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The Finite Element (FE) method could be able to address the stress analysis of bonded
joints. Nevertheless, analyses based on FE models are mainly computationally cost expen-
sive and it would be profitable to develop simplified approaches, enabling extensive para-
metric studies. Firstly, a one-dimensional 1D-bar and 1D-beam simplified models for the
bonded joint stress analysis, assuming a linear elastic adhesive material, are presented.
These models derive from an approach, inspired by the FE method using a formulation
based on a four-node macro-element, which is able to simulate an entire bonded overlap.
Moreover, a linear shear stress variation in the adherend thickness is included in the formu-
lation. Secondly, a numerical procedure is then presented to introduce into both models an
elasto-plastic adhesive material behavior, while keeping the previous linear elastic formula-
tion. Finally, assuming an elastic perfectly plastic adhesive material behavior, the results
produced by simplified models are compared with the results predicted by FE using 1D-
bar, plane stress, and three-dimensional (3D) models. Good agreements are shown.

Keywords: bonded joint; single-lap shear; nonlinear material adhesive; Finite Element

method; analytical formulation; macro-element

1. Introduction

1.1. Context

In the frame of the structural component design, bonding can be considered as a suitable

assembly method or an attractive complement to conventional methods such as bolting or riv-

eting. Bonding offers the possibility of joining without damaging various materials, like plas-

tics or metals, as well as allowing for various combinations of materials. This first advantage

is reinforced by a large choice of adhesive families and by the possibility to formulate adhe-

sives, designed to best meet the joint specifications, while optimizing the structure. Bonding

allows mainly for mass benefits with regard to other mechanical fastening methods, since the

material volume required is reduced to sustain static or fatigue loads. The Finite Element

(FE) method could be able to address the stress analysis of bonded joints. Nevertheless, anal-

yses based on FE models are mainly computationally cost expensive and it would be profit-

able to develop simplified approaches, enabling extensive parametric studies. The study,

presented in this paper, takes place in this context. As highlighted in several literature surveys
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[1–3], a large number of simplified approaches for the stress analysis of bonded joints exist

in the open literature.

1.2. Objective

The objective of this paper is to present a simplified approach for the stress analysis of

bonded joints, taking into account an elasto-plastic adhesive material behavior. This topic was

already addressed by several authors (e.g. [4–11]) leading to the presentation of semi-analyti-

cal solutions. Indeed, in order to enlarge the application field of models, the number of sim-

plifying hypotheses has to be restricted. The resolution of the complete set of governing

equations, derived from the restricted hypotheses, requires then the development of dedicated

procedures, even under the assumption of linear elastic material behaviors. In this paper, a

restricted number of simplifying hypotheses is similarly under consideration, so that closed-

form solutions are not provided. However, an original procedure allowing for the resolution

is presented. The simplified approach, presented in this paper, consists then in an iterative res-

olution scheme, using a simplified linear elastic method for the stress analysis of bonded

joints. The simplified linear elastic method is based on the analytical formulation of a four-

node macro-element, in the frame of both one-dimensional 1D-bar and 1D-beam analyses. It

is then exemplified on the single-lap bonded joint configuration (see Figure 1 and Table 1).

1.3. Overview of the simplified linear elastic method

The simplified linear elastic method, originally presented in [12,13], is inspired by the FE

method and allows for the resolution of the set of governing differential equations. The dis-

placements and forces in the adherends as well as the adhesive stresses are then computed.

The method consists in meshing the structure in elements. A full bonded overlap is meshed

by a unique four-node macro-element, which is specially formulated. This macro-element is

called bonded-bars (BBa) or bonded-beams (BBe), depending on the 1D-analysis frame.

According to the classical FE rules, the stiffness matrix of the structure – termed K – is

Figure 1. Idealization of a single-lap bonded joint with beam and BBe elements, for example. The
dotted line corresponds to the neutral axis. Geometrical and mechanical parameters.



assembled and the selected boundary conditions are applied. The minimization of the total

potential energy leads to find the vector of nodal displacements U such that F=KU, where F

is the vector of nodal forces. This approach based on macro-elements takes advantage of the

flexibility of FE method. Indeed, by employing a macro-element as an elementary brick, it

offers the possibility to simulate complex structures involving single-lap bonded joints [14].

Only simple manipulations on the stiffness matrix of the structure are required. An approach

for the simulation of hybrid (bolted/bonded) joints can consist in employing macro-elements

for the bonded parts and springs for the fasteners [12,13]. Finally, various mechanical or

thermal loadings could be taken into account, through the vector of nodal forces.

