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Line scratch detection in old films is a particularly challenging
problem due to the variable spatio-temporal characteristics of
this defect. Some of the main problems include sensitivity to noise
and texture, and false detections due to thin vertical structures
belonging to the scene. We propose a robust and automatic
algorithm for frame-by-frame line scratch detection in old films,
as well as a temporal algorithm for the filtering of false detections.
In the frame-by-frame algorithm, we relax some of the hypotheses
used in previous algorithms in order to detect a wider variety of
scratches. This step’s robustness and lack of external parameters
is ensured by the combined use of an a contrario methodology
and local statistical estimation. In this manner, over-detection
in textured or cluttered areas is greatly reduced. The temporal
filtering algorithm eliminates false detections due to thin vertical
structures by exploiting the coherence of their motion with that
of the underlying scene. Experiments demonstrate the ability of
the resulting detection procedure to deal with difficult situations,
in particular in the presence of noise, texture and slanted or
partial scratches. Comparisons show significant advantages over
previous work.

Index Terms—Film restoration, line scratches, adaptive detec-
tion, a contrario methods, affine motion estimation

I. INTRODUCTION

The restoration of old films is a subject of primary interest

due to the great quantities of old film material present in film

archives. Unfortunately, manual digital restoration is extremely

time-consuming and labour intensive. For instance, the recent

restoration of George Melies’s “Voyage dans la Lune” (1902)1

took one year (for fifteen minutes of film). It is clear, there-

fore, that automatic or semi-automatic tools designed for the

detection and restoration of defects are highly desirable.

Some of the most common defects in films include dust/dirt,

blotches, flicker and line scratches. Here, we consider the last

defect, the line scratch, usually caused by an abrasion to the

physical film. A good explanation of the physical origins of

line scratches may be found at [1]. These line scratches appear

as thin bright or dark lines which are roughly straight and

vertical. These defects also present the singular characteristic

of temporal persistence, meaning that they remain in the same

or a similar spatial position for several frames. Consequently,

line scratch detection algorithms must be specially adapted to

this defect.

However, these characteristics are very variable, making

line scratch detection and restoration a particularly difficult

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

1Partly restored by Technicolor, presented at the Cannes Film Festival 2011.

challenge. For instance, in some cases, the scratch is semi-

transparent, so that some of the original image information

is still available, whereas in others all the information is re-

moved. Also, scratches are not necessarily completely straight

and vertical, and their shape may in fact vary from frame to

frame. Finally, although scratches can often be static, they may

also move with any type of motion.

We propose a line scratch detection method which is com-

posed of two algorithms: a “spatial” algorithm which provides

a pixel-precision detection of line scratches in single frames,

and a “temporal” step which rejects false alarms based on

information available in the whole image sequence.

The contributions of this paper are as follows. Firstly,

we propose a pixel-precision line scratch detection algorithm

which is robust to the presence of noise and texture. The

algorithm’s robustness is due to the use of the a contrario

methodology [7], previously used for gradient alignment de-

tection in images. In particular, we propose a modification to

the methodology which makes the detection robust to texture

and clutter with characteristics that vary throughout the image.

This drastically reduces the number of false alarms. The spatial

algorithm presents good recall (most of the scratches are

detected), with very few true scratches being rejected.

Secondly, we propose a temporal filtering step to remove

false detections left over from the spatial detection. In contrast

to most previous approaches, we reject false detections, rather

than validating true scratches. This is done by using a motion

coherence criterion: we consider that detections which move in

the same manner as the underlying scene are not true scratches.

In particular, we avoid the difficult task of tracking true

scratches, whose temporal behaviour is difficult to determine.

In order to decide on the rejection of a detection, we also

estimate a robust affine scene motion, in contrast to some

previous methods [9], [19] which employ less robust motion

estimation.

The advantages of our method will be demonstrated in

Section V on a series of degraded film sequences and discussed

in comparison with previous work.

The paper is structured as follows. In Section II we briefly

recall some of the previous works on spatial and temporal

line scratch detection. In Section III we present the proposed

method for spatial scratch detection. In Section IV, we intro-

duce the temporal, motion-based filtering whose goal is the

removal of false alarms. Finally, experimental validations are

presented in Section V. Preliminary versions of our work have

appeared in [21], [20].
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II. PRIOR WORK

Line scratch detection can be performed using only spatial

information, on a frame-by-frame basis. Another body of

work, which we shall call temporal approaches, include motion

information to improve the detection. As acknowledged in a

recent review [16], both approaches are complementary and

benefit from one another’s advantages.

Kokaram [15] was the first to introduce a spatial model for

the detection of line scratches. This model is based on the

hypothesis that “side-lobes” are visible on either side of a

line scratch. The horizontal scratch profile is modelled by a

damped sinusoid and Bayesian estimation is used to determine

whether an observed profile corresponds to a scratch or not.

In [5], Bruni et al. provide a physical explanation for this

model; the side-lobes are caused by light diffraction during

the film scanning process. This model is also used in the work

by Bruni et al. [4]. This approach is considered to be among

the most efficient for line scratch detection (see the recent

review in [16]) and we use it for comparison with the proposed

approach. In other methods, such as [2] and [19], scratches are

detected in the wavelet domain. The Hough transform is used

in both [15] and [6] to detect prominent lines. Finally, Kim

et al. use neural networks in [14] to establish scratch texture

characteristics, before applying morphological filtering.

These spatial detection algorithms have several weaknesses.

Firstly, the scratch is represented as a straight, vertical line.

In practice, this hypothesis is often violated, and as a con-

sequence many true scratches may be missed. With such

methods, a slanted or non-straight scratch will be at best

partially detected, which is of little use for restoration since

the scratch will most likely have to be annotated by hand.

Furthermore, experiments show that existing algorithms cope

badly in noisy or textured regions. We deal with this important

problem explicitly, by considering a locally adaptive detection

model, and setting the thresholds accordingly. Finally, line

scratch detection algorithms often represent the scratches as

covering the entire height of a frame. This sort of detection

runs the risk of restoring parts of the image which are not

degraded. We relax several of the hypotheses found in other

papers, such as the existence of side-lobes, allowing our

algorithm to detect a wider variety of scratches.

Temporal approaches may be found in [13], [11], [12],

[9] and [19]. The goal of these algorithms is to validate

the detections based on hypotheses concerning the temporal

nature of line scratches. Joyeux et al. use the hypothesis

that scratches have sinusoidal horizontal motion, due to the

supposition that they are caused by rotating mechanical parts.

