle
satisfying L~ ~ O (—[w;]) as above.

Let Lo = O ([wi] + [w;] — Kx) be a non-trivial 2-torsion point of Pic? (X), i # j,
and consider a non-trivial extension 0 — Lo — E — Ly — 0. This time, the vector
space H? (Hom (O (—Kx), E)) has dimension 2 and generates a 1-parameter family of
Tyurin subbundles. One of them is Lg, the only one having degree 0. It is degenerate
and must be invariant, say LT. The group Aut (E) acts transitively on the remaining
part of the family and, like for unipotent bundles, h fixes one of them, say L~. The
intersection LT N L~ has to be [w;]+ [w;] and L~ is therefore non-degenerate and defines
the parabolic structure p—.

4.1.5. Affine bundles. We should also consider the case of affine bundles. We have
already seen that these bundles are not invariant under the hyperelliptic involution.
Hence they do not arise from elements of Bun (X/¢) and our parabolic structures p* are
not defined. Yet Tyurin’s construction naturally includes this type of bundle. Indeed,
even if the notion of invariant line subbundles does not make sense here, we can of course
consider the space of Tyurin subbundles of an affine bundle. Let Ly = Ox ([P] + [Q] —
Ky) = Ox(Kx — [t(P)] — [¢(Q)]) be a degree 0 line bundle such that L§?* # Ox and let

FE be the unique non-trivial extension
0—Lo— E—Ly' —0.

Then h® (Hom (Ox (-Kx), E)) = 2. Moreover, we have h® (Hom (Ox (-Kx), Lo)) = 1.
In other words, ¥ possesses a 1-parameter family of Tyurin subbundles. Precisely three
of them are degenerated: Ly, a unique line subbundle Lp ~ Ox(—P) of E and a unique
line subbundle Ly ~ Ox(—Q) of E. They define a parabolic structure on E over the
Tyurin divisor DL = [P] + [Q] + [¢ (P)] + [¢ (Q)] (the parabolics over ¢(P) and +(Q) are
both given by Lg) and the four negative elementary transformations on E defined by
these parabolics yield Ox (-Kx) ® Ox (-Kx).

4.1.6. The 6 + 10 Gunning bundles. Let ¥ € Pic! (X) be a theta characteristic and Ey
be the associated Gunning bundle. The subbundle ¥ C Ey is the unique one having
degree > —1; it is a degenerate h-invariant Tyurin subbundle.
When 9 is an even theta characteristic 9 = [w;] + [w;] + [wi] — Kx, we have
h? (Hom (Ox (-Kx),9)) = h® (Hom (Ox (-Kx), Eg)) = 2
and all morphisms ¢ : Ox (—Kx) — Ey factor through the subbundle ¥ C Ey: there is
a unique Tyurin bundle in this case. Through the identification
Hom (O (=Kx),9) ~ Ox ([wi] + [w;] + [wg]),
the space global sections of the sheaf of morphisms is generated by

7 (x —xp) (x —yxm) (x — ap) e HO (X, O ([wi] + [w;] + [w])),

1
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where {i,7,k,l,m,n} = {0,1,r,s,t,00} and w; = (x;,0) € X. The hyperelliptic invo-
lution acts as id on the first one and —id on the second one. There are two types of
hyperelliptic parabolic structures on Ey:
e parabolics corresponding to w;, w; and wy, lying in ¥ < Ey, the others outside;
e parabolics corresponding to wy, wy,, and w, lying in 9 — FEy, the others outside.
This implies that up to automorphism, there are exactly two parabolic structures on a
Gunning bundle Ey with even theta characteristic.

Let us now consider the case where ¢ is an odd theta characteristic ¥ = Ox ([w]).
The h-invariant Tyurin subbundles L™ and L~ are distinct and one of them is the
maximal subbundle of Ey, say L™ = 19, which is the only degenerate Tuyrin subbundle
of Ey. For any P € X we can choose a holomorphic section ¢ of the line subbundle
Lt ® Ox (Kx) of By ® Ox (Kx) such that divo(¢™) = [w] + [P] + [¢(P)], whereas any
holomorphic section ¢~ of L™ ® Ox (Kx) is nowhere vanishing. Moreover, the fibres of
the corresponding line subbundles of Ey are colinear only over the point w. In other
words, the Tyurin divisor of Ey is well-defined only after the choice of a section of the
destabilizing line subbundle. The birational map p* @ ¢~ : O (—Kx)® O (-Kx) — Ey
then decomposes as four successive positive elementary transformations with (Tyurin)-
parabolics given by the fibres of L™ and its strict transform over [w], [w], [P] and [¢(P)].
The hyperelliptic parabolic p; on the other hand is defined by L*|,, = L™ |, and p;r is
elsewhere. Since Aut (Ey) fixes L™ and acts transitively on the set of line subbundles of
the form O (—Kyx), there are, up to automorphism, exactly two parabolic structures on
a Gunning bundle Ey with odd theta characteristic.

4.2. Extensions of the canonical bundle. Here, we recall some results obtained by
Bertram in [7], completed in the genus 2 case by Bolognesi in [14, 15] (see also [39]).

The space of non trivial extensions 0 — O (-Kx) = F — O (Kx) — 0is PH! (-2K x)
which identifies, by Serre duality, to PH? (3K X)V. This space naturally parametrizes the
moduli space of those pairs (E, L) where L C E is a non-degenerate Tyurin bundle. The
hyperelliptic involution ¢ acts naturally on H? (3K x) and thus on its dual: the invariant
subspace is an hyperplane P% c PH? (3K x)" ~ P* that naturally parametrizes those
pairs (E, L) that are invariant under the involution. As we have seen in Section 4.1,
most stable bundles F admit exactly two invariant and non-degenerate Tyurin subbun-
dles and most decomposable bundles £ admit only one. This suggests that IP% is a
birational model for the 2-fold cover of ]P’%R ramified over the Kummer surface.

dz )®3

y
uniquely so that the coefficients a; provide a full set of coordinates. Let (bg : by : by : b3 : by)
be dual homogeneous coordinates for IP’j%3 :=PHY (3K X)V. We have the following descrip-
tion (see introductions of [7, 39] and §5 of [14])

The locus of unstable bundles is given by the natural embedding of the curve X:
2

A cubic differential w € H° (3K x) writes w = (ao + a1z + asz? + asxd + a4y) <

X — P§; (z,y) = (L:z:a :x?’:y).

The locus of strictly semi-stable bundles is given by the quartic hypersurface Wed C ]P"}B
spanned by the 2-secant lines of X. The natural action of the hyperelliptic involution
t: X — X on cubic differentials induces an involution on ]P"}B that fixes the hyperplane
P3 = {by = 0} and the point (0:0:0:0: 1).

The Narasimhan-Ramanan moduli map

4 3
]PB i 4 ]P)NR
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is given by the full linear system of quadrics that contain X it restricts to IP’% as the full
linear system of quadrics (of P%) that contain the six points X NP%. After blowing-up
the locus X of unstable bundles, we get a morphism

™4 3

namely a conic bundle; its restriction to the strict transform ﬁ% of P% is generically
2 : 1, ramifying over the Kummer surface Kum C PgNR. The quartic hypersurface Wed
restricts to P% as the (dual) Weddle surface; it is sent onto the Kummer surface.

There is a Poincaré vector bundle £ — X x IP’% realizing the classifying map above.
Hence by restriction, there is a Poincaré bundle £ — X x IP)?]B on the double cover IP)?]B
of P3x. The projectivized Poincaré bundle P (£) — X x P% defines a conic bundle
C— X x PgNR over the quotient PgNR. For each vector bundle F € PgNR, the fibre Cg of
the conic bundle represents the family of Tyurin-subbundles of E. Yet the conic bundle
C is not a projectivized vector bundle over IF’3NR, not even up to birational equivalency,
because a Poincaré bundle over a Zariski-open set of P¥ does not exist [50].

4.3. Tyurin parametrization. Let E be a flat rank two vector bundle with trivial
determinant bundle over X. It follows from Corollary 4.5 that, when E is stable and
off the odd Gunning planes, then E can be deduced from Ox (—Kx) & Ox (—Kx) by
applying 4 positive elementary transformations, namely over the Tyurin divisor Dg. In
fact, if we allow non reduced divisors, then this remains true for all flat bundles except
even Gunning bundles. Indeed, it follows from Proposition 4.1 that we have a non
degenerate map

‘~P+ @y :O0x (—K)() @ Ox (—K)() —F

by selecting ¢ and ¢~ generating H* and H~ respectively; non degenerate means
that the image spans the generic fiber. Comparing the degree of both vector bundles,
we promptly deduce that this map decomposes into 4 successive positive elementary
transformations, possibly over non distinct points (this happens when the divisor Dg €
|2K x| is non reduced).

Conversely, let us consider a divisor, say reduced for simplicity:

D = [Py] + [t (Py)] + [Po] + [t (Bo)] € [2Kx],

and consider also a parabolic structure q over D on the trivial bundle Fy — X: given
e1 and es two independent sections of Ej, the parabolic structure is defined by

4
(Ays Apy)s AR,y Aupy) € (PY)

where e; 4+ Ap, ez generates the parabolic direction over P;, and similarly for :(P;). From
this data, one can associate a vector bundle with trivial determinant E by

(15) O (-Kx) ® elm}, (Eo,q) — E.
Table 4 lists all types of vector bundles F that can be obtained in that way.

Remark 4.9. This list is mostly a summary of the case by case study in Section 4.1.
Reasoning on the possible preimages of the destabilizing subbundle, it is straightforward
to check that the above mentioned decomposable bundles are the only possible ones. Even
Gunning bundles cannot be obtained: otherwise two distinct trivial subbundles of the
trivial bundle would generate two distinct Tyurin subbundes on an even Gunning bundle.
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bundle type Tyurin divisor reduced parabolic structure
stable off Ty, Dg yes generic
)\U)'a)\ 7)\L = 0,1,00
on I, off I sl + (PI+UP) | mo | CoAmAe)=(01ed
(but P is free on X \ W)
on H[wi] N H[wj] 2[11]2'] + 2[11]]'] no )\wi 75 )\wj
unipotent generic [Pl + [«(P)] + [Q] + [(Q)] | yes Ap = A\py (but Q is free)
special [P] + [¢(P)] + 2[w] no Ap = \(p)
twisted by Ox ([w;] — [wj]) 2[w;] + 2[w;] no Awi = Au,
ﬁ L®2 O )\ ) )\L ) )\ Y AL
dwe [ AOx Pl LR+ Q4+ Q)| yes | MR @)
i-stabl ic: L§*#0
S generic: Ly” 7 Ox Pl+ (P + QI+ @] | yes | Ap =2 #Mim = @)
decomposable Ly = Ox([P]+[Q] — Kx)
L() ©® Lal trivial: L() = OX [P] + [L(P)] + [Q] + [L(Q)] yes )\p = )\L(p) 75 )\Q = )\L(Q)
twist: Ly = Ox([wi] - [wj]) Q[U)i] + Q[U)j] no )\wi #* )\wj
unstable L=0x([P]),PgW [P] + [t(P)] + [Q] + [(Q)] yes APy #Ar = Aq = Q)
decomposable L = Ox([w]) 2[w] + [Q] + [(Q)] no limp_,,, of the previous one
Lol L= Ox(Kx) P+ WP+ QI+ Q1| ves | Ar=dim = ho = hig)
2 + [P+ [«(P
odd Gunning bundle | E,, [} + [P]+ [1(P)] no Aw = Ap = )\L(p)
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As a consequence, the moduli space Mg is birational to the moduli space of par-
abolic structures over D on Ejy, when D runs over the linear system |2Kx|. Let us be
more precise. Consider the parameter space

(Py,Py,\) € X x X x P!

and associate to each such data the parabolic structure defined on the vector bundle
Ox (—K)() P® Ox (—K)() by

1 1
(A£17)‘L(£1)7)‘B27)‘L(22)) = <)‘7_)‘7 Xa _X> .

Equivalently, one can view the parabolic structure as the collection of points

(PLN), (P, -, <£§> and <L<£2>’—§>

on the total space X x P! of the projectivized P!-bundle P (Ox (—Kx) @ Ox (—Kx)).
The natural rational map X x X x P! —-» IP’3NR is not birational however, since for a
given bundle over X there are several possibilities to choose P;, P, and A. One can
first independently permute P; < «(P;), Py <> t(Py) and P, > P,: this generates
a order 8 group of permutations. Moreover, once P; and P, have been chosen to
parametrize the linear system |[2Kx|, there is still a freedom in the choice of A: our
choice of normalization, characterized by

)‘£1 + )‘L(£1) = )\BQ + AL(BQ) =0 and )\Bl -)\£2 =1,

is invariant under the Klein 4 group < z +— —z, 2 + % > acting on the projective variable
e1 + zeg. The transformation group taking into account all this freedom is generated by
the following 4 transformations

(X x X xP) x (X xP) — (X x Xy x P}) x (X xP)
25 (Py Py d), (2,9),2)
'i> ((L(Bl)vL(BQ)v_)‘)7(('%'7y)’z))
((P1, Pa, N, ((2,9),2)) L5 (P, U(Py),iN), (2, y),i2))
'01—/Z> ((Bme%)’((x’y)?%))

(here, i = v/—1). In fact, our choice of normalization for (>\£1’>\L(£1)’)\£2’)\L(£2)) may
not the most naive one, which would have consisted to fix 3 of them to 0, 1 and oo; but
our choice has the advantage that the transformation

(X; x Xy xPY) x (X xP}) — (X x Xy xP}) x (X xP})
((217227)‘)7((1'73/)72)) — ((217227)‘)7((1'7 —y),—z))

preserves the parabolic structure, and corresponds to the projectivized hyperelliptic
involution h : £ — (*E. In particular, the subbundles z = 0 and z = oo generated
respectively by e; and ey precisely correspond to the two ¢-invariant Tyurin subbundles
of E.

The 32-order group (o12,0,, 04,01 /z> acts faithfully on the parameter space X; x
X, xP. Setting Py = (z4, y,) and Py = (z5,y,), the field of rational invariant functions
is generated by

1
si=z 4z, pi=mz, and A:= <A2 * ﬁ) hi¥
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so that a quotient map (up to birational equivalence) is given by

32:1
(16) X, x Xy x P} @) P2 x P}
((&l,gl), (22, Y,) /\> > <(1 D—my — Ty 2y), (A2 4 52) g1g2>
Here, P2, = |2K x| is just the linear system parametrizing those divisors DL. This

quotient is our sharp Tyurin configuration space, and we get a natural birational map
P2, x Py --» P3r
which can be explicitely described as follows.

Proposition 4.10. The natural classifying map IP% X IP& -— IP3NR writes

(8,P,A) = (vo:v1:vg:v3)

[ A—sp*+2(1401)p?—(01+02)sp+(0a+03)(s®—2p)—o3s .
= < 1p ip:r—s:1).

Before proving it, let us make some observations. First, the fibration ]P% X ]P’;\ — IP%
is send onto the pencil of lines of ]P’3NR passing through the trivial bundle Ey : (1:0:0:0).
In fact, the surface {\ = oo} in Tyurin parameter space, corresponding to A = 0 or oo, is
the locus of the trivial bundle. Also, the surface defined by A = {1, —1,4, —i} corresponds
to generic decomposable flat bundles and is sent onto the Kummer surface; we note that
it is also defined by A? = 4(y1y2)? which, after expansion, writes

A2 = plp—s+1) - (23 - 0122§ + 02£§2 — 038 + (0% — 202)22 + (303 — 0102)ps
+01038? + (03 — 20103)p — 02038 + 03)
which allow us to retrieve the equation of Kum(X) C Pg.