1.4. Overview of the paper

The mechanical and geometrical parameters are free; in particular, unbalanced configurations

can be addressed. In the 1D-bar (1D-beam) frame, the adherends are simulated as linear elas-

tic bars (as laminated linear elastic Euler–Bernoulli beams), while the adhesive layer simula-

tion consists in continuously distributed linear or nonlinear shear springs (in continuously

distributed linear or nonlinear shear and peeling springs). The adhesive layer thickness is

assumed to be constant along the overlap.

BBa and BBe elements were previously developed [12,13,15]. Nevertheless, they do not

take into account the shear stress in the adherends. The first part of the paper is then dedi-

cated to the detailed presentation of the formulation of 1D-bar and 1D-beam macro-elements,

including a linear variation of shear stress in the adherends, according to the approach of Tsai

and Morton [16]. Elements of validation are presented, by showing that under the same

hypotheses as the Tsai and Morton model, the same results are obtained. Secondly, the intro-

duction of an iterative resolution scheme is presented, to take into account an elasto-plastic

adhesive material behavior. The projection algorithm with elastic matrix is employed for the

numerical resolution. Thirdly, a 1D-bar FE model, involving bar elements and shear springs,

is developed as a numerical image of the simplified 1D-bar model. Besides, a plane stress

(PS) and three-dimensional (3D) FE models are developed to assess the performances of the

simplified 1D-beam model.

2. Linear elastic 1D-bar and 1D-beam models

2.1. 1D-bar model

2.1.1. Formulation of the BBa element

2.1.1.1. Hypotheses. The model is based on the following hypotheses: (i) the thickness of

the adhesive layer is constant along the overlap, (ii) the adherends are linear elastic materials

simulated as bars, (iii) the adhesive layer is simulated by an infinite number of linear elastic

shear springs linking both adherends, and possibly (iv) the adherend shear stress varies line-

arly with the adherend thickness.

2.1.1.2. Governing equations. The local equilibrium of both adherends (see Figure 2) and

the linear elastic material behavior provide the following set of governing equations:

Table 1. Geometrical and mechanical parameters of the nominal single-lap joint under consideration.

b (mm) e (mm) e1 = e2 (mm) L (mm) l1 = l2 (mm) E (MPa) E1 =E2 (MPa) ν ν1 = ν2

1 0.4 2.4 30 151.5 2208 72,000 0.38 0.33



dNj

dx
¼ ð#1ÞjbT

Nj ¼ Ejbej
duj

dx
; j ¼ 1; 2

T ¼ G u2#u1
e

8

>

<

>

:

ð1Þ

where, e is the adhesive thickness, e1 (e2) is the thickness of the adherend 1 (2), b is the

width, G is the adhesive shear modulus, E1 (E2) is the Young’s modulus of the adherend 1

(2), N1 (N2) is the normal force in the adherend 1 (2), and T is the adhesive shear stress. The

displacements u1(x) (u2(x)) are the normal displacements of points located at the abscissa x

on the neutral line of adherend 1 (2) before deformation (see Figure 3).

2.2.1.3. Stiffness matrix of the BBa element. The system of Equation (1) leads to the follow-

ing system of linear differential equations:

d2u1
dx2

þ G
eE1e1

ðu2 # u1Þ ¼ 0
d2u1
dx2

þ G
eE2e2

ðu2 # u1Þ ¼ 0

(

ð2Þ

The system of Equation (2) is solved as:

u1 ¼ 0:5 ½#h ðc3e#gx þ c4e
gxÞ þ c1xþ c2'

u2 ¼ 0:5 ½x ðc3e#gx þ c4e
gxÞ þ c1xþ c2'

&

with:

h ¼ 1þ w

g2

x ¼ 1# w

g2

w ¼ G
e
ð 1
e1E1

# 1
e2E2

Þ
g2 ¼ G

e
ð 1
e2E2

þ 1
e1E1

Þ

8

>

>

>

<

>

>

>

:

ð3Þ

where, c1, c2, c3, and c4 are the integration constants.

The boundary conditions at both extremities of the BBa element, in terms of displace-

ments, lead to expressions for the integration constants, as functions of nodal displacements

ui, uj, uk, and ul (see Figure 3):

u1ð0Þ ¼ ui
u2ð0Þ ¼ uj
u1ð!Þ ¼ uk
u1ð!Þ ¼ ul

)

8

>

>

<

>

>

:

c1 ¼ ulhþukx#ujh#uix

!

c2 ¼ ujhþ uix

c3 ¼ ðuj#uiÞ eg!#ðul#uk Þ
2sh ðg!Þ

c4 ¼ ðul#uk Þ#ðuj#uiÞ e#g!