The true scratches are then tracked by integrating this hy-

pothesis into a Kalman filter. The drawbacks of this approach

are the restrictive nature of the sinusoidal hypothesis, and

the lack of any global motion analysis. In [9], Güllü et al.

propose the local block matching error between frames as a

criterion for distinguishing true scratches from false alarms.

If the local block matching error around a scratch is high,

then the scratch trajectory is validated as a true scratch.

Unfortunately, this criterion is quite sensitive to phenomena

such as flickering or other film degradations. This sensitivity

degrades the robustness of the validation decision. Finally

in [19], Müller et al. use motion estimation for line scratch

filtering. The algorithm rejects any scratch detections which

display similar motion to that of the scene. The scene motion

is determined by hierarchical block matching in the left and

right neighbourhoods of each scratch, and the scratch’s motion

is determined on the spatial location of the scratch itself. While

the basic principle of this approach (the motion of a scratch

is not coherent with the scene motion) is very reasonable and

will also be included in the present work, the approach from

[19] suffers from clear disadvantages. Firstly, in practice it

is extremely difficult to track thin structures from frame to

frame. Second, block matching is not particularly well-adapted

to such structures. Finally, the global motion is estimated in a

very basic and non-robust manner.

In order to illustrate the benefits of our approach, we shall

compare our work to three of the previous algorithms. For

spatial detection, we shall use the work of Bruni et al. [4],

and for the evaluation of our temporal filtering, we shall use

the work of Güllü et al. [9] and Müller et al. [19].

We now proceed to describe our spatial line scratch detec-

tion algorithm.

III. SPATIAL LINE SCRATCH DETECTION

ALGORITHM

The proposed algorithm consists of a pixel-by-pixel scratch

detection step, followed by the grouping and validation of

these detections into visually significant scratch segments.

Our grouping algorithm uses the a contrario methodology, a

generic and automatic approach to setting detection parame-

ters. Furthermore, we propose a modification of the classical

methodology, relying on a local estimation of background

models, which allows for grouping under spatially varying

conditions of noise and clutter. This variant could potentially

be used for other tasks.

A. Pixel-wise detection criteria

We first identify the potential scratch points by relying on a

pixel-wise detection criterion. Several other such criteria have

been presented in the literature, and are based on operations

such as morphological filters [12], [14] or extrema detection in

a 1D signal. Our criterion is a close variant of the classical test

introduced by Kokaram [15], consisting of a threshold on the

difference between the grey-scale image, and a horizontally

median filtered version of this image. This test basically

detects outliers with respect to a horizontal neighbourhood.

In addition, in [15] the image is vertically subsampled before

the thresholding, to highlight the scratches. Contrary to this

original criterion, we do not take the central pixel into account

when determining the median value. We also use a 3x3

Gaussian filter with a standard deviation of one pixel to reduce

the noise in the image, instead of vertical sub-sampling.

A drawback of this criterion is its tendency to detect steep

intensity fronts, rather than just “peaks”. We avoid this by

stipulating that the average grey-level values should be similar

on either side of the scratch.
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Fig. 1: Line scratch profile and pixel-wise detection criteria.

Our final pixel-wise detection criteria may be written in the

following manner. Let Ig(x, y) be the Gaussian filtered grey

level image. Let Im(x, y) denote the median value over a local

horizontal neighbourhood of pixel (x, y), and Il(x, y) and

Ir(x, y) be the left and right horizontal averages, as defined

below. The two Boolean criteria are:

c1(x, y) : |Ig(x, y)− Im(x, y)| ≥ smed,

c2(x, y) : |Il(x, y)− Ir(x, y)| ≤ savg. (1)

where, smed and savg are grey-level thresholds. We can

therefore define a binary image indicating detections as

IB(x, y) =

{

1 if c1(x, y) and c2(x, y)
0 otherwise

(2)

Figure 1 shows an illustration of our two detection criteria.

For the proposed criteria, we set the width of the median

filter to 5 pixels, and the value of smed to 3 grey levels. These

values are the same as in [15] and also appeared to us to

be good empirical choices. The left and right averages are

each taken over 3 pixels on either side of the 5 central pixels,

and savg has been experimentally set to 20 grey levels. These

parameters were used for all the examples in the experimental

section.

As may be seen in Figure 2, such a pixel-wise detection is

bound to produce many false alarms, and also misses some

scratch pixels. Therefore, a further grouping step is needed in

order to determine the significant scratch segments present in

the pixel-wise scratch detections.

B. Scratch point grouping and validation

Because of false detections due to noise and texture (see

Figure 2), an extremely robust approach is needed to group

the pixels into segments. One of the most well-known methods

of detecting prominent lines in binary images is the Hough

transform, and this is used by [15] and [6] for the grouping

of scratch detections. Unfortunately, this approach contains

thresholds which need to be tuned from sequence to sequence,

(a) Original frame (b) Binary detection image

Fig. 2: Binary detection image from “Laurel and Hardy”.

White pixels are detected and black pixels are not.

and does not offer a precise spatial localisation of line seg-

ments. In order to group the pixel-wise detections, we turn

to a more sophisticated set of methods known as a contrario

methods, used for alignment detection by Desolneux et al.

in [8].

In a word, the a contrario methodology is a generic way to

detect visual objects in digital images. Detection thresholds are

set in order to control the number of false detections in a white

noise image, or more generally under a background model.

This model usually relies on an independence assumption on

the basic elements to be grouped for the detection. A group

is validated as soon as it is very unlikely that this group has

been generated by the background model. That is, groups are

detected when they are very unlikely under the hypothesis that

basic elements are independent. A comprehensive presentation

of such approaches may be found in [8].

1) A contrario line segment detection

First of all, we present the a contrario approach as it is

used to detect line segments in [7]. In this case, the basic

elements to be grouped are pixels, and segments are detected

as groups of pixels whose gradients are perpendicular to a

given direction.

Given a line segment made of l pixels, a variable xi is

associated to each pixel. The variable xi is equal to 1 if the

pixel is aligned with the segment and 0 otherwise. “Aligned”

pixels are those whose gradient orientation is orthogonal to the

segment orientation, up to some angular precision pπ radians,

with p ∈ [0, 1]. Let s = x1 + · · · + xl be the number of

aligned pixels. This is the quantity upon which the detection

of segments is based. Larger values of s are associated to more

meaningful line segments.

Now, the detection of segments require thresholds that

depend on l and p and are therefore non-trivially set. The aim

of the a contrario approach is precisely to set these thresholds.

The detection relies on the probability distribution of s under

some background model.