Proof. Assume we are given (P, P, \) and the associated parabolic structure on (Ey, q) —
(X, Dg); then, we want to compute the Narasimhan-Ramanan divisor D C Pic!(X) for
the corresponding vector bundle E obtained after 4 elementary transformations. Given
a degree 3 line bundle Ly, we can look at holomorphic sections sg : X — Fy ® Lg; it is
straightforward to check that a section sje; + soeq taking value in Tyurin parabolic di-
rections over Dg will produce, after elementary transformations, a holomorphic section
of E® Lo(Kx — DL), showing that Lo(Kx — DL) = Lo(—Kx) € Dg. Since sections
of Ly = Ox ([Py] + [P] + [o<]) are generated by (1, ¥4 — ¥482) 'y to automorphisms

?) x—x;1 T—x2
of Ey, we can assume s1 = 1 and s = f := gf—zll — i’f—gi Therefore, computing the

cross-ratio, we get

Ap, = Ap, . Ap, = Aupy) _ f(Py) = f(Py) . f(Py) — fu(Py))
) — APy A — Ay JBr) = F(By) f(By)) = f(e(Py))

which, after reduction, gives

Yy v, .
ﬁ = (—Diag(Py,P5) -1 + Prod(Py,Py) - Sum
— Sum(P;, Py) - Prod + Diag)
with notations of Section 3.6. On the other hand, from Tyurin parameters, we get
(1-A%)?
4)\2
hence the result. ]
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The total space (X1 x Xo x P1) x (X x PL) is equipped with the 4 rational sections

(P1,A), (e(P1), =), <£2,§> ; <L(£2),—§> : (X1 x Xy xP}) — (X xPl)

which are globally invariant under the action of (012,0,, 0,01 /Z>. The quotient pro-
vides a projective Poincaré bundle, namely a (non trivial) P!-bundle over (IP% X IP’;\) x X
(actually, over an open set of the parameters) equipped with a universal parabolic struc-
ture. After positive elementary transformation, we get a universal P'-bundle over an
open subset of PgNR. However, we cannot lift the construction to a vector bundle be-
cause the action of < z +— —z,2 = 1 > (induced by (07, 01/z)) does not lift to a linear
GLa-action (indeed, (Bi ?) and (91 (1)) do not commute). This is the reason why there
is no Poincaré bundle for ]P’3NR, but only a projective version of it. The ambiguity is
killed-out if we do not take oy, into account, meaning that we choose one of the two
h-invariants Tyurin subbundles: we then obtain Bolognesi’s Poincaré bundle mentioned
in Section 4.2, which here is explicitely given as follows. Consider the vector bundle

£ =p"(Ox(Kx)) ®elmy, ; o« (X1 x Xy x P!) x (X x C?))
over (X1 x Xo x P1) x X, where 61 : p=p1, d2: p=1(p1), 63:p = p2, 04 :p = t(pa) if

p denotes the projection from X; x Xo x P! x X to X and p; the projection to X;; and
the parabolic structure over these divisors is given respectively by

(317327>‘7£1= (T))v (217£2=>‘7L(21)7 (?)), (21,22,)\,22, (i))v (21=227)‘=L(£2)7 (JA))-

This vector bundle is clearly invariant for the action

’B) (BQ,BD%)P’Z)
(BlaBZa)‘aPa Z) o (LP1), 1(Pa), =\, P, Z)

7

7 <<£1, U(Py),iA, P, (f i) Z) :

i.e. €~ o*& for each o € (012,0,,0:.). The quotient (in the sense of [9]) thus defines
a universal vector bundle £ — X x B with trivial determinant bundle parametrized by
the 2-cover B = (X7 x X3 x ]P)l)/<012,0'ugiz> = P2, x P} of an open set of Myg.

5. FLAT PARABOLIC VECTOR BUNDLES OVER THE QUOTIENT X /¢

The aim of this section is to completely describe the space Bun(X/¢) of flat parabolic
vector bundles over the quotient X/i. It can be covered by 3-dimensional projective
charts patched together by birational transition maps. Our main focus will lay on the
Bertram chart P% (see Section 4.2). We will see that this chart has a particularly rich
geometry (see Figure 3). Precisely, there is a natural embedding X /v < IP’% as a twisted

cubic and ¢|PSB : P% C Bun(X/1) 21 PBun(X) is defined by the linear system of quadrics

passing through the 6 conic points of X/t. The Galois involution T : Bun(X/1) —
Bun(X/.) of ¢ is defined by elementary transformations: T = Op1 (—3) ® elm;,. After

restriction to the chart P%, it is known as Geiser involution (see Dolgachev [17]); its
decomposition as sequence of blow-up and contraction directly follows from the study
of wall-crossing phenomena when weights varry inside % < p < %. In this picture,
unipotent bundles come from the parabolic bundles parametrized by the cubic X/¢, and

twisted unipotent bundles come from the 15 lines passing through 2 among 6 points. The
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Gunning planes with even theta-characteristic come from the 20 planes passing through
3 among 6 points, while odd Gunning planes come form the 6 conic points of X /¢, that
are indeterminacy points for ¢|]P>SB . Finally, the Kummer surface lifts as the dual Weddle
surface (another quartic birational model of Kum(X)). These results are summarized in
the Figure 3.

X left cubic

(unipotent bundles)

Gunning plane

twists of unipotent bundles

) T conic singularity of the

\/ dual Weddle surface

FIGURE 3. Special bundles in the chart ]P’%.

5.1. Flatness criterion. Consider the data (E, vV, B) where

e E is a rank 2 vector bundle over P!,
o V. E—-E® QI%M (W) is a rank 2 logarithmic connection on E with polar divisor
W = [0] + [1] + [r] + [s] + [t] + [oc] and residual eigenvalues 0 and 3 over each
pole,
over x = 0,1,7,s,t,00.
Via the Riemann-Hilbert correspondance, an equivalent data is the monodromy repre-
sentation (IP’1 \{0,1,r,s,t, oo}) — GLg with local monodromy ~ ((1) 91) at the punc-
tures. We denote by €on(X/:) the coarse moduli space of such parabolic connections
(E, Vv, p). Note that the parabolic structure p is actually determined by the connection
(E,N) o that we do not need to specify it. However, it plays a crucial role in the bundle
map.
We denote by Bun(X/i) the coarse moduli space of the parabolic bundles (E, 2)
subjacent to some irreducible parabolic connection (E, v, B)' We note that, from Fuchs
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relations, we get that
deg(E) = —3 forany (E,p) € Bun(X/.).
Following [13, 2], we have the complete characterization of flat parabolic bundles:

Proposition 5.1. Given a parabolic bundle (E, 2) like above, there exists a connection
Y compatible with the parabolic structure like above if and only if deg (E) = —3 and

e cither (E, p) 1s indecomposable,

e or E = Op1 (—1) ® Op1 (—2) with 2 parabolics defined by the the fibres over the
Weierstrasspoints of the line subbundle Op1 (—1), the 4 other ones by Op1 (—2),

e or E = Op1 @ Op1 (—3) with all parabolics defined by Op1 (—3).

Moreover, in each case, one can choose YV irreducible.

Proof. We refer to the proof of Proposition 3 in [2] to show that indecomposable parabolic
bundles are flat: this part of their proof does not use genericity of eigenvalues. In the
decomposable case, £ = L1 ® Ly and parabolics are distributed along L; and Ls giving
a decomposition W = D1 + Ds. If it exists, a connection V writes in matrix form

Vi 012
v = ,
= (92,1 V2>

oV, : L, - L;® Qﬂln (D;) is a logarithmic connection with eigenvalues % for
i=1,2;
0 0;;:Li—>L;® Q]%Dl (D;) is a morphism for i # j.
Fuchs relation for E gives deg (E) = —3, and for V;, gives

where

—2deg (L;) = number of parabolics lying on L;.

It follows that the only flat decomposable parabolic bundles are those listed in the
statement. Now we note that connections V; exist and are uniquely determined by
above conditions. Setting 6; ; = 0, we get a (totally reducible) parabolic connection V
on (E,p). In all cases, §; ; are morphisms Op1 (n) — Op1 (n + 1) for some n and live in
a 2-dimensional vector space. We claim that

e V is reducible if, and only if, one of the 6; ; = 0,

e V is totally reducible if, and only if, all 8; ; = 0.
Indeed, if a line bundle L — E is V-invariant, then Fuchs relation for V| gives the
following possible cases:

e deg (L) = —3 and L contains all parabolics;

e deg (L) = —2 and L contains 4 parabolics;

e deg (L) = —1 and L contains 2 parabolics;

e deg (L) =0 and L contains no parabolics.

This forces L to be one of direct summands of the decomposable cases above. For
instance, when deg (L) = —3, either L — Op1 @ Op1 (—3) and must coincide with the
second direct summand (since both must contain all parabolics), or L — Opi (—1) @
Op1 (—2) but then L intersects the first direct summand at only one point and thus
cannot share the 2 parabolics on Op: (—1). O

It follows from Proposition 5.1 above that the only flat decomposable parabolic
bundles are
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o £ = Op (—1)®Op1 (—2) with 2 parabolics defined by Op1 (—1), the 4 other ones
by Op1 (—2), and
e E = 0Op @ Op: (—3) with all parabolics defined by Op: (—3).
For each such bundle (E, E), the space of connections is (sz X (sz (the 0; ; are those
defined in the proof of Proposition 5.1) where {0} x C? and C? x {0} stand for reducible

connections and {0} x {0} for the unique totally reducible one. The automorphism group
of (E, 2) is C* acting as follows:

C* x C* = C*; (\ (ag,a1,b0,b1)) = (Aag, Aa1, \"tbo, A 1by) .

The GIT quotient is the affine threefold xy = zw where x = aga1, y = bob1, z = aghy
and w = a1bg; the singular point x = y = z = w = 0 stands for reducible connections.

(+4)
]P)(Egenerz’,c)
l (+4
X f } t t t t

s W Weo

Wo w1 Wy w.
/ Ch,n;%] o 7'['* \
(+5)

AN || (+1)

<>
(+1) elmy (-1)
(+5) ITNY |
U — -t P!

01 r» s t oo 0 1 r s t o

FIGURE 4. A generic stable bundle on X.

5.2. Dictionary: how special bundles on X occur as special bundles on X/..
Let us recall the construction of the map ¢ : Bun(X /1) — Bun(X) (see Sections 2.2 and
2.2.1). Given a flat parabolic bundle (E,p) in Bun(X/¢), we lift it up to the curve X
as m(E,p) = (E,p), then apply elementary transformations (E,p) := elm*vf,(E, D) over
the Weierstrass points and get a determinant-free vector bundle F over X, an element
of Bun(X). Conversely, given a generic bundle E on X, say stable and off the Gunning
planes, then it has exactly two (-invariant anti-canonical subbundles Ox (-Kx) — E
(see Corollary 4.4); consider the parabolic structure p defined by the fibres over the
Weierstrass points of one of them L C E. Then after applying elementary transfor-
mations over the Weiertrass points (E,p) := elmy, (E,p), we get the lift of a unique
parabolic bundle (E,p) on X/i; precisely, E = Ox (—-Kx) ® Ox (—2Kx) and E =
Op1 (—1) @ Op1 (—2). The two anti-canonical subbundles L, L’ C E, being t-invariant,
descend as two subbundles of (E,p); one easily checks that they are the destabilizing
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bundle L = Op1 (1) C E =~ Op1 (—=1) x Op1 (—2) and the unique L' ~ Op1 (—4) C E
containing all parabolics p.

(+2)
P(E)
| (+4)
X f f f f f

| || (-1) (+1)

(+5)
(+1) elmm (-1)
Pl \\c)_J/()—(+3>
P! —————— + — P!
0 1 r s 00 0 1 r» s t oo

FIGURE 5. A stable bundle belonging to the odd Gunning plane IIj,,).

In Figure 4, we can see the projectivized total space of the parabolic bundle as-
sociated to F (a ruled surface), and its two preimages E and E' in Bun(X/t). The
anti-canonical subbundles L and L’ of E, and the corresponding subbundles of E and
E’, are the blue and red curves (sections) on the ruled surfaces. We can see the self-
intersection of the curves in each case. Parabolics are just points in Weierstrass fibers;
those corresponding to p and p (defined by the blue curve L up-side) are the red ones
and those corresponding to p’ and p’ (defined by the red curve L’ up-side) are the blue
ones. The intersection of the two curves determines (in each ruled surface) the Tyurin
divisor DL. The Galois involution of ¢ : Bun(X/:) — Bun(X) permutes the roles of L
and L’; down-side, the elementary transformation permutes the role of the two curves.
The special case drawn in figure 5.2 where one of the two +4-curves is reducible, we
obtain a stable bundle on an odd Gunning plane. Another special case, drawn in figure
5.2 arises when PE possesses an invariant (but not anti-canonical) +2-curve (drawn here
in green) containing three parabolics of each type (red and blue). This configuration
corresponds to a stable bundle on an even Gunning plane.

We now list the parabolic bundles of Bun(X/.) giving rise to special bundles of
PBun(X) and illustrate on pictures the corresponding configurations of curves and points
on the ruled surfaces.

5.2.1. Generic decomposable bundles. Let E = Lo@ Ly ", where Lo = O ([P] + [Q] — Kx)
is not 2-torsion: L% # (Ox. Assume also, for simplicity, that neither P, nor @ is
a Weierstrass point. Recall (see Section 4.1.2) that, up to automorphism, there is a
unique parabolic structure p which is defined by the line subbundle associated to any
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FIGURE 6. A stable bundle belonging to the even Gunning plane IIj, | u,]
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embedding Ox (—Kx) < E. On the projective bundle PE, there are two sections
00,0 : X — PE coming from the two direct summands Lo and L ! respectively, both
having 0 self-intersection. They are permuted by the involution ¢ : X — X. On the
other hand, the anticanonical embedding defines a section o : X — PFE intersecting og at
[P]+[Q] and 0 at [t(P)]+[c(Q)]. One can view PE as the fiber-wise compactification of
Ox ([P] + [Q] — [¢(P)] — [¢(Q)]) with o as the zero section and 0 as the compactifying
section; then o is a rational section with divisor [P] + [Q] — [¢(P)] — [¢(Q)].

For the corresponding parabolic bundle (E,p), the anticanonical embedding de-
scends as the destabilizing subbundle Op1 (—=1) < E = Op1 (—1) @ Op1 (—=2). On the
other hand, oy and o4, being permuted by the involution ¢, descend as a 2-section
I' C P(E), thus intersecting a generic member of the ruling twice. Moreover, I" intersects
twice the section o_1 : P! — P(E) defined by the destabilizing bundle Op1 (—1) < E,
namely at m(P) and 7(Q) (where 7 : X — P! = X/i is the hyperelliptic projection).
The restriction of the ruling projection P(E) — P! to the curve I':

I - P! (= X/

is a 2 : 1-cover branching precisely over the branching divisor W of 7 : X — P! (orbifold
points of X /). The parabolic structure p is precisely located at the double points of
I' C P(E) over W.

Conversely, a parabolic structure p on £ = Op1 (—1) @ Op1 (—2) gives rise to a
decomposable bundle FE if, and only if, there is a smooth curve I' C P(E) belonging to
the linear system defined by [2[o_1] + 4[f]| (with f any fiber of the ruling and o_; the
negative section as before) such that I' passes through all 6 parabolic points p and is
moreover vertical at these points (i.e. tangent to the ruling). B
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FIGURE 7. A generic decomposable bundle on X.