2sh ðg!Þ

8

>

>

>

>

<

>

>

>

>

:

ð4Þ

Figure 2. Free body diagram of elements of the overlap.



where, Δ is the length of the BBa element.

The linear elastic behavior of adherends allows then for the expression of adherend nor-

mal forces as a function of nodal displacements, through the integration constants (Equations

(1) and (3)):

N1 ¼ 0:5 b E1 e1 ½hgðc1e#gx # c2e
gxÞ þ c3'

N2 ¼ 0:5 b E2 e2 ½xgðc2egx # c1e
#gxÞ þ c3'

&

ð5Þ

In the same way, the adhesive shear stress is then computed with Equation (3) as:

T ¼ 0:5 b E1 e1bhg ðc1e#gx # c2e
gxÞ þ c3c ð6Þ

The nodal forces Qi, Qj, Qk, and Ql, which represent the action of nodes i, j, k, and l,

respectively on the BBa element (see Figure 3) can be expressed as functions of nodal

displacements (Equation (5)):

Qi ¼ #N1ð0Þ
Qj ¼ #N2ð0Þ
Qk ¼ N1ð!Þ
Ql ¼ N2ð!Þ

)

Qi ¼ #0:5 bE1 e1 ½hg ðc1 # c2Þ þ c3'
Qj ¼ #0:5 b E2 e2 ½xg ðc2 # c1Þ þ c3'
Qk ¼ 0:5 b E1 e1 ½hg ðc1e#g! # c2e

g!Þ þ c3'
Ql ¼ 0:5 b E2 e2 ½xg ðc2eg! # c1e

#g!Þ þ c3'

8

>

>

>

>

<

>

>

>

>

:

8

>

>

>

>

<

>

>

>

>

:

ð7Þ

The stiffness matrix of the BBa element is defined by:

kii kij kik kil

kji kjj kjk kjl

kki kkj kkk kkl

kli klj klk kll

2

6

6

6

4

3

7

7

7

5

ui

uj

uk

ul

2

6

6

6

4

3

7

7

7

5

¼

Qi

Qj

Qk

Ql

2

6

6

6

4

3

7

7

7

5

ð8Þ

where,

krs ¼
@Qr

@us
; r; s ¼ i; j; k; l ð9Þ

Finally, the stiffness matrix of the BBa element, named KBBa, can be written as:

Figure 3. Displacements and forces on a BBa element.



KBBa ¼ x
E2e2b

2!

g!

thðg!Þ þ
E1e1
E2e2

1# g!

thðg!Þ # g!

shðg!Þ #
E1e1
E2e2

g!

shðg!Þ # 1

1# g!

thðg!Þ
g!

thðg!Þ þ
E2e2
E1e1

g!

shðg!Þ # 1 # g!

shðg!Þ #
E2e2
E1e1

# g!

shðg!Þ #
E1e1
E2e2

g!

shðg!Þ # 1 g!

thðg!Þ þ
E1e1
E2e2

1# g!

thðg!Þ
g!

shðg!Þ # 1 # g!

shðg!Þ #
E2e2
E1e1

1# g!

thðg!Þ
g!

thðg!Þ þ
E2e2
E1e1

0

B

B

B

B

@

1

C

C

C

C

A

ð10Þ

2.1.1.4. Considering the shear stress in the adherends. Following [16], a linear distribution

of the shear stress, named T1 (T2), in the thickness of the adherend 1 (2) is assumed:

Tj ¼ #T

2
1þ ð#1Þj 2 yj

ej

3 4

; j ¼ 1; 2 ð11Þ

where, y1 and y2 are local y-axes, as defined in Figure 1.

The shear deformation, named γ1 (γ2), in the adherend 1 (2) is then given by:

cj ¼
Tj

Gj

¼ #1

2
1þ ð#1Þj 2 yj

ej

3 4

T

Gj

¼ @ujðx; yjÞ
@yj

; j ¼ 1; 2 ð12Þ

where, G1 (G2) is the shear modulus of the adherend 1 (2).