In the case of line segments as described in [7], the

background model specifies that all gradient orientations are

independent and follow a uniform distribution in [0, 2π]. This

is the case, for example, in a Gaussian white noise image. As

above, we consider a segment made of l pixels. Let Xi be

a random variable associated to the deterministic observation

xi. Under the background model, each Xi follows a Bernoulli

distribution of parameter p, so that the random number of
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aligned points Sl = X1 + · · ·+Xl follows a binomial law:

Pr(Sl ≥ k0) =

l
∑

k=k0

(

l

k

)

pk(1− p)l−k =: B(p; k0, l). (3)

Segments of length l having k0 aligned pixels are meaningful

when B(p; k0, l) is small enough. Intuitively, this probability

is small when the observed segment has a number of aligned

points k0 which is too large to occur by chance (as specified by

the background model). In order to threshold this probability,

the total number of tested line segments has to be taken into

account. Indeed, even very improbable events can occur if the

number of tests is high enough. For this, one considers the

number of false alarms (NFA), defined in [7] as:

NFA(l, k0) = NtestsB(p; k0, l), (4)

where Ntests is the total number of segments to be tested.

Since segments are defined by a beginning and end point, it is

easily seen that this number may be approximated as Ntests =
M2N2, with M and N the linear dimensions of the image. A

segment is detected if NFA(l, k0) ≤ ε for some parameter ε.

In other words, a segment is only meaningful if the number

of false alarms under the background model is less than ε. It

is shown in [8], that such a definition of meaningful segments

implies that the expected number of detected segments under

the background model is bounded by ε.

2) Locally adaptive grouping for line scratch detection

We now rely on the same principles to group pixels that have

been detected by the pixel-wise procedure of Section III-A.

We must first define a background model to represent the

binary image obtained with Equation (2). In the case of

orientation grouping (see Section III-B1), the background

model corresponds to an image where the direction of the

gradients are randomly and uniformly distributed. This crucial

hypothesis accounts for situations in which we do not wish

to detect alignments (homogeneous regions, noisy regions,

isotropic texture etc.). In the present case, such a background

model would not be satisfactory. The difficulty arises because

the pixel-wise detection step produces an amount of false

detections that varies greatly across the image. For example,

strongly textured or cluttered areas yield many more detections

than smooth regions, as seen in Figure 2. Moreover, the

visibility of scratches depends on their local neighbourhood.

Given that the power of the a contrario methodology hinges on

the background model, we shall now consider our background

model to be a binary image in which labels are independent

and the label probability of each pixel varies spatially. The

computation of this probability will be based on a locally

adaptive estimation.

The label probability for a given pixel is estimated as the

maximum detection density on four squares of equal size

surrounding the pixel. Four squares are used in order to deal

with situations where the pixel is on the border of areas with

different background models. Detection density is defined as

the proportion of pixels, contained within a square, whose

labels equal 1. The size of the sides of these squares is set

to the width of the image, divided by a constant. We set this

constant to 30 for all experiments in this paper.

Under this background model, the probability for a given

segment to have at least k0 pixels with a label value of 1 is

no longer given by a binomial distribution. It is easy to see

that it is now given by a Poisson binomial distribution and is

equal to:

Pr(Sl ≥ k0) =

l
∑

k=k0

∑

x1,...,xl∑
xi=k

l
∏

i=1

pxi

i (1− pi)
xi , (5)

where p1, . . . , pl are the local detection probability at each

pixel, the definition of which will be given below. This

expression is quite costly to estimate and an approximation is

therefore needed. In [8], Desolneux et al. suggest the use of

Hoeffding’s inequality [10], which provides an upper bound on

the probability that the sum of some independently distributed

random variables exceeds a certain value. In the present case,

the interest of this approximation is that it still holds when the

variables are independent but not identically distributed [10].

Therefore, it provides us with an approximation of Pr(Sl ≥
k0), where again Sl is the number of pixels having a label

value of 1 along a segment of length l. The approximation is

the following:

Pr(Sl ≥ k0) ≤ H(l, k0) := e
−l(r log r

〈p〉
+(1−r) log 1−r

1−〈p〉
)
, (6)

where 〈p〉 = l−1
∑

pi is the average detection probability

along the segment, r = k0

l
, and 〈p〉l < k0 < l. We therefore

define the number of false alarms of a segment as

NFA(l, k0) = NtestsH(l, k0). (7)

A segment is detected if its NFA is smaller than ε: such a seg-

ment is said to be “ε-meaningful”. Thanks to Inequality 6, the

expected number of detected segments under the background

model is smaller than ε.

In all experiments, we use the parameter ε = 1, as in

[7]. This choice is reasonable, since ε is a bound on the

expected number of false detections under the background

model. However, it may be further tuned to fit the user’s needs,

depending on whether the importance should be put on recall

or precision. Furthermore, as explained in [7], detection results

vary slowly with respect to ε, making it an easy parameter

to tune, if so desired. The impact of this parameter will be

empirically tested in Section V-D.

Since scratches are roughly vertical, we test all segments

with a maximum deviation from the vertical direction of ±10
degrees. We discretise these angles by 0.5 degrees. The Ntests

parameter is therefore set to M2NΘ, where Θ is the number

of angles tested. With the aforementioned parameters, we have

Θ = 40.

3) Maximality

With the previous detection procedure, many redundant seg-

ments are detected. This is because a very meaningful segment

often contains, and is contained by other segments which are

ε-meaningful. In order to keep only the best detection for such

cases, we use the notion of maximality, as introduced in [7].

A segment is maximal meaningful if it neither contains, nor

is contained, by a segment which is more meaningful (that is,
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Fig. 3: Summary diagram of the proposed spatial detection algorithm.

a segment with a smaller NFA). Therefore, we only accept

segments which possess this property.

When using the usual NFA definition, Equation (4), it may

be shown [8] that maximal meaningful segments start with

a detected pixel preceded by an undetected pixel, and end

similarly. Knowing this, the number of segments tested, and

therefore the computational cost, is greatly reduced. This result

relies on the properties of the binomial law.

Now, our approach relies on the use of the Hoeffding

approximation for the NFA definition, Equation (6). A natural

question is whether maximal segments according to this new

definition have the same property. In the Appendix, it is shown

that this is indeed the case. Maximality of segments may

therefore be tested in the same way as with the usual definition,

which also yields the same crucial computational acceleration

of the detection.