5.2.2. The trivial bundle and its 15 twists. Up to automorphism, the trivial bundle Ey =
Ox @ Ox has a unique parabolic structure p, which is defined by any line subbundle
Ox < Ep. Descending to P!, we get the decomposable bundle Ey = Op1 ®Op1 (—3) with
parabolic structure p defined by any line subbundle Op1 (—3) < E,. Note that (EO, 2)
is a fixed point of the Galois involution Opi(—3) ® elm;rv. Similarly, E; = 7 ® Ey with
7 = Ox ([w;] — [wj]) a 2-torsion line bundle, comes from the decomposable parabolic
bundle £ = Op1 (—1) @ Op1 (—2) having parabolics p; and p; lying in the first direct
summand, the other ones in the second. o

These 16 parabolic bundles are exactly the flat decomposable bundles listed in
Proposition 5.1.

(0) (0)
P(Ox & Ox) P(Ox([w] = [wi]) © (Ox © Ox))
l S O N © l T 9T 91 ©
X S R A
Rl o 7° feim* o 7°
I Y [ ) L (-1)
P(Op @ Opi(=3)) P(Opi(—1) & Op(—2))
l (+3) l (+1)
P! Pl

0 1 r s t oo 0 1 r» s t oo

FIGURE 8. The trivial bundle over X and one of its twists.

5.2.3. The unipotent family and its 15 twists. A generic non trivial extension 0 — Ox —
FE — Ox — 0 has two hyperelliptic parabolic structures:

e p defined by some embedding Ox (—Kx) < F (unique up to bundle automor-
phism);
e p’ defined by the destabilizing bundle Ox < FE.
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They respectively descend to elements of

e A={(E,p); E=0Op (~1)® Op1 (—-2) and p C Op: (=3) C E};
) AI = {(E/’p,) ; E/ = O]pl D O]pl (—3) and B, - O]pl (—4) C E/}

The study of non-trivial extensions 0 = 7 — F — 7 — 0 where 7 = Ox ([w;] — [wj])
is a 2-torsion line bundle, can be deduced from the study of the corresponding unipotent

bundles 7® E by applying Op1 (—1) ®elm[‘;_] +w,) OB FE or, equivalently, by interchanging
i j

on 7 ® E the parabolic directions p; and p; with p; and p; respectively. We get a
1-parameter family A;; naturally parametrized by X/.. There are two hyperelliptic
parabolic structures for such a bundle E:

e p with parabolics p; and p; on Ox < E and the others outside;
e p’ with parabolics p; and p; outside Ox — E and the others on it.

They respectively descend as elements of

e A i={(E,p); E=0Op1(-1)®Op1 (—2) and p C Op1 (=2), Vk # i, j};
. é;j = {(E’,Q’) i B = Op1 (—1) ® Op1 (—2) and &/,&/ C Op (—1)}.

Again, O (-3) ® elm& point-wise permutes A, ; and é;,j'

)

HD(-Eiinipotent) <+4)
t i i i i v

Wy Wy W, Ws W Wso

Jn *
/ leVV o \

(+3) (+5)
1 L1/ L 1 (-3)
-
— (+1) elmyy (+3)
P! - P!
0 1 r s t o 0 1 r»r s t o

FIGURE 9. A unipotent bundle over X.
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FiGURE 10. Twist of a unipotent bundle over X.

Denote by A the l-parameter family of unipotent bundles in Bun (X) and by
A and A’ its respective preimages on Bun(X/t). Both of these families are natu-
rally parametrized by our base X/i: the extension class of F € A is characterized
by the intersection locus of the two special subbundles Ox (-Kx),Ox < E, an el-
ement of |Ox (Kx)| ~ |Op1 (1)|. Conversely, the intersection locus of two subbun-
dles Op1 (—=1),0p1 (=2) < E, respectively Op1,Op1 (—4) — E’, defines an element of
|Op1 (1) |. This unambiguously defines isomorphisms A ~ A ~ A’, the latter one being
induced by O (—3) ® elm;},. Remind (see [41]) that, despite the point-wise identification
just mentioned, any point of A is arbitrary close to any point of A’ in the sense that
they can be simultaneously approximated by some deformation of stable parabolic bun-
dles. This will give rise to a flop phenomenon when we will compare certain semi-stable
projective charts. The same phenomenon occurs for twisted unipotent bundles.

5.2.4. Affine bundles. Affine bundles cannot occur from elements in Bun (X/¢) since
they are not invariant under the hyperelliptic involution.

5.2.5. The 6 + 10 Gunning bundles and Gunning planes. We now list how arise the
unique non trivial extensions 0 — Ox (9) - E — Ox (=) — 0 where ¥ runs over the
16 theta characteristics 92 = Kx.
Six odd theta characteristics. For odd theta characteristics ¥ = [w;] (lying on

the divisor ©) the two hyperelliptic parabolic structures are:

e p with parabolic p; in Ox (¢¥) < E and the others outside;

e p/ with all parabolics in Ox () < E except p;.
They respectively descend as

e Q;: E=0m (—1) @ Op1 (—2) and P C Op1 (—2), Yk # i;
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¢ Qi: E'=0Op & Op1 (—3) and pi’ C Op1.
Analogously, the Gunning plane Ily descends as

o I, = {(E,E) i £ = Op1 (1) ® Op1 (=2) and p; C Op (—1)};
o I'={(E,p); E'=Op (1) ® Op1 (~2) and p/ C Op1 (=3), Vk #i}.

Ten even theta characteristics. Somehow different is the case of even theta
characteristics ¥ = [w;] + [w;] — [wg]. Denote by W = {4,5,k} U {l,m,n}. The two
hyperelliptic parabolic structures are:

e p with parabolics p;, p; and py in Ox (¥) < E and the others outside;
e p’ with parabolics p;, p,, and p, in Ox (¢) < E and the others outside.

They respectively descend as elements of

® Qijr: E=0p (—1)® Op1 (—2) and py, pm;pn C Opr (—1);

® Qumn: E'=0Op1 (1) & Op: (—2) and &’,&’,@’ C Op1 (—1).
The corresponding Gunning planes descend to

oIl )= {(E,E) ; E=0p1 (—1) @ Op1 (—2) and pi>pj, Pk C Opt (—=2) C E};
oI, ={(E.p); E' =Op (—1) @ Op1 (=2) and p/, pn/,pi/ C Op1 (—=2) C E'}.

(+4)
(-2)
]P)(E[’woo])
X wlo ui)1 Ui}r Ui)S 1iut
/ clmﬁ;ow* \
| (+1)
e (tD) < »
elmy
] 5
P! : P!
0 1 r s t o 0 1 r»r s t o©

F1GURE 11. An odd Gunning bundle over X.
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FIGURE 12. An even Gunning bundle over X.

5.3. Semi-stable bundles and projective charts. The coarse moduli space Bun™?(X /1)
of rank 2 indecomposable parabolic bundles (E,p) over P! = X/u is studied in [2, 41].

From the previous section, Bun(X/¢) \ Bun™?(X /1) only consists of 16 bundles, that
correspond to the trivial bundle and its 15 twists on X (see Section 5.2.2). It turns
out that a parabolic bundle (E, 2) is indecomposable if, and only if, it is stable for a

good choice of weights p = (1o, i1, fr, fhs, Hit, foo) € [0, 1] (see [41]). One can thus cover
the moduli space Bun¥(X/1) by projective charts Buny;(X/¢) for a finite collection

of weights, giving Bun?(X /1) a structure of non separated scheme. In this context,
two parabolic bundles (E, 2) and (E’ ,2’ ) are said to be arbitrarily close if there are

families <Et,pt) " and <E£,p£) " such that (Et,pt> ~ (EQ,pQ) for each t # 0
~t) e =t/ e = =

but <E0’£0) ~ (E,}_r)) and (Ef),gg) ~ (EI,B)' If two parabolic bundles over P! are
arbitrarily close then of course the corresponding vector bundles over X are arbitrarily
close in the sense of Section 3.5. By the way, Bun™?(X /i) can be covered by charts

isomorphic to (Pl)g (see [2]) or P? (see [41]). We provide a finite set of charts covering
PBun(X /). We use two types of charts whose main representatives we now present:

5.3.1. The chart PL x PL x PL. The first one (see [2] and [41] section 3.4) is given by
weights of the form

1
Iu,(]:'ulzluoozi and MT://JS:,U’t:O

and is isomorphic to IP}% X ]P’ls X IF’%. Precisely, p-stable bundles (E, 2) are given by
E = Opi (-1) ® Op1 (—2) with p,,p,,p_ outside of Op1 (—1) C E and not all three
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of them contained in the same Op1 (—2) < E. Within the 2-parameter family of line
subbundles isomorphic to Op1 (—2) we can choose one containing at least py and peo
say, and then choose meromorphic sections e; and ey of Op1 (—1) and Op1 (—2) (whose
divisor is supported at x = oo) such that the parabolic structure is normalized to

p, = Aiertey with (Ao, A1, Aso) = (0,1,0) and (A, As, Ar) = (R, S,T) € PR xPgx Py,
To compare to the point of view of [2], note that
OIP’l (1) & elm;ro (E’ B) = (E6’Bl)

is the trivial bundle Ef, = Op1 ® Op1 equipped with a parabolic structure having po’s p1’
and p;.o' pairwise disctinct (with respect to the trivialization of the bundle). From this
chart, we can compute the two-fold cover ¢ : Bun(X /1) — Bun(X).

Proposition 5.2. The classifying map IP’}% X IP’}g X IP)%F -—> IP)%R is explicitely given by
(R,S,T) — (vg : vy : vy : v3) where
vo = 2?2 —1)(s—t)R—r*2(s>2 = 1)(r —t)S + s?r2(t?> — 1)(r — s)T+
+t2(t — 1)(r? = $?)RS — s%(s — 1)(r?2 = tH)RT +r%(r — 1)(s®> — t2)ST

vy = rstf((r—=1)(s—t)R—(s—1)(r—t)S+(t—1)(r—s)T+
+(t—=1)(r—s)RS—(s—1)(r —t)RT + (r — 1)(s — t)ST]
vg = —st(r?=1)(s —t)R+rt(s®> = 1)(r —t)S —rs(t®> — 1)(r — s)T—
—t(t —1)(r? — s®>)RS + s(s — 1)(r?> = t>)RT — r(r — 1)(s®> — t?)ST
vy = stir—1)(s—t)R—rt(s—1)(r—t)S+sr(t—1)(r —s)T+
+t(t —1)(r —s)RS —s(s —1)(r —t)RT +r(r — 1)(s — t)ST
This map is generically (2 : 1) with indeterminacy points
(R,S,T)=(0,0,0), (1,1,1), (oc0,00,00) and (r,s,t).
The Galois involution (R, S,T) — (E, S, T) of this covering map is given by
E — )\(R, S, T) . (S*t)Jr(t*l)S*(S*l)T

—t(s—1)S+s(t—1)T+(s—t)ST

~ r—t)+(t—1)R—(r—1)T
S=AR,ST)- —t(7(*—1))R—|(—r(t—)1)T(-l—(r—)t)RT

T r—s)+(s—1)R—(r—1)S
T= )‘(Rv Sv T) : —s(gfl)RJgr(sfl)S(Jr(rfs)RS

t(r—s)RS—s(r—t)RT+r(s—t)ST
where  A(R,S,T) = ( (s)—t)R—((r—t))S+(r—(s)T) .

The ramification locus is over the Kummer surface; its lift on IP)};z X IP’}g X IP’% s given by
the equation
(s—t) R+ (t—1)S+ (r—s)T)RST
+t((r—1)S—(s—1)R)RS+r((s—1)T — (t —1)S)ST + s((t —1)R — (r — 1)T)RT
—t(r—s)RS —r(s—t)ST — s(t —r)RT = 0.

Proof. For computations, we work with the parabolic bundle
(Eo, p) = Opi (1) ® elm, (E, p)

where Ej = Op1 ® Op1 is the trivial bundle, generated by sections €} and €5, and p’ is
the parabolic structure defined by

P, = Xih+eh with (Ao, A1, Ase) = (0,1,00) and (A, As, Ar) = (R, S, T) € PRpxPgxPr.
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Let now E be the vector bundle over X obtained by
E = el (v (E,p)) = el (7* (O (~1) @ elmp (EG,p))) 5
this can be rewritten as
E = Ox (-3[we)) ® elmfy (° (Eh,p)) = Ox (—3wnc]) ® elrniyy (Fo, 7°p)

where Ej is the trivial vector bundle on X.

In order to calculate the classifying map, we need to make the Narasimhan-Ramanan
divisor D explicit in our coordinates. We may assume that F is generic (i.e. stable),
so that Dg precisely describes the 1-parameter family of degree —1 line bundles L C
E. After applying Ox (—3[o¢]) ® elm;,rv, we get the family of degree —4 subbundles
L' C Ey (the trivial bundle over X) containing all 6 parabolics p’. Precisely, if L =
Ox (Jweo] = [P1] — [P]), then L' = Ox (—3[wse]) ® L = Ox (—2[wee] — [P1] — [P2]). In
other words, the Narasimhan-Ramanan divisor Dp C Pic!(X) is directly given by the 1-
parameter family of points { Py, P>} such that there is a line subbundle L = Ox (—[P;] —
[P3] — 2[o0]) < Ej coinciding with the parabolic structure over W. Let o = (07,02) :
X — C? be a meromorphic section of L with divisor —[Py] — [P] — 2[co] with P; =
(wi,yi) eX,i=12

<U1> _ <a+5$+7(i}_—iﬁ - i/_—zi)>
ep) 6 +ex + (= — yzizy )0

T—x1 T—x2

After normalizing o = 1, there is a unique choice of 3,7, 9, e, € C such that

70,01 (). 2.0 1 (1) o001 (T) 001 (7). ot 1)

The condition o(t,0) || ({) depends now only on the choice of { P, P»} and writes (after
convenient reduction)

vo-1+wv- Sum(Pl,Pg) + vo - P’I“Od(Pl,PQ) + v - Diag(Pl,Pg) =0

with v; as given in the proposition.
One can easily deduce that a generic point (vg : vy : v2 : v3) € Mg has precisely
two preimages in IP’}% X IP’}g X IP’% :

R — r(t—1)(vo+rvi—r(s+t+st)vs)T
= t(r—1)(vo+tvi —t(r+s+rs)vz)—(r—t)(vo+vi—o2v3)T

S — s(t—1)(vo+svi —s(r+t+rt)vs)T
= t(s—1)(vo+tvi—t(r+s+rs)vs)—(s—t)(vo+vi—o2v3)T’

where T is any solution of aT? 4 btT + ct? = 0 with

a = (v +vat+vst?)(vg + v — o2v3)

b = —(1+t)(vovy +v3 + tvrvz) — 2(vovy + tvguz + tvyva)
+09(tvr + vy + tvs)vs + (r + s + 1rs)(v1 + t2vg + t2v3)vs

c = (vi+wve+v3)(vg+tvy —t(r+s+rs)vs).