The integration of Equation (12) allows for the expression of the normal displacements of

adherends, as functions of x and yj:

ujðx; yjÞ ¼ u1ðx; 0Þ þ
Z yj

0

Tj

Gj

dyj )
u1ðx; y1Þ ¼ u1ðx; 0Þ þ T

2G1

y2
1

e1
# y1

6 7

u2ðx; y2Þ ¼ u2ðx; 0Þ # T
2G2

y2
2

e2
þ y2

6 7

8

<

:

ð13Þ

The normal forces in the adherends are then deduced:

Nj ¼ b

Z

ej
2

#ej
2

Ej

@ujðx; yjÞ
@x

dyj )
N1 ¼ be1E1

du1ðx;0Þ
dx

# 1
3

e1
G2

dT
dx

6 7

N2 ¼ be2E2
du2ðx;0Þ

dx
þ 1

3

e1
G2

dT
dx

6 7

8

<

:

ð14Þ

But, by noticing that the average value of the normal displacement on the adherend thick-

ness is given by:

"uj ¼
1

ej

Z

ej
2

#ej
2

ujðx; yjÞ dyj )
"u1 ¼ u1ðx; 0Þ # 1

3
e1

T
G1

"u2 ¼ u2ðx; 0Þ þ 1
3
e2

T
G2

(

ð15Þ

the normal forces in the adherends and the adhesive shear stress can be written as:

Nj ¼ bejEj
d"uj

dx

T ¼ "G "u2#"u1
e

&

with
"G ¼ G

1þn2

n2 ¼ 1
3

G
e
ð e1
G1
þ e2

G2
Þ

(

ð16Þ

Finally, to take into account a linear variation of the shear stress in the adherends, the res-

olution consists in substituting G by "G and uj by "uj, in the formulation, which does not con-

sider any shear stress in the adherends.



2.1.2. Assembly and validation on the exemplified single-lap joint

The single-lap bonded joint is meshed as following: (i) the overlap is meshed which 1 BBa

element, (ii) each adherend outside the overlap is meshed with 1 bar element. This mesh leads

to a total number of six nodes (see Figure 4).

The stiffness matrix of the single-lap joint is then assembled, according to the classical

FE rules, through the stiffness matrices of each element. The stiffness matrix for the bar ele-

ment, named Kbar, is:

Kbar ¼
Ejejb

lj

1 #1

#1 1

3 4

; j ¼ 1; 2 ð17Þ

where, l1 (l2) is the length of the bar outside the overlap of the adherend 1 (2).

Following the classical FE rules, the boundary conditions are then applied to the single-

lap bonded joint, which is clamped at one extremity and free to move at the other one, where

a force f= 10N is applied (see Figure 4). A total number of degrees of freedom (DoF) equal

to 5 is then involved. The resolution consists then in inverting a 5+ 5 linear system.

The adhesive stress distribution predicted by [16] is compared to the model predictions

for the single-lap bonded joint defined in Figure 1 and Table 1. The superimposition of

curves shown in Figure 5 allows for the conclusion that the same hypotheses lead to the same

results.

2.2. 1D-beam model

2.2.1. Formulation of the BBe element

2.2.1.1. Hypotheses. The model is based on the following hypotheses: (i) the thickness of

the adhesive layer is constant along the overlap, (ii) the adherends are simulated by linear

elastic Euler–Bernoulli laminated beams, (iii) the adhesive layer is simulated by an infinite

number of elastic shear and transverse springs linking both adherends, and possibly (iv) the

adherend shear stress varies linearly with the adherend thickness.

2.2.1.2. Governing equations. The local equilibrium of both adherends (see Figure 6) leads

to the following system of six equations:

dNj

bdx
¼ ð#1ÞjT

dVj

bdx
¼ ð#1Þjþ1

S

dMj

dx
þ Vi þ ej

2
bT ¼ 0

8

>

>

<

>

>

:

; j ¼ 1; 2 ð18Þ

where, S is the adhesive peeling stress, V1 (V2) is the shear force in the adherend 1 (2) and

M1 (M2) is the bending moment in the adherend 1 (2).

Figure 4. Bonded assembly and boundary conditions.



This local equilibrium is the one derived and employed by Goland and Reissner [17] in

their classical theory. Furthermore, considering a possible extensional and bending coupling

stiffness in the adherends, the constitutive equations are expressed as:

Nj ¼ Aj
duj

dx
# Bj

d2wj

dx2

Mj ¼ #Bj
duj

dx
þ Dj

d2wj

dx2

hj ¼ dwj

dx

8

>

<

>

:

; j ¼ 1; 2 ð19Þ

with Aj as the extensional stiffness, Bj as the coupling stiffness, and Dj as the bending stiff-

ness.

Figure 5. Comparison of the adhesive shear stress distribution along the overlap between the present
1D-bar model with the analysis provided by Tsai and Morton [16].