4) Exclusion principle

Since scratches have a width of several pixels, different

segments may correspond to the same scratch. Since for

restoration purposes we would like as precise a representation

of the scratches as possible, we use an exclusion principle

as defined in [8], which states that a pixel may belong to one

scratch only. If a pixel s is contained by several segments, then

the most meaningful segment retains s. All other segments

which contain s have this pixel removed. The NFAs of the

modified segments are then recalculated, and those that are no

longer ε-meaningful are thrown away. This principle can be

applied not only to pixels which belong to several segments,

but also to those which are at a distance of τx from more than

one segment. In our experiments, we set τx to three pixels. The

entire spatial detection algorithm is represented in Figure 3.

5) Algorithm speed-up

In order to speed-up the procedure, we apply a pre-selection

of scratches candidates. For this, we apply a very permissive

Hough transform to IB , and only analyse the lines which

correspond to local maxima. Tests show that no or very few

real scratches are lost by this pre-processing. Note that this sort

of speed-up has been used previously by other authors in [15],

[6]. In fact, a parallel may be drawn with the work of Kokaram

[15] in that the latter consists of a permissive Hough transform,

followed by a statistical parameter estimation method. How-

ever, there are two main differences between our work and

the latter approach. Firstly, our statistical (a contrario) step

does not require an explicit scratch profile model. Secondly,

our approach looks for the best sub-segments in a line, rather

than validating the whole line. For these reasons, our approach

appears more powerful and robust than that of [15].

In the next section, we shall explore the temporal aspects

of line scratch detection and present our temporal filtering

algorithm.

IV. TEMPORAL FILTERING ALGORITHM

Although the previous algorithm detects line scratches with

good spatial precision and is robust to noise and texture, it does

not deal with the problem of false alarms due to thin vertical

structures that are part of the captured scene. On a frame-by-

frame basis, these closely resemble line scratches. In some

situations, it is practically impossible to differentiate the two

without prior knowledge concerning the scene structure.

Unfortunately this sort of knowledge is difficult to obtain

and use. One other way to distinguish between true and false

scratches is to use temporal information contained in the image

sequence. Since scratches are caused by physical damage to

the actual film, their motion is completely independent of

that of the scene. Therefore, any detections displaying motion

which is coherent with the scene should correspond to false

detections.

Consequently, we reject any scratch detections having a

trajectory which conforms to the dominant scene motion. We

shall refer to this criterion as the motion coherence criterion.

This criterion does not deal with scratches which move

with the scene, or are completely still in a static scene.

However, such situations are impossible to resolve without

prior knowledge on the nature of scratches.
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(a) Original detections (IT ) (b) Realigned detections

(I ′T )

(c) Detected trajectories. In

red false alarms, in green

true scratches.

(d) Final filtered detections

Fig. 4: Different x-t binary maps, for the “Afgrunden 2” sequence. The horizontal axis represents the average horizontal position

of a scratch, and the vertical axis represents the frame number t which the scratch belongs to. Each white point corresponds

to a detected scratch segment in a given frame. The original video may be viewed at: http://www.enst.fr/~gousseau/scratches.

A. Motion coherence

The major challenge when using motion information for

scratch filtering is determining the trajectories of true and/or

false detections. This is a very difficult task in the case of true

scratches due to the generic nature of the trajectories of line

scratches. Instead, we shall try to determine the trajectories of

false detections.

In all that follows, we suppose that a scratch detector

provides the initial detections. In our work, we naturally use

the detection scheme presented in Section III, but it should be

noted that it is possible to use any spatial detection scheme

in the literature, although the results may be worse if pixel-

precision detections are not given.

For temporal filtering purposes, we shall represent a scratch

detection by its average column position and the index of

the frame in which it is found. Let IT be the x-t binary

detection map of the detected scratches. For an example of

this representation, see Figure 4 (a). Let S represent an initial

scratch detection. We will refer to this as a segment. Let

x̃(S) and ỹ(S) be the average column and row indices of

the segment, and t(S) denote the frame in which the segment

was detected.

The first step of the proposed temporal filtering is to

determine the trajectories of the false detections, a non-trivial

task given the irregularity of the detection map. Instead of

determining the trajectories in IT , we will create another

binary map in which the positions of the segments are re-

aligned with respect to an estimated global scene motion. Let

us call this new detection map I ′T . Before explicitly defining

the new detection map, let us observe that the positions of

false detections will appear as straight vertical lines, due to

the motion coherence hypothesis. For an example of I ′T , see

Figure 4 (b). The problem of detecting straight, vertical lines

in an image is much more constrained than following generic

trajectories, and therefore easier to solve.

In order to realign the segments, we need to obtain an

estimation of the scene’s global motion. To do this, we use

the algorithm from Odobez et al. [22] to estimate an affine

approximation of the dominant motion in a robust manner. At

a pixel position q = (xq, yq), the motion vector (u(q), v(q))
is expressed as:

{

u(q) = c1 + a1xq + a2yq
v(q) = c2 + a3xq + a4yq

, (8)

where c1 and c2 are the parameters describing the constant

motion components, and a1...a4 are the parameters associated

with the spatially varying components of the motion.

Let (x, y) be a pixel in a frame t and (x′, y′) be the

corresponding position in frame t+1. We have the following

relationship:

[

x
′

y
′

1

]

=

[

a1 + 1 a2 c1

a3 a4 + 1 c2

0 0 1

][

x

y

1

]

:= Ãt,t+1

[

x

y

1

]

.

(9)

This motion estimation is carried out between each consec-

utive pair of frames throughout the image sequence.

Let x and y represent the spatial coordinates of a pixel in

frame t. It is possible to find its corresponding coordinates,

(xr,yr), in a frame r with the following relationship:





xr

yr

1



 = Ã−1
r,t





x

y

1



 , (10)

with

Ãr,t := Ãt−1,tÃt−2,t−1 ... Ãr,r+1. (11)

This provides us with the necessary tools with which to

realign the segments. The binary detection map I ′T resulting

from this realignment is defined as:

I ′T (x, t) =

{

1 if ∃S | x̃r(S) = x, t(S) = t

0 otherwise
(12)

where x̃r(S) is the average column index of the segment

warped to the reference frame. It is important to note that

it is the original detection segments which are realigned with

respect to the global motion, and not the detection map IT
itself. This is due to the fact that several segments may cor-

respond to the same spatio-temporal point in IT . An example

of a realigned detection map may be seen in Figure 4(b).

Once the segments have been realigned, we need to detect

vertical line segments in I ′T , and thereby determine the trajec-

tories of the false detections. Interestingly, the a contrario step

of the algorithm presented in Section III may be used for this

task, since we wish to detect line segments in a new binary

image (the detection map). The detection also guarantees a

precise and unique description of the trajectories, using the
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maximality and exclusion principles defined in Section III-B.