The discriminant of this polynomial leads again to our equation of the Kummer surface
in the coordinates (vg : v1 : v : v3) given in Section 3.6. We can easily calculate the
Galois involution of the classifying map P} x PL x PL --» P3. Its fixed points provide
the equation in coordinates (R, S, T) of the lift of the Kummer surface. O
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5.3.2. The chart Py. The other chart (namely the main chart Pj of [41]) is defined by

democratic weights

1
E<N0:N1:/‘r:/‘s:ﬂt:/‘w<1
and corresponds to the moduli space of the indecomposable parabolic structures on
E := Op1 (—1) ® Op1 (—2) having no parabolic in the total space of Op1 (—1). Parabolic

bundles belonging to this chart are exactly those given by extensions
0= (Op1 (=1),0) = (E,p) — (Op1 (=2) , W) = 0
i.e. elements of PH!' (P!, Hom(Op1 (—2) ® Op1 (W), Op1 (—1))), which by Serre duality,

identifies to PH° (Pl, Op1 (-1)® Ql%ﬂ (E))V After lifting them on X — P!, applying
elementary transformations and forgetting the parabolic structure, we precisely get those
extensions
0—->0(-Kx) > E—->0(Kx)—0

i.e. by those points of P4 = PH° (X,Ox (3Kx))", that are t-invariant. Thus, the
projective chart Pg of [41] naturally identifies with IP’% introduced by Bertram (see Section
4.2). From this point of view, we have natural projective coordinates b = (bg : by : by :
dz )@3

b3), dual to the coordinates of t-invariant cubic forms (ao + a1z + asz® + agaz?’) < ”

After computation, we get

Proposition 5.3. The natural birational map IP’3 -— IP’l X IP’l X IP)%F s given by

R = b3 (S+t+1)b2+(st+8+t)b1 —stbg
- bs—o1ba+02b1 —o3bg

. . . bg*(?‘+t+1)bg+(rt+r+t)b1 rtbg
(bo : b1 : b2 : bg) — S S b3 —o1batozbi—oabo

T — tbgf(r+s+1)b2+(rs+r+s)b17rsb0
- bz—o1b2+02b1—03bo

The inverse map is given by (R,S,T) + (bg : b1 : by : bg) with

(b0 = o 1>§~_rs><r 7t s 1)“(1_% 7+ TN
O VI amry Bl ey ey Ml o e oy
b = e e T T
by = (rfl)(:i}z)(rft) T 1)(325)(3 0t 1)(§2Tr)(t 5~ =D

\

This will be proved in Section 7.2, using Higgs fields. The geometry of this birational
map is explained in section 5.4.1 and summarized in Figure 13.
Combination of the Propositions 5.3 and 5.2 yields

Corollary 5.4. The natural map P3 --+ ]P’?VR s given by
vo = babg — (1+01)b3 + (01 + 02)biby — (02 4 03)bobz + T3bob1

. . . 1 = b% B b1b3
(bo :by by bg) — vy = bobs — b1by
v3 = b% — boba

Moreover, the (dual) Weddle surface, i.e. the lift to P3B of the Kummer equation, writes
(—bobob? + b3b3 + b1b3bs — b3) 4 (14 01) (bob3bs — 2b3bobs + b1b3) + (01 + 072) (—bob3 + b3bs)
+(02 + 03)(—bobibs + 2bob1b3 — biba) + o3(b3b1bs — bEb3 — bobibs + b7) = 0.
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This Corollary has to be compared to Section 4.2. Indeed, the components of the
map IP’% -— IP%R exactly correspond to the restriction to IP% of the natural quadratic
forms on I[”j%3 vanishing along the embedding

X o Ph: (z,y)— (bg:by by :bg:by)=(1:z:a?:2°:y).
Indeed, the first one is the restriction of
b2 — (babs — (1 + 01)b2 + (01 + 02)b1by — (02 + 03)boba + o3bob1)
which vanishes along X — I[”j%3 from
Y =z(@—1)(z—r)(z—s)(z—t)=2"— (1+01)z* + (01 + 02)2> — (02 + 03)2% + 032.
The other 3 quadratic forms just come from the following equalities on X
bobo = b2 = 2%, bobg = biby = 2® and bib3 = b3 =zt

It is quite surprising that the most natural basis both appearing from Bertram point
of view, and Narasimhan-Ramanan point of view, are so compatible. They provide the
same system of coordinate on IP’3NR which is however not considered in the classical theory
of Kummer surfaces (see [34, 26]).

In Section 5.4 we provide four other charts, also with democratic weights, by varying
w in [0,1]. This has the advantage, with respect to an arbitrary choice of a covering of
Bun(X/¢) by charts Bun;(X/¢), to make the geometry of (birational) transition maps
between charts quite clear.

5.3.3. Special bundles in the chart IP’%. Here is the list of those special parabolic bundles
of Section 5.2 that are semi-stable for % <o = p1 = My = fs = Mt = Moo < % and how
they occur as special points in the chart Pg.

Proposition 5.5. The only special bundles occuring (as semi-stable parabolic bundles)
in Bunj; (X /i) = P} are generic bundles of the following families
e Unipotent bundles A: this 1-parameter family corresponds to the twisted cubic
parametrized by

X/ii—P oz (1:z:2?: 2.

e Odd Gunning bundles Q;: they are the 6 special points of the previous em-
bedding X /v — IP’%, namely Q; is the image of the Weierstrass point wj.
twisted unipotent bundles A, ;: lines of IP’% passing through @Q; and Q;.
even Gunning planes II, ; ;.- planes of ]P’g passing through Q;, Q; and Q.
odd Gunning planes IT}: the quadric surface of IF’?,; with a conic singular point
at Q; that contains the 5 lines A; ; and the cubic A.

Proof. 1t is easy to check which special parabolic bundles are semi-stable or not. For
instance, the trivial bundle Ejy descends as the vector bundle E, = Op1 @ Op1 (—3)
equipped with the decomposable parabolic structure p defined by the fibres of the line
subbundle Op1 (—3) — E; (see Section 5.2.2); then Op: is destabilizing.

Once this has been done, for each family occuring in Pj, we already know from
Section 5.2 where they are sent on ]P’3NR, we known the corresponding explicit equations
from Section 3.6 and we can deduce equations on IP’% by using explicit formula from
Corollary 5.4. O
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FIGURE 13. Geometry of the natural birational map IP’% -— IP’}% X IP’}g X IP)%F.
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Remark 5.6. The proposition above is stated only for generic bundles of each type.
Indeed, only an open set of the family & of unipotent bundles occurs in Bunff(X/L) = Pg,
namely the complement of Weierstrass points (which are replaced by Gunning bundles
Q;). One can easily check that this is the only obstruction for the proposition to hold for
all bundles of the respective families.

The preimage of the Kummer surface Kum (X) in the chart P} is nothing but the
dual Weddle surface Wed (X'), another birational model of Kum (X): it is also a quartic
surface, but with only 6 nodes (see [34, 26]). Precisely, the 16 singular points of Kum (X)
are blown-up and replaced by the lines A, ;; the 6 Gunning planes II; are contracted
onto the points );, giving rise to new conic points. In particular, all 16 quasi-unipotent
families A and A, ; are contained in Wed.

Actually, the map ¢ : IP’% -— IP)%R is defined by the linear sytem of quadrics passing
through the 6 points @);; indeed, for a general plane II € P3NR, ¢*I1 must intersect each
contracted II;. We thus recover the quadric system in [17], §4.6. Those II tangent to
Kum (X) have a singular lift II; when II runs over the tangent planes of Kum (X), the
singular point of II runs over the Weddle surface.

Remark 5.7. The complement of the (dual) Weddle surface covers the open set of stable
bundles in IP’:)]{IR

¢
Py \ Wed (X) — Pig \ Kum (X).
However, this is not a covering since over odd Gunning planes, only II; occurs in IP’%.

5.4. Moving weights and wall-crossing phenomena. For a generic weight p, semi-
stable bundles are automatically stable; in this case, the moduli space Buny (X/¢) is
projective, smooth and a geometric quotient. The special weights u, for which some
bundles are strictly semi-stable, form a finite collection of affine planes in the weight-
space [0,1]° > p called walls. They cut-out [0,1]% into finitely many chambers: the
connected components of the complement of walls. Along walls, the moduli space is
no more a geometric quotient, but a categorical quotient, identifying some semi-stable
bundles together to get a (Hausdorff) projective manifold, which might be singular in
this case; outside of the strictly semi-stable locus, Bunj(X/:) is still smooth and a
geometric quotient. The moduli space Bunj;’(X/¢) is constant in a given chamber; if not
empty, it has the right dimension 3 and contains as an open set the geometric quotient of
those bundles (E, p) with £ = Op1 (—1) ® Op:1 (—2) and parabolics p in general position:

e no parabolic in Op:1 (—1) — E,
e 1o 3 parabolics in the same Op:1 (—2) — E,
e 1o 5 parabolics in the same Op:1 (—3) — E.

Between (non empty!) moduli spaces in any two chambers, we get a natural birational
map

can : Buny; (X/1) -5 Buny; (X/¢)

arising from the identification of the generic bundles occuring in both of them. The
indeterminacy locus comes from those special parabolic bundles that are stable for u
but not for p’ and vice-versa; this configuration occurs each time we cross a wall. The
moduli space Bun?(X /1) of indecomposable bundles can be covered by a finite collec-
tion of such moduli spaces, by choosing one p in each non empty chamber; therefore,
%uni"d(X /t) can be constructed by patching together these moduli spaces by means of
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Possible configuration | (k,m,¢) Walls
A = —p+2 (=5,0,0), (5,3,3)

AN = —u+l (=3,0,0), (—1,1,1), (1,2,2), (3,3.,3)

A = —u+z (=1,0,0), (1,3,3)

A= “3u+1 (—1,0,1), (1,3,2) ©)
AN = —3u+3 (=3,0,1), (3,3,2)

A = —2pu+1 (-3,1,0), (3,2,3)

A = —sp+sz (-1,1,0), (1,2,3)

X = 3u—1 (—1,0,2), (1,3,1) ®)
A = u+z (-1,2,0), (1,1,3)

A = p+i (-1,3,0), (1,0,3)

A = p—x (—-1,0,3), (1,3,0) ©)

Table 5: Possible wall-configurations for weights of the form p = (p, 1, A, A\, A, ).

canonical maps along the open set of common bundles. This gives %unmd(X /L) a struc-
ture of smooth non separated scheme. However, in our case, we have also decomposable
flat bundles that are not taken into account in this picture. For instance the preimage
(Ey, p°) := ¢~ 1(Ey) of the trivial bundle on X (see Section 5.2.2), being decomposable,
can only arise as a singular point in semi-stable projective charts Buny; (X/1). Indeed,
if the bundle E; = Op1 & Op1 (—3) equipped with the decomposable parabolic structure
p defined by the fibres of Op1 (—3) — E, is semi-stable for some choice of weights
w1, then all other parabolic structures p on L, with no parabolics in the total space
of Op1 C E, are also semi-stable and arbitrarily close to p’; they are represented by
the same point in the Hausdorff quotient Bunj;(X/+). One can check that this point is
necessarily singular.

5.4.1. Wall-crossing between our two main charts. If we want to understand the ge-
ometry of the birational map P% --» ]P’};z X IP’}g x PL explicitly given in proposition
5.3 we have to consider a path in Bun”¢(X/:) linking the corresponding chambers
and the wall-crossing phenomena along this path. Since IP% corresponds to the Weight
n= (%, %, é, é, é, %) and IP’}% X IP’}g X IP’% corresponds to the weight u = (;, %,0 0,0, )
a possibility to do so consists in considering the walls between chambers of the form
o= (g, A, A A ) with A\, € [0,1]. A projective parabolic bundle belongs to such
a wall if it possesses a section with self-intersection number k € 2Z + 1 containing m
parabolics over {0,1,00} and ¢ parabolics over {r,s,t} such that

0=Fk+ (3 —2m)u+ (3—20)\

for some A, u € [0,1]. Table 5.4.1 lists all possible configurations. They are visualized in
Figure 5.4.1

Following the pink line in Figure 5.4.1 means studying wall-crassing phenomena for
moduli spaces Buny(X/i) with democratic weights p = (u, p1, p, p1, p, p1).  As we see,
walls occur for p € {%, %, %, %, %} They will considered in Section 5.4.2.

First, we want to consider the crossing of the walls (1),2) and 3 in order to describe
the birational map P% --» P&, x PL x PL. The configuration (k,m,¢) = (1,3,0) is not
stable in IP’}ﬁ2 X IF’}; x PL, but (k,m,¢) = (—1,0,3) is. It corresponds to the even Gunning

bundle Ey with ¥ = [w,] + [ws] — [wy]. The point in the moduli space P x Pk x PL.
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FIGURE 14. Chambers of moduli spaces for the weights g = (1, ft, A\, \, A, p0).

corresponding to this bundle is blown up when crossing the wall () and replaced by
the corresponding Gunning plane: (k,m,¢) = (1,3,0). Passing on to wall (2), the three
lines (k,m,¢) = (—1,0,2) in the moduli space corresponding to the unipotent bundles
tensored by Ox ([wy] — [ws]) , Ox (Jws] — [we]) and Ox ([ws] — [we]) respectively are no
longer stable. Here a flop phenomenon occurs: these three lines are blown up and
the resulting planes are contacted to three lines (k,m,¢) = (1,3,1) corresponding to
the families of the same types of unipotent bundles. Passing on to wall 3), the three
planes (k,m,¢) = (—1,0,1) corresponding to the odd Gunning planes with characteristic
Y € {[w,], [ws], [wy]} are contracted and replaced by three points corresponding to the
configurations (k,m,¢) = (1,3,2): the Gunning bundles with characteristic 9.

5.4.2. Democratic weights. Let us consider in this section the family of moduli spaces
Buny; (X/1) with weights g = (u, 1, p, 1, t, 1), for p1 € [0,1]. One can easily check which
family of special bundle is semi-stable, depending on the choice of y; this is summarized
in Table 6.

For p € [0, ¢[. The moduli space Bun,;’(X/¢) is empty since Op1 (—1) is destabilizing
the generic parabolic bundle (even if it carries no parabolic).
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M 0 3

I
unipotent bundles 3
(and twists) Ayj
odd Gunning Q; 11,
bundles and planes I1; |
even Gunning planes I,

I
5

3
4
A/

7
AL

Table 6: Moving weights.

For y = . The moduli space Buny;(X/t) reduces to a single point. Indeed, it also
contains the (non flat) decomposable bundle E = Op1 (—1)®Op1 (—2) with all parabolics
p lying in the total space of Opi (—2). But the generic parabolic bundle is arbitrarily
close to this decomposable bundle so that they have to be identified in the Hausdorff
quotient Buny; (X/v).

For pi €]g, 1[. Here, we recover our chart Pj := Bun® i[(X/L) with special families A,
Aij, Qs, I} and II;;,. The natural map ¢ : Bun]sf

67
points at all 6 points Q);.

67
[(X /t) --» P35 has indeterminacy

=

For p = %. Now, odd Gunning planes II; become semi-stable, but arbitrarily close
the the corresponding point ;, so that they are identified in the quotient Bunff(X /0).
Therefore, the moduli space is still the same ]P’g but no more a geometric quotient.

For 6]%, %[ Odd Gunning bundles @Q; are no more semi-stable and are replaced by

the corresponding Gunning planes II;. The natural map
can : Bunj? ; (X/t) — Bun'{ 1 (X/¢)
]175[ ]672[

is the blow-up of IP)% at all 6 points @);, and the exceptional divisors represent the corre-
sponding planes II;. The natural map ¢ : Bunf; L [(X Jt) — ]P’%R is a morphism.

For pp = % the trivial bundle and its 15 twists become semi-stable (and just for this
special value of p). In particular, unipotent families are identified with these bundles in
the moduli space, which has the effect to contract the strict transforms of lines A;; and
the rational curve A to 16 singular points of Bunff(X /t). This moduli space is exactly
the double cover of P?ﬁIR ramified along Kum(X), therefore singular with conic points
over each singular point of Kum(X). The natural map

[(X/L) — BHHS;(X/L)

can : Bun?®}
b

1
1°2

is a minimal resolution.