Figure 6. Free body diagrams of infinitesimal adherend elements of the overlap.



It is assumed that !j ¼ Aj2 # BjDj is not equal to zero. The adhesive is considered as lin-

ear elastic and is simulated by an infinite number of shear and transverse normal springs. The

adhesive shear stress and the adhesive peeling stress are then expressed by:

T ¼ G
u2#u1#1

2
e1h1#1

2
e2h2

e

S ¼ E w1#w2

e

(

ð20Þ

where, E is the Young’s modulus of the adhesive, w1 (w2) is the deflection of the adherend 1

(2) and h1 (h2) is the bending angle of the adherend 1 (2).

2.2.1.3. Stiffness matrix of the BBe element. System of differential equations in terms of adhe-

sive stresses. The Equation (19) is written as:

duj

dx
¼ DjNjþBjMj

!j

d2wj

dx2
¼ AjMjþBjNj

!j

(

; j ¼ 1; 2 ð21Þ

By combining Equations (18), (20), and (21), the following linear differential equation sys-

tem, in terms of adhesive stresses, is obtained:

d3T
dx3

¼ k1
dT
dx
þ k2S

d4S
dx4

¼ #k4S # k3
dT
dx

(

ð22Þ

where,

k1 ¼ Gb
e

D1

!1
1þ A1e

2
1

4D1

6 7

þ D2

!2
1þ A2e

2
2

4D2

6 7

þ e1B1
!1

# e2B2
!2

6 7h i

k2 ¼ Gb
e

e1A1

2!1
# e2A2

2!2
þ B1

!1
þ B2

!2

6 7h i

k3 ¼ Eb
e

e1A1
2!1

# e2A2

2!2
þ B1

!1
þ B2

!2

6 7h i

k4 ¼ Eb
e

A1
!1

þ A2
!2

h i

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

ð23Þ

The system of differential Equation (22) can be uncoupled by differentiation and linear

combination as:

d6S
dx6

# k1
d4S
dx4

þ k4
d2S
dx2

þ Sðk2k3 # k1k4Þ ¼ 0
d
dx
ðd6T
dx6

# k1
d4T
dx4

þ k4
d2T
dx2

þ Tðk2k3 # k1k4ÞÞ ¼ 0

(

ð24Þ

This system is solved and the adhesive shear and peeling stresses are, thus, written as

(see Appendix A):

pt

SðxÞ ¼ K1e
sx sinðtxÞ þ K2e

sx cosðtxÞ þ K3e
#sx sinðtxÞ

þK4e
#sx cosðtxÞ þ K5e

rx þ K6e
#rx

: ;

TðxÞ ¼ K1e
sx sinðtxÞ þ K2e

sx cosðtxÞ þ K3e
#sx sinðtxÞ

þK4e
#sx cosðtxÞ þ K5e

rx þ K6e
#rx þ K7

: ;

8

>

>

>

<

>

>

>

:

ð25Þ



There are then 13 integration constants. However, by introducing these previous expres-

sions of adhesive stresses in Equation (22), the integration constants of the adhesive peeling

stress appear linked to those of adhesive shear stress as:

K1 ¼ sðs2#3t2#k1Þ
k2

K1 þ tðt2#3s2þk1Þ
k2

K2 ¼ a1K1 þ a2K2

K2 ¼ tð3s2#t2#k1Þ
k2

K1 þ sðs2#3t2#k1Þ
k2

K2 ¼ #a2K1 þ a1K2

K3 ¼ sð3t2#s2þk1Þ
k2

K3 þ tðt2#3s2þk1Þ
k2

K4 ¼ #a1K3 þ a2K4

K4 ¼ tð3s2#t2#k1Þ
k2

K3 þ sð3t2#s2þk1Þ
k2

K2 ¼ #a2K3 # a1K4

K5 ¼ rðr2#k1Þ
k2

K5 ¼ a3K5

K6 ¼ rðk1#r2Þ
k2

K6 ¼ #a3K6

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð26Þ

Finally, seven independent integration constants remains: K1–K7.

Nodal displacements and forces. The determination of the stiffness matrix of BBe element

requires the determination of nodal displacements and forces (see Figure 7). Following the

resolution scheme in [18], the idea is to express the displacements and the forces in the adh-

erends, as a function of the stress adhesives and of their derivatives. The computation is fully

detailed in Appendix B. It is shown that a total number of 12 integration constants are finally

involved: K1–K7, J1–J3, and J5–J6. The displacements in the adherends are then expressed as:

u1ðxÞ ¼ ~b1T þ b1
dS
dx
# b!2K7#6B1J0=!