The maximality principle implies that trajectories with tempo-

ral holes may be grouped together, and also that the beginning

and end points of the trajectories can be detected very robustly.

By using the exclusion principle, only the best representation

within a certain neighbourhood will be chosen, which avoids

having to make difficult decisions if trajectories are too close

to each other. A trajectory detected in this manner will simply

be a list of x-t positions in I ′T .

In terms of implementation details, we allow a maximum

slope of 5 degrees in comparison to the vertical when de-

tecting the trajectories. This corresponds, roughly, to allowing

a trajectory to deviate one pixel every eleven frames with

respect to the underlying scene motion. Before detecting the

trajectories, we perform a horizontal morphological dilation

of one pixel on I ′T (x, t). This is necessary, since the spatio-

temporal trajectories shown in Figure 4(c) are discretised, and

therefore the trajectories may not be precisely detected without

dilation.

We now define a trajectory set T as the set of segments

whose x-t positions are within a horizontal distance of one

pixel of the x-t positions of a given detected trajectory.

Up to this point in the paper, it has been assumed that all

the trajectories detected as vertical lines in I ′T correspond to

false detections. Unfortunately, true scratches may be coher-

ent with the global scene motion when the scene is static.

Therefore, scratches may be totally or partially represented

as straight vertical lines in I ′T . Such a situation may be seen

in Figure 4 (c). Two short trajectories are present (in green)

which correspond to the partial trajectories of true scratches.

Since these scratches happen to be static, their trajectories

are detected as vertical segments in I ′T when the scene does

not move, but naturally are lost when the scene moves (they

become significantly slanted after that point). The scratches

should not be rejected as there is no significant motion of the

scene over the time interval during which they are detected.

We determine whether the scene has moved sufficiently

during a trajectory’s timespan by inspecting the maximum

horizontal motion of the scene. For this purpose, it is sufficient

to look at the original positions of the segments in the

trajectory set. Since these have been identified as conforming

to the underlying scene motion, their original positions reflect

this motion. This obviously holds true in the case of a static

scratch and no scene motion. Therefore, we reject a trajectory

set if there exist two segments Q and R belonging to this set

which verify the following inequality:

|x̃(Q)− x̃(R)| ≥ τm, (13)

where τm is a motion threshold. This corresponds to the

absolute distance that the scene has moved between the frames

t(Q) and t(R). It is important to note that this corresponds to

the scene motion locally in the area of the scratches. This can

be crucial for situations such as zooming, in which case the

scene presents different motion at different positions in the

image. In all of our evaluations, we set the parameter τm to

10 pixels.

B. Further filtering criteria

Apart from motion coherence, there are other criteria which

are reasonable to use for scratch filtering, and which are much

more easily implemented than the motion coherence. One

example, which we have used in our evaluations, is a scene cut

criterion. This stipulates that an entire trajectory set is rejected

if its beginning and ending frame indices are within a temporal

distance τc from a scene cut. In our experiments, we set τi to

5 pixels and τc to 4 frames. We used a simple Edge Change

Ratio based scene cut detection algorithm (see [18]) for the

detection of the scene cuts, in which the edge detection was

done using the Sobel operator. This can obviously be replaced

by other scene cut detection algorithms, if necessary. This is a

minor step of the proposed procedure. Indeed, in all of our

experiments, it was used only for the “Laurel and Hardy”

sequence.

V. RESULTS

In this section, we present quantitative results of our algo-

rithm. Its performance is compared with other approaches with

respect to three criteria: recall, precision and the F1-score.

Table I shows this quantitative evaluation. Recall is defined

as the number of true detections divided by the total number

of true scratches present in an image. Precision is defined as

the number of true detections divided by the total number of

detections. Basically, recall determines what percentage of the

line scratches are detected, and precision shows what percent-

age of our detections were correct detections. The F1-score is

a reflection of both criteria, and defined as 2 recall∗precision

recall+precision
.

We evaluate both the spatial detection step and the temporal

filtering algorithm. These two contributions are compared with

three other algorithms: the spatial method of Bruni et al. [4]

and the temporal algorithms of Güllü et al. [9], and Müller

et al. [19]. While another more recent spatial method [14]

exists, it is a supervised algorithm (contrary to Bruni’s and

ours, which are automatic) and contains several parameters

which are not given in the paper, such as the number of

nodes in the input and hidden layers of the neural network,

making implementation impossible without testing a series of

architectures.

In our experiments, all the parameters are set to the val-

ues given throughout the paper. In particular, the detection

threshold ε is set to 1, the exclusion parameter τx is set

to three pixels, and the motion threshold τm to 10 pixels.

Note that we impose a minimum scratch length of one tenth

of the image height for all of our spatial detections. The

parameters for Bruni’s algorithm are those given in [4] and [3],

apart for the scratch colour parameter (black or white), which

was set manually for each sequence. Three parameters are

required by Güllü’s algorithm. As it relies on Bruni’s algorithm

for the initial spatial detection step, the scratch colour must

be specified (black or white). The second parameter is a

maximum search distance for the block matching algorithm.

For this, we chose a maximum distance of 7 pixels either

side, which corresponds to the maximum motion we expect

in the sequence. Finally, we need a maximum mean absolute

difference (MAD) threshold which identifies the presence of
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Fig. 5: Variation of the performance (f1-score) of the spatial detection algorithm with respect to the values of ε and the box

size used for the background model estimation. The box size is a fraction of the image dimension for each sequence.

a scratch. We chose 15 grey levels for this threshold. These

last two thresholds are not specified in [9]. Finally, Müller

et al. [19], propose both a spatial approach and a temporal

filtering step. Unfortunately, their spatial detection algorithm is

not fully detailed, and cannot be reimplemented. However, we

can compare the temporal step of the present approach with the

temporal step from [19], which has some similarities with ours.

Therefore, we use our spatial detections as inputs and filter

these detections with the temporal part of the approach from

[19]. This algorithm requires the setting of a neighbourhood

size on the left and right hand sides of the scratch. This

parameter is not specified in [19], and we chose a horizontal

neighbourhood of 5 pixels. The other necessary thresholds are

given in [19].

We are presented with a difficulty when comparing our

algorithm, which produces a precise description of the line

scratches, with methods that suppose that line scratches cover

the entire height of the image. Our approach has an advan-

tage in terms of precision, whereas the second type has an

advantage with respect to recall. In terms of recall, we shall

evaluate all the algorithms on a pixel-wise basis, in other

words the number of annotated scratch pixels detected divided

by the total number of scratch pixels. For the algorithms of

Bruni et al. and Güllü et al. we shall consider that all the

pixels in a detected column are detected. On the other hand, a

fair and meaningful comparison of precision is more difficult

to achieve. Naturally, we should evaluate our algorithm and

that of Müller et al. on a pixel-wise basis, that is to say

the number of annotated pixels detected divided by the total

number of pixels detected. However, if we do this for the

algorithms in [4] and [9], we shall bias the precision of

their algorithms, especially when short scratches are present.