For p1 €]%,3[. The families A and A;; are no more semi-stable, and are replaced by the

families A’ and Aéj. But mind that the canonical map
[(X/L) -3 Bunff 3[(X/L)
2

2

can : Bun

SSs
}1

NI

40

is not biregular: there is a flop phenomenon around each of the 16 above rational curves.

o —

Precisely, after blowing-up the 16 curves, we exactly get the resolution Bun3j®(X/¢) of

2
the previous moduli space by blowing-up the 16 conic points. Then, exceptional divisors
are ~ P! x P! and we can contract them back to rational curves by using the other
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ruling; this is the way the map can is constructed here. In particular, we get a second
minimal resolution of Buni®(X/+).
2

For i € [%, %[ Here, we finally contract the strict transforms of II; to the points Q;.

5.5. Galois and Geiser involutions. The Galois involution of the ramified cover ¢ :
Bun(X /i) 21 PBun(X)
T:=0p (-3)® elm*m :Bun(X/1) — Bun(X /1)
induces isomorphisms between moduli spaces
T : Bunj; (X/1) — Bun}; (X/¢)

where g’ is defined by ) = % — p; for all ¢. In particular, it underlines the symmetry of
our special family of moduli spaces around p = % (see Section 5.4): the Galois involution
induces a biregular involution of Bunj*(X/¢), as well as isomorphisms
2
Bunff l[(X/L) T Bunff g[(X/L) and Bunff
472 2’4

0
61

(X/1) < Bun‘fg %[(X/L).

47
Considering now the composition

Bunyf ,(X/1) 5 Buns 5 (X/1) RN Bunt 4 (X/1),

we get the (birational) Galois involution of the map ¢ : Pg -— PgNR described in Corollary
5.4. This is known as the Geiser involution (see [17], §4.6); it is a degree 7 birational
map. The combination of all wall-crossing phenomena described in Section 5.4, when p

is varying from % to %, provides a complete decomposition of this map (see Table 7):

e first blow-up 6 points (the @; along the embedding X/ — A C P}),

e flop 16 rational curves (the strict transforms of the twisted cubic A and all lines
é@]),

contract 6 planes (namely strict transforms of II; onto Q;),

then compose by the unique isomorphism sending Q; — Q;.

o —

Buni®(X/1)
A, A;; blow-up : A’ Al blow-up
ﬂfes) \
Bunt 4 X/L Bunyi 5 (X/v)
J33l 304l
N Y P
Qi blow-up | (6 points) Bunsf (X/[,) Q! blow-up
2
Bun? 1, (X/1) Bun’s 5, (X/1)
I50] gl
W

T

Table 7: Geometry of the Geiser involution.
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Remark 5.8. Even Gunning bundles Q;ji, are semi-stable if, and only if, p = 1. This is
why they do not appear in our family of moduli spaces. However, for some other choices
of weights w, they appear as stable points, and therefore smooth points of some projective
charts.

5.6. Summary: the moduli stack Bun(X). Recall from the introduction that we
have defined Bun(X/¢) as the moduli space of parabolic rank 2 vector bundles with
determinant Ox (—3) over P! that can be endowed with a logarithmic connection (with
poles over the Weierstrass points and prescribed residues). Denote by Bun(X) the set
of rank 2 vector bundles with trivial determinant over X that can be endowed with an
tracefree holomorphic connection and Bun*(X) as the complement of the affine bundles
in Bun(X). The map ¢ : Bun (X/t) — Bun® (X) defined by the "hyperelliptic lift”
elmj}, o 7* (see Section 2) is surjective. Recall further that Bun?(X/.) denotes the
set of indecomposable parabolic bundles and that its image under ¢ is precisely the
complement in Bun*(X) of the trivial bundle and its 15 twists (see Proposition 5.1 and
Section 5.2.2).

As mentioned before, [41] provides methods to choose a finite set of smooth projec-
tive charts covering the moduli space %uni"d(X /) of indecomposable parabolic bundles.
In the present paper however, we chose to present charts with particular geometrical
meaning and natural explicit coordinates. Similarly to the construction in 4.3, we can
express explicitly the universal bundle in (affine parts of) each of these charts, giving
PBun(X) the structure of a moduli stack. Table 8 references the explicit maps between
the charts given in this paper.

Prop. 7.4

X2 x P! e T > P3 = [P3, < e PL x PL % PL
( A)/<O'Lv0'12’o'iz> 1:1 b : B 1:1 R y S T
2:1 Eq. (16) 21 Cor. 5.4 21
Prop. 5.2
v v .
Prop. 4.10 z
2 1 3
]PD X ]P}\ [ R - ]PNR

Table 8: Collection of explicit formulae.

As we can easily convince ourselves with the help of our dictionary in Section 5.2,
Table 9 lists which elements of Bun(X) occur in the image under ¢ of the respective
charts. Here we use a checkmark sign (v') if every bundle of a given type can be found
in the image of this chart and no checkmark sign if no bundle of the given type can be
found in the image of this chart.

Consider the two democratic charts P§ = Bun$*(X/¢) and Bun$®*(X/¢). Their bira-

tional relation has been thoroughly described in Sec%ions 5.4 and 5.5.3According to Table

9, the union of the images under ¢ of these two charts covers the whole space Bun*(X)

minus the ten even Gunning bundles and the decomposable bundles. Moreover, the

Galois-involution Y := Op1 (—3) ® elmy, (see Section 5.5) sends Pj = Bun$®(X/:) to
- 5

T(P}) = Bun‘%s(X/L) and Bun%*(X/t) to T(P}) = Bun¥(X/:). Hence the two charts

1 2
3 3
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P}, Bun$*(X/:) and their images under T are sufficient to cover Bun®4(X/1) minus the

(pre-images of) even Gunning bundles.

Similar to the construction of our chart IP’}% X IP’}g X IP’%, we can construct charts Pil X
]P’]l x P} for any choice of three distinct elements i, j, k € {0,1,r,s,t, 00} by setting y; =
t; = pg = 0 and all the other weights equal to % The geometry and explicit formulae of
the transition maps between these charts are obvious. Moreover, the explicit formulae in
Proposition 5.2 can easily be generalized to any of these charts. According to Table 9, ten
of these charts (one for each partition {3, j, k} U{k,l,m} = {0,1,7,s,t,00}) are sufficient
if we want their image to cover the whole space Bun*(X) minus the decomposable
bundles. We can of course cover the whole space Bun*(X) by adding the singular chart
Bun$*(X/t) to the 10 charts of type P} x le- x PL. Transition maps to this chart can

2

be obtained from Proposition 5.3. Note however that even the union of all 20 charts of
type P} x P]l x P4 is however not sufficient to cover Bun(X/:) minus the decomposable
bundles (we don’t have the images under the Galois involution of the Gunning bundles
for example).

If we wish to cover Bun(X) entirely (and not only Bun* (X)), we have to add non-
hyperelliptic charts, for example via the construction in Section 4.3. Indeed, there we
have a parabolic structure over some divisor in |2K x| defined by four points in P'. We
can normalize three of them to 0,1 and oo respectively, the fourth then is given by some
5\j € P'. We deduce four natural charts

XQ/%&xPiziﬂwﬂX) where j € {1,2,3,4}.

Here {¢,:} denotes the diagonal action {P,Q} — {¢(P),¢(Q)} on the symmetric product
X @) which leaves the cross-ratio of the corresponding parabolics invariant.

6. THE MODULI STACK $)iggs(X) AND THE HITCHIN FIBRATION

A Higgs bundle on a Riemann surface X is a vector bundle F — X endowed with a

Higgs field, i.e. an Ox-linear morphism
0:E— E®Q%(D),
where D is an effective divisor. If D is reduced, then © is called logarithmic and for any
x € D, the residual morphism Res,(©) € End(E,) is well-defined. As usual, we will only
consider the case where F is a rank 2 vector bundle with trivial determinant bundle and
© is trace-free. By definition, a holomorphic (D = @) and trace-free Higgs-field on E is
an element of H(X, sI(E)®L ), which, by Serre duality, is isomorphic to H (X, sI(E))V.
On the other hand, stable bundles are simple: they possess no non-scalar automorphism.
For such bundles F, the vector space H!(X,sl(E)) is precisely the tangent space in E
of our moduli space Bun(X) of flat vector bundles over X. Therefore, in restriction to
the open set of stable bundles the moduli space $iggs(X) of Higgs bundles identifies in
a natural way to
$Higgs(X) = T"Bun(X).
Just as naturally, we can define
$Higgs(X/e) := T*Bun(X/1),

but we need to clarify its meaning. Let (E, p) be a parabolic bundle in Bun(X/¢). Then
Tig p)%un(X/L) = HY(X,sl(E,p) ® QF,), where s[(E,p) denotes the space of trace-
free endomorphisms of E leaving p invariant. Now consider the image of the natural
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embedding
H(P',sl(E, p) ® Qp) — HY(P',sl(E) ® Qp (W)).
Via the (meromorphic) gauge transformation

Op1(—3) ® elmy, € HY(P!, SL(E @ Op1 (W), p))

it corresponds precisely to those logarithmic Higgs fields © in HY(P!,sl(E) @ Qp, (W)
that have apparent singularities in p over W: the residual matrices are congruent to
(8 é) and p corresponds to their eigenvectors. We shall denote this set of apparent
logarithmic Higgs fields on E by

HO (P!, sI(E) © Qb (W))™2 ~ HO(P!, sI(E, p) @ Ob).

On the other hand, if we see Bun(X/:) as a space of bundles E over X with a
liftt h of the hyperelliptic involution, then the space of h-invariant Higgs fields on F
also naturally identifies to the cotangent space T(p h)%un(X/L). Indeed, let (£, p) be a

parabolic bundle in Bun(X/¢) and consider the corresponding parabolic bundle (E, p) =
elmy, (7*(E, p)) over X together with its unique isomorphism h : E ~ /*E such that p
corresponds to the +1-eigenspaces of h. Let © be a logarithmic Higgs field in

(g Bun(X/1) = HY (P! s1(E) © Qs (1)) ™.

The corresponding Higgs bundle (F, ©) = elm;},(7*(E, p)) then is h-invariant and holo-
morphic by construction.
Similarly to the case of connections, we obtain

2

T (E,0) = @(Ei7@i)7

i=1

where (E;,©,) are apparent logarithmic Higgs bundles on P! with D = W.

6.1. A Poincaré family on the 2-fold cover $iggs(X/t). Since we get a universal
vector bundle on an open part of Bun(X/:) for our moduli problem (for instance over
IP)%, see Section 4.2), we can expect to find a universal family of Higgs bundles (resp.
connections) there, which we will now construct over an open subset of the projective
chart IP’}% X IP’}g X IP’%, namely when (R, S,T) € C3 is finite.

For (i,z;) = (r,R),(s,S), (t,T), define the Higgs field ©; given on a trivial chart
(P1\ {o0}) x C? of E = Op1(—1) @ Op1(—2) by

dx 0 0 dr  (z; —z de [~z 22
0, = — ¢ v G
v T (1—22‘ O>+x—1<zi _Zi>+1'—i<_1 Zz>
These parabolic Higgs fields are independent over C (they do not share the same poles)

and any other Higgs field © on E respecting the parabolic structure p given by (R, S,T)
is a linear combination of these ©;:

O =0, +c;0,+0; for unique ¢, cg, ¢ € C.

These generators are chosen such that the coefficient (2,1) of ©; vanishes at = j and
k where {i,j,k} = {r,s,t}. They are also very natural on our chart Bunj;(X/:) =
IP)};z X IP’}g X IP’% with p 6]%, i[ Indeed, for our choice of chart and generators, we precisely
get:
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Proposition 6.1. The differential 1-form dz; on the affine chart (R,S,T) € C3 C
PL x PL x PL identifies under Serre duality with the Higgs bundle ©; € HO(P!, sly(E) ®
Qp (W)*™*P2 for (i, 25) = (v, R), (s, 8), (1, T).

Proof. In an intrinsic way, the tangent space of the moduli space of parabolic bundles
at a point (E,p) is given by H'(P!,sl(E,p)) where sl(E,p) is the sheaf of trace-free
endomorphisms of E over P. that preserve the parabolic structure. For instance the
vector field E% € T (g5, Pk x Py x P} can be represented by the two charts Uy = P51\ {r}
and U; an analytic disc surrounding = r together with the cocycle

$o0,1 = <(1) 8)

on the punctured disc U1 = Uy N U;. Indeed, if we glue the restrictions (E, p)|y, and
(E,p)|u, by the map

exp(Cho) = <§ (f) (B2 oy — (E Do,

we get the new parabolic bundle defined by p = (0,1, R + ¢, 5,7, 00), i.e. the point
defined by the time-{ map generated by the vector field %. Let us now compute the
perfect pairing

() t HY(P', slo(E) ® Qp (W))™P2 x HY(P!,sI(E, p)) — H' (P!, Qp1) ~ C;

defining Serre duality in our coordinates. Given a Higgs field © € HO(P!,sly(E) ®
QF (W))*P2, the image in HY(P!, Qg,) is given by the cocycle

(©, ¢o,1) = trace(© - ¢o,1)
on Uy 1, that is the (1,2)-coefficient of © restricted to Up 1 (note that © is holomorphic
there). We fix an isomorphism H'(Q},) — C as follows. Given a cocycle (Up1,wo,1) €
HI(Q]%M), one can easily write wg1 = ap — a1 for meromorphic 1-forms «; on U;. Then
wo,1 1s trivial in HI(QI%M) if, and only if, wp1 = wy — wy for holomorphic 1-forms w; on
U;, or, equivalently, if the principal part defined by («a;); is that of a global meromorphic
1-form (a; — w;);. Since the obstruction is given precisely by the Residue Theorem, we
are led to define
Res : HY (P!, Qp:) — C

as the map which to a principal part («;); representing the cocycle, associates the sum
of residues. For instance,

dx dx dx
wo,1 = (Or, ¢0,1) = (1 — R)? +R

can be represented by the cocycle

rx—1 x-—r

ap:=0 and ag:=—wp1
so that the principal part is just defined by % at £ = r and we get

Res(O,, ¢0,1) =1

i.e. <®r, %> = 1. Similarly, we have

o O\ _ [1ifi=j
P9z T \0iti#
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Corollary 6.2. The Liouville form on T* Bun,;(X/i) defines a holomorphic symplectic
2-form on the moduli space of Higgs bundles defined in the chart (R, S, T, c,,cs,ct) € CO
by

w=dRAdc, +dS Ades +dT A de;.

6.2. The Hitchin fibration. On the moduli space of Higgs bundles on X, the Hitchin
fibration is defined by the map

Hitch : $iggs(X) — HY(X,2Kx) ; (E,©) — det(0).

Viewing $iggs(X) as the total space of the cotangent bundle T*Bun(X) (over the open
set of stable bundles), the Liouville form defines a symplectic structure on $iggs(X).
The above map defines a completely integrable system on this space: writing a quadratic

®2
differential as (hoz? + hix + ho) <d7$> , the 3 components of Hitch
h(), hl, h2 : f'_')lggﬁ(X) — C

are holomorphic functions commuting to each other for the Poisson structure. More-
over, fibers of the map Hitch are (open sets of) 3-dimensional abelian varieties. One
can also associate to (E,©) the spectral curve spec(©) which is the double-section of
the projectivized bundle PE — X defined by the eigendirections of ©. This curve
spec(0) is thus a two-fold ramified cover of X, ramifying at zeroes of the quadratic form
Hitch(E, ©); the spectral curve is thus constant along Hitchin fibers and its Jacobian is
the compactification of the fiber (see for example [35]).