2A1

x
!

< =2þJ5
x
!
þ J6

u2ðxÞ ¼ ~b2T þ b2
dS
dx
þ b!2K7þ6B2J0=!

2A2

x
!

< =2þ J5 þ J1
!
ðe1 þ e2Þ

< =

x
!

þJ6 þ J2
2!
ðe1 þ e2Þ # K7

e1
2
~b5 þ e2

2
~b6

6 7

w1ðxÞ ¼ ~b3 k4
dT
dx
þ k2

d2S
dx2

< =

þ b5S þ J0
x
!

< =3þJ1
x
!

< =2þJ2
x
!
þ J3

w2ðxÞ ¼ ~b4 k4
dT
dx
þ k2

d2S
dx2

< =

þ b6S þ J0
x
!

< =3þJ1
x
!

< =2þJ2
x
!
þ J3

h1ðxÞ ¼ ~b5T þ b5
dS
dx
þ 3J0

x2

!3 þ 2J1
x
!2 þ J2

!
# K7

~b5

h2ðxÞ ¼ ~b6T þ b6
dS
dx
þ 3J0

x2

!3 þ 2J1
x
!2 þ J2

!
# K7

~b6
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ð27Þ

The nodal displacements are then the values in x = 0 and x =Δ of Equation (27). The con-

stitutive Equation (19) allow for the computation of normal and shear forces and of bending

moments in both adherends:

Figure 7. Displacements and forces on a BBe element.



N1ðxÞ ¼ ~a1
dT
dx
þ a1

d2S
dx2

# bK7x# 2B1
J1
L2
þ A1

J5
L

N2ðxÞ ¼ ~a2
dT
dx
þ a2

d2S
dx2

þ bK7xþ J1 #2B2
L2

þ A2
e1þe2
L2

< =

þ A2
J5
L

M1ðxÞ ¼ ~a3
dT
dx
þ a3

d2S
dx2

þ x
L

6J0
L2

!1

A1
þ bLK7

B1
A1

6 7

þ 2D1
J1
L2
# B1

J5
L

M2ðxÞ ¼ ~a4
dT
dx
þ a4

d2S
dx2

þ x
L

6J0
L2

!2

A2
# bLK7

B2

A2

6 7

þ J1
2D2

L2
# B2

e1þe2
L2

< =

# B2
J5
L

V1ðxÞ ¼ #~a3
d2T
dx2

# a3
d3S
dx3

# 1
L

6J0
L2

!1

A1
þ bLK7

B1
A1

6 7

# e1b

2
T

V2ðxÞ ¼ #~a4
d2T
dx2

# a4
d3S
dx3

# 1
L

6J0
L2

!2

A2
# bLK7

B2
A2

6 7

# e2b

2
T
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ð28Þ

The nodal forces are then the values in x = 0 and x =Δ of Equation (28).

Stiffness matrix. The coefficients of the stiffness matrix of the BBe element are obtained

by differentiating each nodal force by each nodal displacement:

KBBe ¼

@Qr

@us

h i

@Qr

@ws

h i

@Qr

@hs

h i

@Rr
@us

h i

@Rr
@ws

h i

@Rr
@hs

h i

@Sr
@us

h i

@Sr
@ws

h i

@Sr
@hs

h i

0

B

B

B

@

1

C

C

C

A

; r; s ¼ i; j; k; l ð29Þ

where, Qσ (Rσ) is the nodal normal (shear) forces and Sσ are the nodal bending moments.

The 12 nodal displacements (uγ, γ= 1:12) and the 12 nodal forces (Qα, α= 1:12) are

expressed as functions of the 12 independent integration constants (Cβ, β= 1:12). The nodal

forces depend linearly on integration constants, as well as the nodal displacements. Thus, the

integration constants depend linearly on the nodal displacements (Equation (30)), enabling the

determination of 144 coefficients of KBB (Equation (31)):

Qa ¼
X

12

b¼1

nabCb and Cb ¼
X

12

c¼1

m0
bcuc ð30Þ

@Qa

@ud
¼

X

nab
X

m0
bc

@uc

@ud
ð31Þ

But,

@uc
@ud

¼ dcd ¼
1 if c ¼ d

0 if c–d

&

) @Qa

@ud
¼

P

12

b¼1

nabm
0
bd

m0
bd ¼ Cbðud ¼ 1 ; uc–d ¼ 0Þ ¼ Cbð0; . . . ; 0; ud ¼ 1; 0; . . . ; 0Þ

ð32Þ

The coefficients of KBB are, thus, obtained through:

½KBB'a;d ¼
@Qa

@ud
¼

X

12

b¼1

nabCbð0; . . . ; 0; ud ¼ 1; 0; . . . ; 0Þ ð33Þ

Practically, Cβ(0,… , 0,uδ= 1,0,… , 0) is automatically generated by looping on the 12

canonical vectors of displacement, through the following inversion: Cβ[(0,… , 0, uδ = 1, 0,

… , 0)]=M#1(0,… , 0, uδ = 1, 0,… , 0).