Therefore, for these algorithms, we shall consider that a

detection is “correct” if it touches at least one annotated pixel.

This obviously confers a considerable advantage on Bruni’s

and Güllü’s algorithms, but it would be unfair to evaluate them

otherwise. For comparison, we have also included the pixel-

wise precision evaluation for Bruni’s and Güllü’s algorithms

in Table I, which are written in smaller font below the main

evaluation. For all of these evaluations, we allow a spatial

detection error of 2 pixels.

Tests were carried out on ten film sequences of varying char-

acteristics. The first three (“Knight”, “Sitdown” and “Star”) are

commonly found in the line scratch literature, and are found in

Kokaram’s book [17]. “California” and “Laurel and Hardy”,

contain straight, vertical scratches, similar to the first three

examples. “Les Choses de la Vie” displays scratches which

are more difficult to detect (not completely straight, slanted

and/or faint). While the first six sequences are useful for

the evaluation of our spatial line scratch detection algorithm,

the temporal filtering step is of little use in these cases,

since the sequences are either very short, or contain no false

alarms which may be rejected using temporal aspects. The last

four sequences are longer and illustrate the improvement on

precision we are able to obtain by using temporal filtering.

Figure 6 shows some examples of our spatial detection

results, compared with those of the algorithm presented in

[3]. Table I presents the results of our two algorithms, in

comparison with the results of the algorithms of Bruni, Güllü

and Müller. We have also shown the average execution times

per frame of our spatial algorithm with that of Bruni et

al., for each sequence. The execution times of the temporal

algorithms were not compared since they do not constitute a

significant bottleneck of the detection process. The computer

architecture is an Intel Core i5 CPU (2.67 GHz), and the code

was written in Matlab, with mex functions for certain parts of

the algorithm. Our execution times are slower than those of

Bruni et al., due to the fact that we test many segments in the

image. However, it is clearly possible in the present case to

use acceleration techniques as found in [23].

The annotation of the sequences was done by manually

noting the beginning and end points of each scratch seg-

ment. In the case of scratches which were not completely

straight, several consecutive segments were annotated. We

performed this annotation task because, to the best of our

knowledge, no standard database exists for scratch detection.

The complete annotated sequences, as well as the detec-

tion results can be downloaded from the following address:

http://www.enst.fr/~gousseau/scratches.

A. Recall

In the first four sequences, Bruni’s and Güllü’s algorithms

produce better recall than ours. This is due to the fact that our
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TABLE I: Recall, precision and F1 values comparison, in percentage. We compare our spatial and temporal results with those

of Bruni et al., Güllü et al. and Müller et al. In smaller font are the results of the pixel-wise evaluation of precision for Bruni’s

and Güllü’s algorithms.

Evaluation Algorithm
Film

Knight Sitdown Star California Laurel-Hardy Choses Vie Afgrunden 1 Afgrunden 2 Keldjian Gate

Recall

Bruni 100.00 80.93 95.00 82.07 41.87 43.43 75.11 59.43 12.63 49.81

Güllü 100.00 80.93 95.00 35.56 38.74 29.99 68.75 52.98 11.48 31.29

Müller 09.57 17.26 41.20 54.07 38.65 16.31 50.65 42.34 14.06 47.12

Spatial 79.34 73.72 82.21 81.10 59.35 64.88 86.66 94.01 77.35 89.03
Temporal 79.34 72.63 79.68 80.82 59.26 60.11 86.39 93.71 77.16 89.03

Precision

Bruni 29.54 56.47 56.87 10.79 08.84 25.06 09.35 07.85 07.11 02.45

Pixel-wise evaluation 23.93 28.54 13.67 06.62 07.88 05.67 03.20 01.85 01.75 00.48

Güllü 29.54 56.47 57.32 11.91 12.01 25.45 10.27 07.43 05.98 02.27

Pixel-wise evaluation 23.93 28.54 13.78 06.67 10.37 03.47 03.56 01.74 01.47 00.44

Müller 79.86 51.62 46.57 81.22 31.89 75.48 48.17 35.28 29.08 03.06

Spatial 71.70 72.07 53.15 79.60 38.31 67.80 45.85 28.01 17.43 03.32

Temporal 73.97 71.85 56.25 79.89 45.29 69.19 67.76 50.92 38.06 11.93

F1-score

Bruni 45.61 66.52 71.15 19.08 14.60 31.78 16.62 13.86 09.10 04.68

Güllü 45.61 66.52 71.50 17.84 18.33 27.53 17.86 13.03 07.86 04.23

Müller 17.09 25.87 43.72 64.92 34.95 26.82 49.38 38.49 18.96 05.74

Spatial 75.33 72.88 64.56 80.34 46.56 66.31 59.97 43.16 28.45 06.40

Temporal 76.56 72.24 65.95 80.35 51.34 64.33 75.94 65.99 50.98 21.04

Execution time (s)
Bruni 0.03 0.05 0.08 0.03 0.03 0.12 0.08 0.08 0.06 0.06

Spatial 0.49 106.22 98.67 17.13 1.85 2.52 5.33 4.65 2.24 12.63

evaluation gives the benefit of the doubt to these algorithms

by considering that all of the pixels in a detected column

are detected. Our spatial algorithm, on the other hand, must

determine the beginning and end points of the scratch with

high spatial precision. In the “Knight” sequence, for example,

we are also able detect the correct column indices of the

scratches 100 percent of the time, but sometimes miss certain

parts of a scratch.

In the remaining sequences, we see our spatial algorithm’s

strong points: it is able to detect scratches with varying

characteristics. This may be explained by our algorithm’s

ability to detect and represent slanted and disjointed scratches

as a collection of segments with varying length and angle. It is

also able to detect faintly contrasted scratches, even in highly

textured areas (as in the extract from “Les Choses de la Vie”

example). Contrary to the other tested methods, our recall is

high for all sequences.

It can be seen that the algorithm of Müller et al. produces

relatively poor recall on all of the sequences. This is because

their corresponding rejection criterion is often verified by true

scratches. Indeed, due to the lack of an efficient tracking

scheme, a large number or correct detections are rejected

as long as the local motion is large enough (more than 0.2

pixels per frame, in absolute vale). Furthermore, in practice

many “temporal holes” are observed in the resulting scratch

detections. This means that a restoration process using these

detections is likely to produce flickering scratches, which may

be a very undesirable result.