6.3. Explicit Hitchin Hamiltonians on $iggs(X/t). Viewing a Higgs field as the
difference of two connections, we have seen that Higgs bundles are invariant under in-
volution and descend, likely as connections, as parabolic Higgs fields on PL = X/i. The
induced map
$iggs(X/1) = Higgs(X)

allows us to compute the Hitchin fibration easily. Note that, applying an elementary
transformation to some Higgs bundle (E, ©) does not modify det(©) since an elementary
transformation is just a birational bundle transformation, acting by conjugacy on ©O.

Therefore, to get Hitchin Hamiltonians on the chart (R, S, T, ¢,,cs,ct), we just have to
compute

(dz)®*
(x—1)(z—r)(x—s)(x—1t)
A straightforward computation yields the explicit Hitchin Hamiltonians for $iggs(X/¢)
given in Table 10.

It is easy to check that these functions indeed Poisson-commute: for any f,g €

{hg, h1,ha}, we have

det(c, 0, + cs0, + ¢:0;) = (hoz?® + hyz + ho)—

0

opi 8q;  0q; Op;

Z of 9g af 9g _
i=r,s,t
in Darboux notation (pT‘7p87 Pt,dr,Qgs, qt) = (R7 Sa T7 Cr, Cs, Ct).

In Proposition 5.3, we specified the birational map ]P’}Q X ]P’ls X IP’% -—> IP’%, allowing
us to express the Bertram coordinates (bo : by : ba : b3) as functions of (R, S,T'). Setting

b b b
erdR + cdS + ¢, dT = Md=L + Aod-2 4+ Agd—>
bo b b
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ho = (r(R=1)+¢cs(S—=1)+ (T —1)) (erst(R—1)R+ csrt(S — 8)S + eprs(T — t)T)
hi = e (er(s+t)(r+1)+ess(t+1) +ct(s+1)) R2 — cr 2(t+s)R3

s (es(r+t)(s+1)+er(t+1) +et(r+1)) 5% — (t +7) 83

e (co(r+8)t+1)+cor(s+ 1)+ css(r+1))T? — 2 (r +8) T3

—cres(t(R—14+S—=1)+7(S—s)+s(R ))RS

—ce(s(R—1+T—-1)+r(T —t)+t(R—r))RT

—cser(r(S—14+T —=1)+s(T —t)+t(S—s))ST

— (cit(r+s)+ cpr(s+1t) + css(r+1t)) (ch + ¢S+ ¢T)

he = (¢(R=1)R+c¢cs(S—1)S4+ca(T—-1)T)(c,(R—71)+ cs(S—5)+ (T —t))
Table 10: Explicit Hitchin Hamiltonians for the chart P x Pk x PL of Bun(X/1)

allows us to express the coeffcients c¢,, cs, ¢; as functions of the Bertram coordinates as
well. The Hitchin map in Bertram coordinates then writes

(dx)®2
z(x—1)(z—7r)(x—s)(zr—1)

where the Hitchin Hamiltonians hg, h1, he are given explicitly in Table 11.

(hox® + hyx + ho)

6.4. Explicit Hitchin Hamiltonians on $iggs(X). We can now push-down formulae
onto X to give the explicit Hitchin Hamiltonians on $iggs(X) ~ T*Bun(X). In order
to do this, we consider the natural rational map ¢* : T*IP’?I{IR -—» T*IP’}% X IP’}g X IP)%F
induced by the explicit map ¢ : ]P’1 X IP’l X ]P’1 - ]P%R of Proposition 5.2. Then, for

a general section pod < ) + p1d < > + pod ( > the Hitchin Hamiltonians are given,
after straightforward computation, by the explicit formula in Table 12.
In section 3.6, we introduced symmetric coordinates (tg : t1 : to : t3) of MR given by

to a b c d

1 1 0 ——\ﬁEg Vo
t1| _|-b a d -—c 0 og O 0 |
to c d «a b 0 o3 /o3 /o3 vy |’
t3 d —c —-b a 0O O 0 /o304 V3

where a = rst(r—s)\/o4+t/prps — rt(r —1)\/ps — st\/o4p,

b = —st(s—1)\/pr +rt\/04ps
= t{r — 5)y/F301 — Hr — 1) /5378

d = —t(r—1)(s—=1)(r —s)/o3+t(s —1)/o3pr
and Va3t = rst, \/_ (r—1)(s—=1)(t—-1),
Vot =r(r=1)(r—s)(r—1t), ps:=s(s—1)(s—r)(s—1).

We obtain rational Hitchin Hamiltonians for the coordinates (fo : t1 : t2 : t3) given

explicitly in Table 13 with respect to a general section ngd < > +md < > + 10d < )

o () (2) £ 3
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ho

h1

ha

A1b1+A2ba+A3b3 |

5

g3*
+o9-
_0‘1-

+1-

boos-

+b00’2‘

+b00‘1-

+1

—boosz: [A1bobio + A2(boba1 + b1b1o) + A3(bobsz + bibay + babio)]
+booa- [Mbibig + Aa(b2big + b1ba1) + Ag(b1bsa + babay + bsbig)]
—o1- [Mbibio + Aaba(bibio + boba1) + Ag(bobabsz + bobsba1 + bibsbio)]
+1- [A1(b3ba1 + ba (b — boba)) + Agba(bibar + babio) + Asbs(bobsa + bibar + babig)]

[)\%bo(bgl — babyg) + )\g(—bobg(ng —bo) — bibs(by — 2bg)) — A1 A2bob1b1o — )\1)\31)%1)10
+A2A3(2bgb1ba + babg(bg — 2b2) — bobs(2b1 — by) — be%o)]

[A3b2 (b3 + bobao) + AZbs(bo(bs — 2ba) + b1(2ba — by)) + A1 A2b3big

—i—)\l)\g(b%(ng —by) — bob%) + Ag)\g(b%bgg + Qb%blo + Qbobgbgl)]

[A3ba(b3; — babag) + A3bs(—ba(ba — 2b1) — b3(2b1 — bo)) + A1 Aa(bob3 — b7 (2b2 — by))
+A1A3(bob2 (203 — b2) — by (b%l + b1(2b3 — by))) +)\2)\3(b3(b% —2b9(2b1 — by)) — b%(bg — 2b1))]
(AT (b3 (b7 — 2boba) + b3b3) + A3b3 (b3 + bobao) + A3bs(—bo(b3 + 2b1b3) + b3 (b + 2bob2))
+)\1)\2b2(2b% — boba)b1o + )\1)\3(—b0b1b% + 2b%b3b10 — b%bg(bg —2b9))

—|—)\2)\3(bob%(3b3 — by) + 2b1babs(by — 2b0))}

[—A1bob1b10 — boAa(b1b21 + babio) — A3bo(b1b32 + b2ba1 + b3bio)]

[)\1[) b1o + A2ba(b1b10 + boba1) + As(bobabsa + bobsbay + blbgblo)]

[A1(b3ba1 + ba(bF — boba)) + Aaba(babio + bibar) + Agbs(bobsz + bibar + babio)]
[)\1 b2 — bob2)(2b3 — ba) + b1babey )+ )\2(b2(b2 — 2b1) + b3(2b1by — bgbs))

+ A (b2(2b1 — bo) + babs(by — 201))]

0L
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rst- [no(t2 — 2) + m(toty + tats) + ma(tota + t1t3)]”
ho = —st- [no(tots — tats) + (3 + 83) + ma(tots + tits)]”
3 +4rs- (noto + mtl) t3
—rt- [no(td + t3) + m (tot1 + tats) + ma(tots — f1t3)]
( t- (tg+ 15 + 13+ 13) (05 + 07 +m)t3 + (noto +mt1 + mat2)?]
+st (65—t + 15— 13) [(5 — nf +m3)t3 — (moto + ity + 72t2)?]
hy = ﬁ _ +4r- (totz — t1t3) t3 [nomats + (oto + Mty + mata)m]
8 +dsr- (tota + t1t3) t3 [nomats — (moto + mt1 + nat2)m]
+4s- (tots + tita) t3 [mmats — (oto + mt1 + m2t2)no]
+4rt- (toty + tats) t3 [nomits — (noto + Mty + nat2)ne)
- [no(tota + tits) + mi(tots + tita) + na(t3 — ¢3)] ?
hy = L —1- [no(tota — tits) + m(tots + tita) + n2(t3 + tQ)]z
3 —t- [no(tot1 + tsts) — ma(tots — tit) + m(t3 + 13)]
FAre (mty +ate)’ 13

Table 13: Explicit Hitchin Hamiltonians for the coordinates (%o : t1

1ty tg) of Mnr.

6.5. Comparison to existing formulae. In [23], B. van Geemen and E. Previato
conjectured a projective version of explicit Hitchin Hamiltonians (up to multiplication
by functions from the base), which has been confirmed in [22]. These Hamiltonians are
expressed in symmetric coordinates (to : t1 : t2 : t3) of Mygr and with respect to a genus

2 curve X given by

6
i=1

The coefficients A, B, C, D of the Kummer surface (13) can be made explicit, allowing

us to uniquely identify
()\17 )‘27 )‘37 )‘47 )‘57 )‘6) - (07 t7 17 s, T, OO)

with respect to our coordinates. Indeed,

value of in the paper [23]

in equation (14)

(21 A2+ A3 00)— (A1 +A2) (A3 +As)
A 2 1A2 ()\; 4)\4)()\11 2) 3 4

s(t—1)+(t—s
o

920122425 26) = (M1 +A2) s +e)
QAs—=2e)(A1—X2)

+(r—t)
—orHr=t)

(As=A6)(As—Aa)

r—1)4+(r—s
=

B
C 2()\3>\4+)\5)\6) (A3+A1)(A5+X6)
D

4()\1+>\2)(>\5>\6 A3da)+(As+A) (A1 Ao — >\5>\6)+(>\5+>\6)(>\3>\4*)\1)\2)
(A5 —=A6)(A3—Ag) (A1 —A2)

) 1(rs)
S C5))
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Let us denote
h(.%') = hg.%'Q + hl.%' + ho,
where h; for i € {0,1,2} are the Hitchin Hamiltonians given with respect to the sym-

t3
Hy,...Hg in [23] can then be expressed in terms of the Hitchin Hamiltonians as

metric coordinates in the affine chart <§—g b % : 1) as in Table 13. The Hamiltonians

4h(0 4h(s
Hy = rit) Hy = —3(371)(3(72)(34)
o 4h(t) . 4h(r)
Hy = _t(t—l)(t—(r)(t—s) H; = rr—1)(r—s)(r—t)
H3 e L(l) H6 — O

- D-DE-D)

7. THE MODULI STACK €on(X)

Note that if V1 and Vo, are connections on the same vector bundle £ — X, then
(E,V1—Va3) is a Higgs bundle. Hence €on(X) (resp. €on(X/¢)) can be seen as an affine
extension of Higgs(X) (resp. $iggs(X/¢)). One connection on the parabolic bundle
(Op1(—1) ® Op1(—2),p) attached to a parameter (R,S,T) is given in the affine chart
(P! \ {oc}) x C? with coordinates (x,Y) by

0 0 "
vo = ar (D) (] D1
- 2 2

1 (0 R\ 4 1 (0 S\ 4 1 (0 TV 4
+§<011_$7’+§01$_$3+§01m_$t

and hence in the affine chart (P \ {0}) x C? with coordinates (z,Y) = (L1,(25)Y) its

22\ 0 z2

residual part at £ = 0 is given by d + (,01 g) %. Any other connection on this bundle

(17)

writes uniquely as
V =Vo+¢0,+c0,+ 0y,

where the Higgs bundles ©; are defined in Section 6.1. This provides a universal family
of parabolic connections on a large open subset of the moduli space. Note that the
residual part at infinity is given for such a connection by

0 0\ dz
d+(—1—CT(R—T)—CS(S—S)—Ct(T_t) %> E

x

7.1. An explicit atlas. We can use the above construction to cover the moduli space
Con*(X/1) by affine charts, in each of which we can explicitly describe the Poincaré
family. Here Con*(X/¢) denotes the space of all those parabolic connections (£, V) such
that ®(£, V) is not a twist of the trivial connection on the trivial vector bundle over X.
The map ® then induces on the set €on*(X) of irreducible or abelian but non trivial
5l5C- connections on X the structure of a moduli stack.
Fix exponents k; € C for

i€{0,1,7,s,t,00}
and define p € C by
Ko+ K1+ Kr + Ks + Kt + Koo +2p = 1.
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The universal connection on Op1 & Op1(—1) with eigenvalues

r=0 =1 x=r x=s =t =0
(18) 0 0 0 0 0 p
Ko aat Ky Rs KRt Koo + P

can be written as follows:

(19) V=Vo+¢06,+c0,+c0;
with
0 0\ dz —p p+r1 dx 0 zK; dx
p— d —_— [ P
Vo +<P %0>$+<—P p+ K1 36—1+4Z 0 K Jx—i
1e{r,s,t}
and

0 0\ dz zi —z\ dz —z 22\ dz
0, — et i ) i i
‘ <1_Zi 0>x+<2z _Zi>£ﬂ—1+<—1 Zi):ﬂ—i
Here we have normalized the parabolic data to

r=0 =1 z=r x=s x=t =0

. 0 0 G) G G) e

We note that eigendirections with respect to 0-eigenvalue are generated by

=0 r=1 r=r r=Ss r=t

_ KO K1 T s
p+zi€{r,s,t} Ci(zi_l) 1 + p+zi€{r,s,t} CiZi Zr ’Z_r s — ’Z_s 2t — ’Z_:
1 1 1 1 1

This matrix connection can be thought of, via an elementary transformation at

x = 00, as a parabolic system (a parabolic connection on the trivial bundle) with shifted
eigenvalues (p, p+ Koo — 1) and parabolic now associated to p normalized to e; = (1,0).
Similarly, after twisting by the (unique) rank 1 connection (Op1 (—1),() having a single
pole at infinity, we get a universal family for those connections on Opi1 (—1) & Op1 (—2)
with shifted eigenvalues (p + 1,p + koo + 1) at = co.

We obtain an atlas of charts of €on™(X/.), each possessing a universal connection,

as follows (the birational transition maps between charts are straightforward to calculate
and will not be carried out explicitly):

e Canonical chart: When k; = % for all i« € W (and thus p = —1), we obtain

our first affine chart
6 __.
(ZT‘7ZS7Zt7CT7CS7Ct) e C = UO

together with its universal family of connections (19).

Switch: Choose J C {r,s,t}. Set x; = —% for all j € J and k; = % for all
i € W\ J. Tensorize the corresponding universal family of connections (19) with
the (unique) logarithmic rank 1 connection on 7 : Op1 = Op1 @ Qb (J + [00])
having eigenvalues —|—% over each element in J and eigenvalue —# over oQ.