2.2.1.4. Considering the shear stress in the adherends. This section describes how to con-

sider the shear effects in the adherends by simply adapting a finite number of previous param-

eters. The approach is based on the assumption of a linear variation of shear stresses in the

adherends, according to Tsai and Morton theory [16]. From Equation (11), the shear strain γ1
for the upper adherend and γ2 for the lower one are expressed as:

cj ¼
Tj

Gj

¼ #1

2
1þ ð#1Þj 2 yj

ej

3 4

T

Gj

¼ @ujðx; yjÞ
@yj

þ dwj

dx
; j ¼ 1; 2 ð34Þ

The integration of normal displacements with respect to dyj provides:

u1ðx; y1Þ ¼ u1ðx; 0Þ # T
2G1

y1 # y2
1

e1

h i

# y1
dw1

dx

u2ðx; y2Þ ¼ u2ðx; 0Þ # T
2G2

y2 þ y2
2

e2

h i

# y2
dw2

dx

8

<

:

ð35Þ

Taking into account the previous shape of normal displacements, the constitutive equa-

tions of adherends (19) become:

N1 ¼ A1
du1
dx

# B1
d2w1

dx2
# C1

dT
dx

N2 ¼ A2
du2
dx

# B2
d2w2

dx2
# C2

dT
dx

M1 ¼ #B1
du1
dx

þ D1
d2w1

dx2
þ C0

1
dT
dx

M2 ¼ #B2
du2
dx

þ D2
d2w2

dx2
þ C0

2
dT
dx

C1 ¼ e1B1#D1

2e1G1

C2 ¼ e2B2þD2

2e2G2

C0
1 ¼ e1D1#F1

2e1G1

C0
2 ¼ #e2D2þF2

2e2G2
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:

ð36Þ

with,

Fj ¼
b

4

X

nj

pj¼1

Q
pj
j h4pj # h4pj#1

h i

; j ¼ 1; 2 ð37Þ

where, hpi – the y-coordinates of the pthj layer and Qj
pi is the reduced rigidity matrix of the

pth ply of adherends j.

As detailed in Appendix C, the modification of the shape of the constitutive equations of

adherends results in modification of suitable constants only.

2.2.2. Assembly and validation on the exemplified single-lap joint

The single-lap bonded joint is meshed as following: (i) the overlap is meshed with 1 BBe ele-

ment, (ii) each adherend outside the overlap is meshed with 1 bar element. This mesh leads to

a total number of six nodes (see Figure 8).

The stiffness matrix of the single-lap joint is then assembled, according to the classical

FE rules, from the stiffness matrix of each element. The stiffness matrix of a beam element,

named Kbeam, is written (according to [15]):



Kbeam ¼

Aj

lj
#Aj

lj
0 0 #Bj

lj

Bj

lj

#Aj

lj

Aj

lj
0 0

Bj

lj
#Bj

lj

0 0
12

l3j

!

Aj

#12

l3j

!

Aj

6

l2j

!

Aj

6

l2j

!

Aj

0 0 #12

l3j

!

Aj

12

l3j

!

Aj

#6

l2j

!

Aj

#6

l2j

!

Aj

#Bj

lj

Bj

lj

6

l2j

!

Aj

#6

l2j

!

Aj

1

lj
3
!

Aj

þ Dj

3 4

1

lj
3
!

Aj

# Dj

3 4

Bj

lj
#Bj

lj

6

l2j

!

Aj

#6

l2j

!

Aj

1

lj
3!
Aj
# Dj

6 7 1

lj
3
!

Aj

þ Dj

3 4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; j ¼ 1; 2 ð38Þ

Following the classical FE rules, the boundary conditions are then applied to the single-

lap bonded joint, which is simply supported at both extremities, fixed according to the x-axis

at one extremity and free at the other one, where a force f= 10N is applied (see Figure 8). A

total number of DoF equal to 15 is then involved. The resolution consists then in inverting a

15+ 15 linear system.