It should be noted that algorithms which filter the detections

according to a temporal criterion (ours as well as those of

Güllü et al. and Müller et al.) can only decrease recall (since

no new detections are produced). Therefore, an important

property of the temporal filtering stage is that it should not

deteriorate recall. It may be observed in Table I that our

algorithm induces very little loss of recall, with a maximum

loss of 4.77 percent in the “Les Choses de la Vie” sequence.

Müller’s algorithm, on the other hand, decreases recall by a

maximum of 69.77 percent (“Knight”).

B. Precision

As stated earlier, our evaluation procedure confers a strong

advantage on Bruni’s and Güllü’s algorithms in terms of

precision. In spite of this advantage, our spatial algorithm

is able to outperform these algorithms in nine out of ten of

the sequences. This performance is due to the a contrario

grouping and validation process, which limits the number of

false detections in noisy situations as well as in textured areas.

As previously mentioned, the first six sequences do not

present any interesting situations in terms of temporal filtering,

which explains why the precision is practically the same

for our spatial and temporal algorithms for these sequences.

In the last four sequences, however, our temporal algorithm

significantly improves the precision of our spatial algorithm,

with a maximum increase of 22.91 percent (“Afgrunden 2”).

In Figure (7), a visual example of the benefits of the temporal

filtering step may be seen. The temporal filtering step increases

precision in all of the sequences apart from “Sitdown”, which

decreases by 0.22 percent only.

Müller’s algorithm presents good precision on most of the

videos. In three cases, this algorithm outperforms our temporal

approach. Unfortunately, this precision comes with very low

recall, which is of little use for restoration purposes. This is

reflected in the F1-scores, which are generally quite low.

Güllü’s algorithm fails to significantly increase precision

because the MAD threshold introduced in [9] is not robust

enough. It is sufficient that one MAD value be quite high for

an entire trajectory to be validated as a true scratch. In practice,

this happens often even though we allow a very tolerant MAD

threshold. Conversely, our algorithm robustly determines a

complete trajectory, so that a better-informed decision can be

made.
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(a) Original frame (b) Detection from [4] (c) Our spatial detection

Fig. 6: Spatial scratch detections. From top to bottom: ”Knight”, ”Sitdown”, ”Star” and ”Les Choses de la Vie”. Correct

detections are shown in green, false alarms in red. Please note that we enforce a minimum scratch height of one tenth of the

height of the image for our algorithm.
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(a) Original frame (b) Spatial detections (c) Detections after temporal filtering

with the proposed method

Fig. 7: Detections from a frame of “Keldjian” with false alarms due to thin vertical objects removed with temporal filtering.

Correct detections are shown in green, false alarms in red.

C. F1-score

The F1-score is defined as the harmonic mean of the recall

and precision:

F = 2
recall ∗ precision

recall + precision
(14)

This score illustrates the performances of the methods more

clearly than either the recall or precision alone. The results

show that our spatial algorithm retains a good F1-score for

all of the sequences, and outperforms Bruni’s, Güllü’s and

Müller’s algorithms in nine out of ten sequences. Furthermore,

our temporal filtering step improves the F1-score of our spatial

algorithm in all of the sequences apart from “Sitdown” where

it decreases by 0.64 percent, and “Les Choses de la Vie” where

it decreases by two percent. This is an important point, since

it implies that this temporal filtering step may be used on any

type of sequence (short, long, with or without motion) with

practically no deterioration in the resulting detection.

To resume, both the spatial and temporal algorithms in-

troduced in this paper provide a significant improvement on

previous methods. The same set of parameters was used for

all the sequences. We do not have to specify to our algorithm

whether black or white scratches are being detected, which is

a significant advantage over other methods. Furthermore, our

algorithm produces pixel-precision detections, which can be

crucial for avoiding restoring non-degraded parts of images.

D. Algorithm parameters

In this section, we will have a short discussion about several

of the more important parameters in our algorithm. Although

the same parameters were used for all of our experiments,

we would like to illustrate the evolution of the algorithm’s

performance with respect to certain key parameters. In partic-

ular, we inspect the influence of the box size used for local

estimation and the parameter ε. These two parameters are of

great importance, since they determine our background model

and line scratch detection threshold. The results of this analysis

may be seen in Figure 5.

We can see that the F1 score is relatively stable around

ε = 1, which is to be expected given the log-dependence

of the NFA on ε (see [7]). It may be seen that in some

sequences, the maximum value of the F1 score is not centred

on ε = 1. However, this does not mean that we have chosen the

incorrect value of ε. Since the spatial algorithm is incapable

of distinguishing between true scratches and thin vertical

structures, lowering ε does not imply an increase of the F1
score; we need the temporal filtering step for this. We may

also see that the F1 score is stable with respect to the box size

used for empirically estimating the local background model.

We have shown of range of values from 1
10 to 1

50 of the image

dimension. This means that it is a reasonable choice to make

this parameter dependant on the image size.

The thresholds on our scratch model (width of the median

filter, the parameters smed and savg) were empirically deter-

mined for the scratches which were found in our sequences.

However, they may need to be changed for higher resolution

images, in which the scratch may cover more pixels.

Another parameter which may be discussed is τm, the

motion threshold which flags a trajectory as being a series of

false detections. The most important aspect of this threshold is

that it should not be set too low otherwise all the true scratches

in still frames will become flagged as false alarms; we need

to be very sure that the scene has moved significantly before

taking any action. Ideally, we would like to determine the

maximum error of the global motion estimator of [22] and

set τm to a value greater than this. However, this may be too

close an analysis for such a task. The parameter was set to a

conservative value (10 pixels) and was sufficient to deal with

all the sequences in our experiments.

E. Robustness to noise and texture

One of the major assets of a contrario detection procedures

is their ability to control the number of false detections in noisy

or cluttered images. Often, such methods rely on statistics that

are learned globally from the considered image. In our case,

we found it necessary to estimate such statistics locally, in

order to be resistant to textured regions.