We thereby obtain the universal family of connections on Opi(—1) & Op1(—2)
having eingenvalues 0 and % over each point in W, where the %— eigendirections

over i € W \ J and the 0-eigendirections over J are normalized to (20).
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o Twist: Set kg = k1 = —1 and k; = 3 for all i € W\ {0,1}. Apply positive
elementary transformations in the parabolic directions corresponding to the —%

eigendirections of the universal family of connections (19). We obtain a new
universal family of connections with eigenvalues 0 and % over each ¢ € W such
that the parabolic structure corresponding %—eigendirections over each i € W is
normalized to

r=0 =1 x= r =

) <><>f<as>:?>om>

e Permutation : For any o € &({0,1,r,s,¢,00}, we obtain similar constructions
for parabolic data normalized to

x=0(0) z=0(1) z=0(r) z=0(s) z=0(t) z=00

O O ) G G oy

e Galois involution: Choose any of the above charts U together with its univer-
sal family of connections. First apply positive elementary transformations in all
——eigendirections of the universal family of connections. We obtain logarithmic
connections with eigenvalues 0 and —5 over each Weierstrass point. Then ten-

sorize this connection by the unique logarithmic (rank 1) connection on Opi(—3)

having eigenvalues % over each Weierstrass point. We obtain a new chart U’

together with a universal connection such that ®(U) = ®(U’).

By construction, the above are indeed all affine charts of €on(X/:). Moreover, the
transition maps between charts are all birational.

Proposition 7.1. The moduli space Con(X/i) is entirely covered by the above charts,
except for the preimages under ® of the trivial connection on the trivial bundle Ey and
1ts twists.

Proof. Firstly, note that all possible parabolic vector bundles (E, p) underlying a con-
nection V in Con(X/:), where p is given by the %—eigendirections, occur in the above
charts.

o If E = Opi(—1) ® Op1(—2) and p is undecomposable, then at least three of the
parabolics are not included int the total space of the destabilizing subbundle
Opi1(—1) C E and are not included in the same Opi(—2) — E. Up to per-
mutation, we can assume that this is the case for Py Py and P Any such
configuration appears in the Canonical chart or a Switch. More precisely, we
need to switch each parabolic contained in the destabilizing subbundle.

o If £ = Opi(—1)® Op1(—2) and p is decomposable, then we have two parabolics,
which we can assume to be Py 1_71 by permutation, defined by the total space of
Op1(—1) C E and the four others by some Opi(—2) — E. This configuration
arises in the Twist chart.

o If £ = Op1 @ Opi1(—3) and p is undecomposable, then at most one parabolic
in included in the total space of the destabilizing subbundle and the Galois
involution leads to an undecomposable parabolic configuration on Opi(—1) @
Op1(—2), which we have already treated.

o If £ = Op1 & Opi1(—3) and p is decomposable, then all parabolics are defined
by the total space of a same Op1(—3) — E. This configuration arises from
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the Twist chart, namely when the O-eigendirections over 0 and 1, as well as
the %—parabolics corresponding over W \ {0, 1} of some logarithmic connection
on Opi(—1) & Op1(—2) are included in the total space of a same subbundle
O]pl(—Q) — O]pl(—l) &) O]pl(—Q)
Secondly, we know from Section 3 that for every vector bundle E in Bun*(X), except
for the trivial bundle and its twists, the space of t(-invariant slsC- connections on F
is an affine C3-space. Yet by construction, the universal connection we established
for our charts provide a C3-space of two-by-two non isomorphic connections on each
parabolic bundle (£, p). The moduli space of irreducible or abelian connections on Ey® L
with L®? = Oy, in Con(X), if we exclude the trivial connections, is only birationally
isomorphic to C? (see Section 3.3). The fact that we do indeed cover all of the mentioned
connections follows from a more detailed but straightforward analysis. 0

7.2. The apparent map on Con(X/¢). Folllowing [41], we will now recall the construc-
tion of the so-called apparent map, allowing us to prove Proposition 5.3. For a parabolic
connection (E,p,V) defined on the main vector bundle E = Op1 (—1) ® Op1 (—2), we
can associate a morphism

V o gy € H (Hom(Op: (~1), 051 (~2) @ Qb (W) = HY (B!, Ops (1) © Ok, (W)
by composition of

Opi (-1) = E ~5 E® Qb (W) — Op1 (~2) © Qb (W)
where the last arrow is just the projection on the second direct summand.

Remark 7.2. Geometrically, the zeroes of the apparent map (which is an element of
HY (P!, Op1 (3))) are the coordinates of the (three) tangencies between the destabilizing
section o_1 of P(E) and the foliation on P(E) defined by flat sections of P(V). On
the other hand, these are precisely the positions of the apparent singular points appear-
ing when we derive the associate 2™ order fuchsian equation from the “cyclic vector”
Opl (—1) — F.

We can extend the definition of the apparent map to so-called A-connections
V=XAVo+60,+c0,+c0;, (\ep,cs, ¢)eCH

including Higgs fields (for A = 0). There is a natural G,,-action by multiplication on
the moduli space of A-connections so that a generic element V, with A # 0, is equivalent
to a unique connection (in the usual sense), namely %V. After projectivization, we thus
obtain a natural compactification of the moduli space of connections on E (an affine
3-space) by the moduli space of projective Higgs fields (i.e. up to Gy,-action). In our
coordinates, an element (X : ¢, : ¢s : ¢;) € P? denotes either a connection (when A # 0)
or a projective class of a Higgs field. It is proved in [41], Theorem 4.3, that the map
V — Py, which is invariant under G,,-action, defines an isomorphism from the moduli
space of A-connections up to Gp,-action onto PH? (P!, Op1 (—1) ® Q3 (W)). Moreover,
we deduce a map

Buny; (X/i) — PH? (P!, Op1 (—1) ® Q1 (E))v

which to a parabolic bundle (E,p) associates the image under Py of the hyperplane
locus of Higgs bundles A = 0. For % <p< %, this map is also an isomorphism.
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On the other hand, looking at Bunj;(X/.) as extensions (see Section 5.3), we also
get a natural isomorphism
Buns¥(X/t) 5 PHO (P!, Op1 (—1) @ Oy (W))”
It follows from [41], proof of Theorem 4.3, that these two maps coincide.

Proof of Proposition 5.3. For (R,S,T) € C3 finite, the corresponding parabolic bundle
also belongs to Bunff(X /t) and we can use the apparent map to compute the corre-

sponding point (bg : by : by : b3) € IP’?I;. Precisely, the apparent map g, is given by the
(2, 1)-coefficient of ©,

R-1
R—r

This provides a first equation

Pye, = (x—7r)(z—s)(x—t) € PH? (Pl, Op1 (1) ® Ql%ﬂ (E)) ~ |Op1 (3) |.

(R—r)bg — (c1R—r(1+s+1))by + (02R —r(s+t + st))by — 03(R — 1)b3 = 0;

similar equations for G4 and ©; give the result. O

7.3. A Lagrangian section of €on(X) — Bun(X). The rational section
Vo : Bun(X/t) --» Con(X /1)

constructed in Section 6.1 over the chart ]P’}Q X IF’}; x PL is not invariant by the Galois
involution of ® : €on(X/¢) 2, Con(X), i.e. it defines a 2-section, but not a rational
section Bun(X) --» Con(X). One can easily deduce a rational section by taking the
barycenter (recall that €on(X) — Bun(X) is an affine bundle) but it is not the simplest
one. Here, we start back from the Tyurin parametrization of bundles to construct such
an explicit section.

Like in Section 4, consider a generic data (P, Py, \) € X x X x P! and associate
the parabolic structure p on E := Ox (—Kx) @& Ox (—Kx) defined over

D= [Py] + [ (By)] + [Bo] + [t (Py)] € [2Kx],
by

11
A2y Apy)s Ay Apy)) = <)" AT _X>

(where A\ means the direction generated by Age; + ez over @, for fixed independent
sections e, ey over X \ {o0}). After 4 elementary transformations, we get a bundle

E with trivial determinant. A holomorphic connection V on E := elmJIS(ENJ,ﬁ) can be
pulled-back to Ox (—Kx) @& Ox (—Kx) and we get a parabolic logarithmic connection

V on this bundle with (apparent) singular points over D. In the basis (e, e2), we can

write
Vv d+ (a 5)
vy 9

dx dx
a+d= +
r — I Xr — X9

where the trace is given by
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and the projective part takes the form (here z is the projective variable defined by
ze1 + e2)

_ — A(z) dz

T T G y

PV : dz—722+(a—08)z+8 with {a—0§ = (x_xf;%df
3 _ C(x) dz

(z—21)(z—22) ¥

where A, C are degre 3 polynomials in z and b € C. This is due to the fact that the
connection has only simple poles over D and that it is invariant under the (normalized)
lift of the hyperelliptic involution h : (z,y,2) — (z,—y,—z). We note that e; and e
generate the two ¢-invariant Tyurin subbundles. Moreover, these coefficients {(A,b,C)}
have to satisfy several additional conditions, namely the compatibility with the parabolic
data, that eigenvalues are 0 and 1 (parabolic directed by 1) and the singularity is appar-
ent, in the sense that it disappears after an elementary transformation in the parabolic.
This gives 6 affine equations in the 9-dimensional space of coefficients {(A, b, C)}:
)\A(xl) + by, + %C(ml) =0

parabolic data: {%A(m) +bys + A\C(z2) = 0

eigenvalues: {2)‘A(x1) +by1 = yi(z2 —21)

%A($2)+by2 = yo(x1 — 2)
o 2 (AA (1) + £C(21)) + bF' (1) = 0
apparent: {2:{/2(%14/(.%'2)+)\Cl(1’2))+bFl(1'2) — 0

where F(z) = z(x — 1)(z — r)(z — s)(z — t). Viewing a Higgs field © = (: ?) as
the difference of two connections, we get a + & = 0 and, for the projective part, the
corresponding linearized equations (with 0 right-hand-side). Starting with a connection

Von E = Ox (-Kx) @& Ox (—Kx) as above, via 4 elementary transformations, we get
a holomorphic sls-connection

(E,V) = elm},(E, V,p)

on X whose parabolic data p is supported by the strict transform of the line bundle

Ly := C(ey) (we suppose A € {0,000} by genericity). Pushing it down, we get a parabolic

connection on X/t = PL for which L; becomes the destabilizing subbundle Op1 (—1).
Selecting the t-invariant Tyurin subbundle L, we have a natural generically finite

map
16:1
X x X xP} -5 Py

with Galois group generated by (012, 0,,0;,) (see Section 4). Then, the Galois involution
2:1
of I[”?]f3 - ]P’3NR is induced by oq,, which is permuting e; and e3. We can thus compute

the apparent map of a connection v (or a Higgs field é) with respect to e; and get that
o5 = A(r).

Remark 7.3. The three zeroes of A(z) define six points on X, which are the coordinates

of the tangencies between e; and the foliation P(V) on P(E).

Like in the proof of Proposition 5.3 (see Section 7.2) we can use the apparent map for
Higgs fields to compute the corresponding Bertram coordinates of IP’%. A straightforward
computation yields:
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Proposition 7.4. The natural map X x X X IP’& — IP’% s given by

bo = Ay2—3u

b1 = Aziy2 — 32
by = Aafys — %x%%
by = Ariys — xaiy

It follows from [41] that a connection on a parabolic bundle belonging to the chart
P3B is determined by its apparent map. It is particularly easy to see this fact in above
equations: after prescribing pg = A(x) € IP’Z’1 (up to homothecy), i.e. after prescribing
the roots of A(x), we get a unique solution (4,b,C) except when A(x) lies in the hy-
perplane of Higgs bundles defined by Proposition 7.4 above. In the latter case, there is
a solution (A,b,C) as a Higgs field which is unique up to an homothecy. Note that the
group (012,0,,0;,) acts on connections (and Higgs fields) and the induced action on the
coefficient A(z) is by homothecy. It follows that the corresponding point A(z) € P3 is
invariant. The fourth involution oy ,, however permutes A(z) and C(x) (and changes
the sign). In order to construct a rational section Vi : Bun(X) --» Con(X), we can
consider connections for which A(z) and C(z) are homothetic to each other, i.e. define
the same point in ]P"Z. A straightforward computation shows that there are exactly two
possibilities:

SN+

AVAREH b—ﬁ(ﬁl—ﬁﬂg) and A(z) =C(x) =

1 A
2($1 — 562)2 )\2 -1

<(y1 — y2)(42® — 6(21 + 22)2” + 1221 292) — 6z122(T2y1 — T1Y2)

#2abn — atie) ~ (@1 = w2)le — ) (o~ 22) (1 o (0 = ) 4 o =) ) )
and
v b:iz—ﬁ(m—@) and  A(z) = —C(z) =
1 A

2(z1 — 22)2 A2 + 1 <(y1 +y2)(4z® — 6(z1 + w9)a” + 1221 29w) — 6z122(T2y1 + T172)

F2ladyn + o) — (o1 e — o0)(o = 02) (o o — ) T e =) )

This provides two “universal connections” over the parameter space X x X XIP%\ which are
each invariant under o/, and (12,0, O'i22>, but permuted by ;.. Taking the barycenter
of these two connections for each parameter (P, Py, \) yields a fully invariant section

VT4 V-

Vo : 5
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whose coefficients are given by

boy A1 11
(z—z1)(z—22) °— M-1 T—1 T—T
Ao(z) A y2 Ny + (Ny1—y2) z—11—19)
(z—z1)(z—22) =~ M-1 T—T9 T—T (x1—x2)?
/ !
Ny e (=) i R (-
(21) 2($1—$2)
Co(z) A Ny + (y1=Ny2) (2x—21— )
(x—z1)(x—22) ° M-1 T—To T—2 (x1—2x2)?
/ /
1 I;((le)) (r—12)+ 292 ?((522)) (z—w1)
2(%171‘2) :

Proposition 7.5. The induced rational section
Vo : Bun(X) --» Con(X)
is Lagrangian, and moreover reqular over the open set of stable bundles.

Proof. This connection is well-defined provided that A* # 1 and xo # z1. We get a
universal connection for all stable bundles. Indeed, we first check that all stable bundles
off odd Gunning planes are covered by the open subset where the connection Vj is

well-defined:
X x X xPy\ ({M=1}U{21 =22}) - Pig\ (Kum(X)UI,,U---UI,_).

We thus get a rational section Vi : Bun(X) --» €on(X) which is holomorphic over stable
bundles, off odd Gunning planes. We can check that it actually extends holomorphically
along odd Gunning planes. It is sufficient to extend it outside intersections of odd
Gunning planes since those form a codimension 2 subset. The Gunning plane II,,
comes from the indeterminacy locus {wo} x X x {0} of the map X x X x P} — P3y.
Precisely, a generic element of I, is obtained as follows. We first renormalize z = w/\
so that parabolic directions become

()‘Bl ’ AL(Bl)’ )‘Bga )‘L(BQ)) = (>‘2’ _)‘2’ 1, _1)

and then make the first two parabolic tending to 0 while y; — 0 with some fixed slope
;‘—f = c¢. The limiting connection has now a double pole at wg, which disappears after
two elementary transformations.

Finally, that this section is Lagrangian directly follows from straightforward verifi-
cation. Precisely, following [41], in coordinates (a,b) defined by coefficients a = (ay :
ay : ag : ag) of Ap(x) defined in (21) and Bertram coefficients b = (by : by : by : b3)
defined in Proposition 7.4, the symplectic form is defined by

aopdbg + a1dby + asdbs + azdbs

=d ith =
e v aogbo + a1by + asby + asbs

If we pull-back the 1-form 1 by the map
(A, z1, 91,22, 92) — (a,b)

then we get the zero 1-form. O
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Remark 7.6. Qver the open set of stable bundles, the natural map Con — Bun is a
locally trivial Lagrangian fibration, which is also an affine A3-fiber bundle. Over an affine
open set, any affine bundle reduces to a vector bundle, namely its linear part T*Bun®.
The existence of Lagrangian section (reqular over the open set) shows that the reduction
1s actually symplectic with respect to the Liouville symplectic structure on T*Bun®.

Remark 7.7. There are precisely two Higgs fields invariant under oy, :
dx

(x —x1)(N222 = 1)—  and (z —z2)(2% — )\Q)Cmc
Y Y
They are also permuted by o;, and invariant under <0'12,O'L,0'Z~ZZ>. We obtain a basis of
the space of Higgs bundles by adding for example VT — V.

8. APPLICATION TO ISOMONODROMIC DEFORMATIONS

Our construction of the stack €on™(X) allows us to vary the parameter (r,s,t)

defining the base curve
Xy =z(x—1)(z—r)(z—s)(z—1t)
in
T:={(r,s,t) €C> | r,5,t #£0,1, r#s, r #£t, s #t}

in order to obtain a family M — T such that M| s, = €on*(X(,. ). Roughly
speaking, M is the moduli space of triples (X, F, V), where X is a curve of genus 2, F is
a rank 2 vector bundle with trivial determinant bundle and V a holomorphic trace free
connection on F with either abelian (but non trivial) or irreducible monodromy. Locally
in the variable (r,s,t) € T, isomonodromic deformations are fibres of the monodromy
map, defining an isomonodromic foliation Fis, on M. Note that an analytic family of
connections over genus 2 curves with contractible parameter space is an isomonodromic
deformation if and only if the connection is integrable and our isomonodromic foliation
is thus defined by the integrability condition. Our aim in this section is to express
explicitly this isomonodromic deformation, via the corresponding moduli space M — T
such that M|, ;¢ = Con*(X(,.5)/t). The integrability condition there is equivalent to
a Garnier system. We then prove that the isomonodromic foliation is transversal to the
locus of unstable bundles in M and give a geometric interpretation of this result.

8.1. Darboux coordinates. We will use the notations of Section 7.1. The classical
Darboux coordinates with respect to the symplectic form w = dz, A d¢. + dzgs A des +
dz; A de; on the Canonical chart Uy are defined as follows. The vector e; = (1,0)
becomes an eigenvector of the matrix connection for 3 points x = q1,¢2,qs (counted
with multiplicity), namely at the zeroes of the (2, 1)-coefficient of the matrix connection:

3 3
(22) —p + Z Cz - .Z:Z(z ) = <—p—|- ch(zz _ tz)> szl(x - Qk).
i=1

ie{r,s,t} Hie{r,s,t} (1‘ - Z)

At each of the three solutions z = g of (22), the eigenvector e; = (1,0) is associated
to the eigenvalue

1
23 L= — —|— cz< >
(23) b q —1 Z T\ -1 g

1€{r,s,t}
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The equations (22) and (23) allow us to express our initial variables (z,, zs, 2¢, ¢y, Cs, Ct)
as rational functions of new variables (q1, g2, g3, p1, P2, p3) as follows.

Set A = (q1 — q2)(q2 — ¢3)(g3 — 1) and
Z pre(ar — r)(ar — s)(q — t)‘

A=pt (@ =) (@ = am)

{k7l7m}:{17273}
For i € {r,s,t}, denote
Ai = A|i:1
the rational function obtained by setting ¢ = 1 in the expression of A. Then we have,
for {i,j,k} = {r,s,t}
. . . A
(24) ¢ =— (a1 = D)lgo = i)(a Z)A and —

Zi = 1—.

ii—1)(i—j)(i — k) A

The rational map
(25) IT: Cg,p --3 CS,C = Uy

has degree 6: the (birational) Galois group of this map is the permutation group on
indices k = 1,2, 3 for pairs (g, pr). In these new coordinates, the symplectic form writes

3
w= Z dzl-/\dcl-:quk/\dpk.
1€{r,s,t} k=1

We deduce a new atlas of M with charts given locally in T" by

I ®
TxCS, - TxCi.cM --» M

((rys:6),0,0) 25 ((ry8,8),2,0)

of M and M respectively, each endowed again with a universal family of connections

(26)

(Xr,s,ta Er,s,t,zl 122,239 vr,s,t,zl ,22,23,C1,C2,C3 ) .

8.2. Hamiltonian system. For i € {r,s,t} define H; by

-1 ] G- Ho=
je{rstH\{i}
3

3 .
— [palae — Ql)F(ql) <pl Gla)p + @ — z> +  plp+ Foo) ll;[l((ﬂ )

where F(z) = 2(z — 1)(z —r)(x — s)(z — t) and G(z) = £0 4 [Fly + fo 4 e | AL,
Then, assuming x; € Z for any i € {0,1,7,s,t,00}, a local analytic map

X - (T’ Sat) = (QIa Q2,Q3,P1,P2ap3)
induces an isomonodromic deformation of the connection (19) if, and only if,
— = and —— = —
01 Opr. di 0qx

In other words, the kernel of the 2-form

(27) Vie {r,s,t}, ke{l,2,3}.

3
Q= qukAde Z dH; A di,
k=1 i€{r,s,t}
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defines a 3-dimensional (singular holomorphic) foliation F;., on M which is transversal
to {(r,s,t) = const.} and y parametrizes a leaf of this foliation. We will call it the
isomonodromy foliation in the sequel. The tangent space to the foliation is defined by

the 3 vector fields V,., Vi, V; given by

0 O~ [O0H;\ 0 <~/0H;\ o
28 Vi=—=+ — — —_—
%) i ; (01%) gy, kzl (0%) Opi

Note that the polar locus of these vector fields is given by (¢1 —q2)(q2 — ¢3)(q1 — q3) = 0,
namely the critical locus of the map (25). The induced (singular holomorphic) foliation
on M will be called the isomonodromy foliation Fig, in the sequel.

8.3. Transversality to the locus of Gunning bundles.

Theorem 8.1. For any even theta-characteristic 9, the locus {(X, Ey,V) € M} of
connections on the Gunning bundle Ey, is transversal to the isomonodromy foliation

‘FiSO'
Proof. Up to permutation, we can assume
U = O([wy, ] + [we,] — [we]) = O([wo] + [w1] — [wsd])-

According to Section 3.5, the two pre-images under ® of Ey are (E,p) with E =
Op1(—2) ® Op1(—1), where
e The parabolics p; are given by the total space of the fibres of Opi1(—1) C E for
all i € {r,s,t}. Moreover, there is a line subbundle Opi1(—2) — E such that p,
and p., are given by the the corresponding fibres, and p; lies on neither of these
two line subbundes.
e The parabolics p; are given by the total space of the fibres of Opi1(—1) C E for
all i € {0,1,00}. Moreover, there is a line subbundle Opi(—2) < E such that p,
and p, are given by the the corresponding fibres, and p, lies on neither of these
two line subbundes.

For any holomorphic connection on Ey, the parabolic structure on £ = Op1(—1) ®

Op1(—2) can be normalized to one of the two above. Up to the permutation o =

01 r s t o0

( r s 0 1 oo t

a Mobius-transformation in the basis, the configuration after permutation corresponds

to the configuration before permutation, but for different values of (r,s,t) € 7. We are
led to the parabolic structure

, it is enough to consider the first configuration. Note that after

r=0 z=1 z=r =58 x=t x=00

O WO W o

on E = Opi(—1) & Op1(—2), in other words (2, zs,2:) = (00,00,00). This parabolic
structure is non visible in the canonical chart Uy, the Twisted chart and Switched charts
for J # {r,s,t}. Moreover, we can discard Permuted charts by the argument given
above and Galois involution charts because we do not need them to cover M. Therefore,
the only chart containing the Gunning bundle Ey we need to consider is the Switched
chart for J = {r,s,t}, i.e. we consider the Darboux chart with respect to the parabolic
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(+4)
PB4 ] )
X 7 f f f f v
wo w1 wy wWs W Woo

(-1) (-1
(+3)
<>
elmy,
(+1) — | (+1)
Pl — P!
0 1 r s t oo 0 1 r s t o0

FIiGURE 15. The two parabolic bundles corresponding to Ey with 9 =
[wy] + [ws] — [w¢] under the lifting map P.

structure attached to the 0-eigenvalue over x = r,s,t. Consider now spectral data (20)
with
1 1 1
Ko = K1 = Koo = 5 and Fr = Ks = Rt = — (:>p:§).
Connections on our Gunning bundle Ey then correspond to those parabolic connections
with z,, z, 2 € C (finite) but having e; as eigenvector over x = r,s,t. This means that
¢ = ¢s = ¢¢ = 0 and we are just looking at the family X defined by V when the parabolic
data z = (2, 25, 2) € C2 is arbitrary. We want to prove that the isomonodromic foliation
is transversal to
Y= {((r,s,1),(2,¢) € T x CO| ¢; = 0}.

9

Locally in 7', the linear subspace > € C  ; . . is the image of the linear subspace yParb o

C? defined by

7,8,t,q,p

Darb
XY ={q1 =7r,q0 = s,q3 = t}.
Precisely, the map II : C?7s,t7q7p -3 Cg,&t,z,c induces an affine transformation

yDarb _, s i (rys,t,p) = (r,s,t, 2)
with
ze=r2(r—Dp1+1), zs=52(s—1)p2+1), 2z =t2(t—1)ps+1).

Lemma 8.2. There is a neighborhood of 2P such that 11 restricted to this neighborhood
is a local diffeomorphism. Moreover, XP% is sent surjectively onto 3.

Proof. We can check by direct computation from (22) and (23) that

e the ¢;’s have poles only at g, = ¢;, thus far from YP2™P,

e the z;’s have poles also not intersecting XP2P
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e the g;’s can be inversely defined near 3,
e the p;’s are then regular near 3.

For this last fact, we have to take special care with the indefinite terms %, qC;—fSS, chtitt,
occuring in formula (23). For instance, for p;, we can use the (unitary) equation for the
¢;’s given by formula (22) and then substitute

CrZr _CT’ZT’(qQ - T)(q:g — T)

q —r Q(r)
with Q(z) = (x — q1)(x — q2)(x — ¢3), leading to

p " Z CiZi +Z7"(qQ - T)(q:g - T)(p - Zie{r,s,t} Ci('zi - Z)) _ Gszs Gz
q—1 a—1 r(r=1)(r—s)(r—1) Q-5 q—t

p1=—
ie{r,s,t}

The right-hand-side is now well-defined and analytic in a neighborhood of X. O

We want to show that the isomonodromy foliation F, is transversal to ¥. By the

previous lemma it is enough to prove the transversality of ¥P#™ with the vector fields
V; defined in (28). Modulo the vector fields

0 0 0 0 0 0
or " g’ 95 0g 0t og
and
0 0 0
dp1’  Opa’  Ops’
that are tangent to PP the vector fields V; are equivalent to
3

- 0 0H, 0
= ——— _|_ R
oq 1; <3pk ) qy;

- 0 < [0H,\ 0
s — T4 + —_—
dq2 ; <3pk > Oqr

N 0 S 8Ht> )
Vi= ——— + AL I
! Jq3 ,; (32% q;

But the corresponding matrix writes (with I denoting the identity 3-by-3 matrix)

(T, Vo, Vi) = (‘m

) T
OPk ) icrs,t} kci1,2,3}

and we obtain

o 1
(V2 Vo, V) (g gy = 5 - L

which is clearly invertible. This proves transversality of the isomonodromic foliation
Fiso With the locus X of our even Gunning bundle in M. The transversality of Fis, with
the locus ®(X) of our even Gunning bundle in M then follows from the fact that the
Gunning bundle is not in the ramification locus of the action of the Galois involution
in the considered Switched chart : the two-fold cover (r,s,t,z,c) i O(r,s,t,2,c) is a
local diffeomorphism in a neighborhood of 3. O

8.4. Projective structures and Hejhal’s theorem.
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8.4.1. Projective structures. A projective structure on the Riemann surface X is the data
of an atlas of charts f; : U; — P! (holomorphic diffeomorphisms) such that transition
charts ;; := f;o f;l are Moebius transformations in restriction to their set of definition:
©ij € PGLy(C). Two projective atlases define the same projective structure if their union
(concatenation) also forms a projective atlas. This notion goes back to the works of
Schwarz on the hypergeometric equation where the projective charts are locally defined
as quotients of independant solutions of a given 2"d-order differential equation w” +
’ — 0N ; R ny ), _ _ VI i
f(@)u +'g(3:)u = 0; equivalently, after normallzatlon '+ Sru=0,¢=9—-%5 -,
local projective charts are solutions of the differential equation {f, 2} = ¢ where {f,z} =
" / " 2

(]}—,) -3 (]}—,) is the Schwarzian derivative with respect to x (see [53, chapter VIII]
for this point of view). In the hypergeometric case, the projective structure has singular
points at poles of the differential equation. In our case, we can define a (non singular)
projective structure on the curve

Xpsn + (9 =F@)}, Fla) =l -1z -r)(z-s)(z—1)

by a unique differential equation of the form

1F/ m3+ng2+b1w+b0
" /
U +<2F>u+< oF >

(where v/ and F’ mean partial derivative with respect to x). When we let the complex
structure (7, s,t) of the curve vary in T C C3, where

T={(r,s,t)€C3|rst#0,1, r#s r#t s#t},

the space of projective structures identifies with
T x C3,

where Cj = {(bo, b1,b3) € C3}. Following [29], the data of a global non sigular projective
structure on X is also equivalent to the data of a SLg-connection on a Gunning bundle
(Ey, V). In fact, up to the choice of Ey, we have a one-to-one correspondance between
connections V on Ey and projective structures on X.

The monodromy of a projective structure is by definition the monodromy of the
connection V, of the 2"-order differential equation, or of any local projective chart
(that can be analytically continuated along any loop). After lifting to the Teichmiiller
space, namely the universal cover 7' — T, the monodromy map

Mon : T x C} — Hom(mi (X, w),SL2)/paL,.

is well-defined and analytic.

8.4.2. Hejhal’s theorem. A problem which goes back to the work of Poincaré on Fuchsian
functions was to decide which kind of representation Hom(m(X,w),SL2)/pgL, arise
as the monodromy of a projective structure, i.e. as monodromy of (FEy,V), maybe
deforming the complex structure of X. Counting dimensions, we get 3 parameters (7, s, t)
for the curve and then 3 other parameters b = (bg, by, be) for the projective structure on
the curve. Since the dimension of representations space is 6, one expect to realize most
of them as monodromy. This was indeed proved in [21]: a representation can be realized
if, and only if, it is not conjugated to a unitary representation, and it has Zariski dense
image in SLa(C). Some time earlier, D. A. Hejhal proved in [30] a local version:
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Theorem 8.3 (Hejhal). The monodromy map
Mon : T x C} — Hom(m (X, w),SLa)/pcL,
is a local diffeomorphism.

Going back to the isomonodromy point of view, consider the Gunning bundle Fy
with 9 = Ox ([wo] 4+ [w1] — [weo]). The locus of projective structures is given by the
subspace ¥ of those triples (X, E,V) with E = Ejy in the total moduli stack M. The
leaves of the isomonodromy foliation are locally defined as the fibres of the monodromy
map RH. That the monodromy map RH|x, restricted to the locus ¥ of projectives struc-
tures is a local diffeomorphism is therefore equivalent to saying that the isomonodromic
foliation is transversal to 3. With 8.1, we have therefore provided a new proof of Hejhal’s
theorem.

Remark 8.4. The topological transversality of X with the isomonodromy leaves, or
equivalently the openess of the monodromy map, also follows from the main result in
[31]. Indeed, the projective structure induced on X by taking the cyclic vector Opi has
no apparent singular point (since all ¢; = t;) and cannot be deformed isomonodromically
(see [31, section 1.2]).
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