In this section, we illustrate the ability of the approach to

control the number of false detections and the importance of

performing local statistical evaluation.
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(a) Original frame (b) Binary detection (c) A contrario detection

with a global background

model estimation

(d) A contrario detection

with a local background

model estimation

(e) Original frame (f) Binary detection image

(g) A contrario detection with a global background model

estimation

(h) A contrario detection with a local background model

estimation

Fig. 8: An illustration of our spatial method’s robustness to texture and noise on two highly textured test images. In the first

example, our locally adaptive method produces only one false detection, whereas with a global background model estimation,

the algorithm fails. The second example illustrates this principle on an image with real scratches.
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This can be observed in the images in Figure 8. Due to

the highly textured nature of the images, false detections are

produced when we try to use our algorithm with no local

estimation. When we introduce local estimation, detections are

limited in areas with high detection density, which illustrates

one of the strong points of our algorithm. In the image of the

monkey, we produce one false alarm with local estimation,

which is coherent with the chosen value for ε.

F. Scratch detection in high definition images

In Figure 9, an example of a high definition image contain-

ing scratches is given. This example is interesting since, as

was mentioned at the beginning of the paper, the restoration

of films is being done for formats of high resolution. It can be

seen that the algorithm from [3] is unable to detect the faint,

white scratches present on the right hand side of the image,

whereas the proposed method locates them with a high degree

of spatial precision. In the example in Figure 9, it may be

seen that certain false alarms are present which are not due to

vertical scene structures. This is likely due to the preliminary

Gaussian filtering stage of our spatial detection algorithm. This

filtering may not be sufficient for dealing with noise, since the

standard deviation is fixed. Setting this parameter adaptively

could help performance.

VI. FUTURE WORK

There are several aspects of the current work which could

be developed further. Firstly, the spatially varying a contrario

model presented here could potentially be applied to other

detection problems, such as the detection of parametric shapes

in preprocessed images. Secondly, the global motion model

estimates one affine motion only. This is obviously a rela-

tively simple model, and several motions could potentially

be estimated to allow for more complex situations. However,

the estimation of more complex motions would decrease the

robustness of the temporal filtering step. This decrease in

robustness must be compared with the robustness of actually

tracking the true scratches (as in [9]), and a compromise or a

mixture of these methods could therefore be of great interest.

Finally, although we have carried out quantitative testing of

our detection procedure, the true evaluation of defect detection

lies in the final restored sequence. In future, therefore, we

could also evaluate the detection qualitatively by inspecting

the resulting restoration.

VII. CONCLUSION

In this paper we have presented a precise spatial line

scratch detection algorithm and a temporal filtering step which

eliminates false alarms. The spatial algorithm uses an a

contrario validation step to determine if the detected segments

are visually significant or not. Our algorithm provides a

precise description of the detected scratches, which is not

given by any other fully automatic algorithm. Furthermore,

it has similar performance to the state-of-the-art in simple

cases, and outperforms the latter considerably in more difficult

situations. The temporal filtering step eliminates false alarms

which are caused by thin vertical structures belonging to the

scene, by identifying scratch detections which are coherent

with the scene’s motion or which stop at a scene cut. Our

experiments and evaluations were carried out without any

sequence-dependant tuning, which illustrates the robustness of

the algorithms.
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APPENDIX

MAXIMALITY PROPERTY AND HOEFFDING’S

APPROXIMATION

In this section, we prove two properties of the meaningful

segments defined using the NFA relying on Hoeffding’s ap-

proximation, Formula (7). These properties are necessary for

speeding up the search for maximal segments, as explained in

Section III-B3. These properties are as follows:

• If one appends a 0 (non-detected pixel) to the segment,

its meaningfulness decreases (its NFA increases)

• If one appends a 1 (detected pixel) to the segment, its

meaningfulness increases (its NFA decreases)

Using Formula (7), these properties reduce to:

H[l, k] ≤ H[l + 1, k], (15)

and

H[l, k] ≥ H[l + 1, k + 1], (16)

where H is defined as

H(l, k) := exp(−k log
k

lp
− (l − k) log

l − k

l(1− p)
), (17)

where lp < k < l. Since the exponential function is strictly

increasing, we need to study the following function:

f(k, l) = −k log
k

lp
− (l − k) log

l − k

l(1− p)
. (18)

Now, let us prove Equations (15) and (16).

For Equation (15) to be true, we need the partial derivative

of f with respect to l to be positive:

∂f(k, l)

∂l
= k

1

l
−[log

l − k

l(1− p)
+(l−k)

∂

∂l
log

l − k

l(1− p)
]. (19)

We have the partial result:

∂

∂l
log

l − k

l(1− p)
=

k

l(l − k)
.
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(a) Original frame

(b) Detection from [4] (c) Our spatial detection

Fig. 9: A high definition scratched film (1074x1920). As in all other experiments, a minimum scratch length of one tenth of

the image height was imposed. Correct detections are shown in green, false alarms in red.

Therefore,

∂f(k, l)

∂l
=

k

l
− log

l − k

l(1− p)
− (l − k)

k

l(l − k)

= log
l − lp

l − k

We know that l − lp > l − k, because lp < k (the condition

for the Hoeffding approximation to hold true). Therefore,

the right hand term of Equation (19) is strictly positive, so

that f(k, l) increases strictly with l. This means that when

a 0 is appended to a segment, its meaningfulness decreases

(since its probability increases). This shows the first inequality

(Equation (15)) in the case of Hoeffding’s approximation.

Now we prove Equation (16). This case is slightly more

complicated, since two variables (k and l) vary at the same

time. However, since we add the same quantity to both these

variables, it is enough to study the partial derivative of f(k+
t, l + t) with respect to t.

We have

f(k+t, l+t) = −(k+t) log
k + t

(l + t)p
−(l−k) log

l − k

(l + t)(1− p)
,

so that:

∂f(k + t, l + t)

∂t
= − log

k + t

(l + t)p
− (k + t)

∂

∂t
log

k + t

(l + t)p

− (l − k)
∂

∂t
log

l − k

(l + t)(1− p)
.

Now

∂

∂t
log

k + t

(l + t)p
=

l − k

(k + t)(l + t)
,

and
∂

∂t
log

l − k

(l + t)(1− p)
= −

1

l + t
,

so that

∂f(k + t, l + t)

∂t
= − log

k + t

(l + t)p
− (k + t)

l − k

(k + t)(l + t)

+ (l − k)
1

l + t

= log
lp+ tp

k + t
.
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This quantity is strictly negative, since lp < k and tp < t.

Therefore, f(k, l) decreases when k and l increase from the

same quantity. Therefore, we have in particular, that H(l +
1, k + 1) < H(l, k), meaning that meaningfulness increases

if a 1 is appended to a segment. Thus, the second inequality

(Equation 16) holds true.

We have proven the two necessary properties for a segment

to be maximal meaningful in the case of Hoeffding’s approx-

imation, thus we can safely prune the search for maximal

meaningful segments as explained in Section III-B3.
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