The adhesive stress distribution predicted by [16] is compared to the present model pre-

dictions for the single-lap bonded joint defined in Figure 1 and Table 1. In order to perform a

comparison on exactly the same hypotheses, the length outside the overlap is computed

according to the Goland and Reissner theory [17], resulting in a same bending moment at

both overlap ends (for a beam approach) under the applied force (li= 91mm). Moreover, the

Figure 8. Bonded assembly and boundary conditions.

Figure 9. Comparison of the adhesive shear stress distribution along the overlap between the 1D-beam
present model and the analysis provided by Tsai and Morton [16].



factor C0
j is set to zero. The superimposition of curves shown in Figure 9 allows for the con-

clusion that the same hypotheses lead to the same results.

3. Assuming an elasto-plastic adhesive material

3.1. Numerical approach

In this section, the adhesive, employed in the bonded area, is assumed to have an elasto-plas-

tic behavior. To take into account this nonlinear behavior, an iterative procedure [19] is imple-

mented, starting from the previous linear elastic formulation. This iterative procedure is

illustrated in Figure 10, for a stress step resulting in a current elastic stress state characterized

by an equivalent stress superior to the yield stress. This current elastic stress state is obtained

through the linear computation F=KU, representing the first step of the procedure. The sec-

ond step corresponds to the projection of the equivalent stress to the elastic stress state on the

yield function allowing for the computation for a first residue R, relevant to the difference

between the elastic stress state and the projected stress state. In this paper, this second step is

presented assuming an elastic perfectly plastic behavior. The third step consists in imposing

to the structure the residue, such as R=KU. This procedure is repeated, while the norm of

the residue is higher than a prescribed threshold. The residues have thus to be computed.

Hereafter, the equivalent stress chosen for the 1D-bar model is the shear stress (maximal

stress criterion), while for the 1D-beam model, the criterion is the von Mises equivalent

stress.

3.2. Example of application for structures: single-lap joint, in-plane loading

3.2.1. Equilibrium of the structure

For both 1D-bar and 1D-beam models, the equilibrium of the structure is such that at any

abscissa along the overlap, the sum of normal and shear forces in the adherends is constant:

Figure 10. Principle scheme of the resolution algorithm for the elasto-plastic problem.



N1 þ N2 ¼ N2ðLÞ ¼ N1ð0Þ ¼ f

V1 þ V2 ¼ V2ðLÞ ¼ V1ð0Þ
ð39Þ

For both 1D-bar and 1D-beam models, the local equilibrium of adherends, according to

the x-axis and y-axis allows for a relationship between the normal and shear forces in the

adherends and the adhesive shear and peeling stresses:

N2ðxÞ # N2ð0Þ ¼ N2ðxÞ ¼ b
R x

0
Tdx

V2ðxÞ # V2ð0Þ ¼ V2ðxÞ ¼ b
R x

0
Sdx

ð40Þ

In particular, the area under the shear stress distribution along the overlap (named S0)

multiplied by the overlap width is equal to the applied force:

S0 ¼ b

Z L

0

TðxÞdx ¼ f ð41Þ

This last equilibrium requirement is used in the iterative procedure to ensure its conver-

gence.

3.2.2. Determination of the nodal residue

Case with a mesh with n-macro-elements. The bonded overlap is regularly meshed in n

macro-elements, such nΔ=L (see Figure 11). A total number of 2n+ 2 nodes are involved.

For 1D-bar case. The elastic shear stress on the kth node is computed through the nodal

displacements and is quoted Te(k). The projected stress on the yield function is named Tp(k).

The difference between these two stresses is named δT(k):

8k 2 ½2; 2nþ 3'; dTðkÞ ¼ TeðkÞ # TpðkÞ ð42Þ

Along the elastic zones, this difference is equal to zero. Moreover, this difference is the

same for both nodes located at the same abscissa:

8k 2 ½2; 2nþ 3'; 8p 2 ½1; nþ 1'; dT̂ðpÞ ¼ dTðk ¼ 2pÞ ¼ dTðk ¼ 2pþ 1Þ ð43Þ

Before the application of the prescribed displacements, the relevant components of the

residue vector to normal nodal forces are:

Figure 11. Numbering of the nodes on the single-lap joint meshed.



Rð0Þ ¼ 0

for p 2 ½1; nþ 1'; Rð2pÞ ¼ #b! / dT̂ðpÞ
Rð2pþ 1Þ ¼ b! / dT̂ðpÞ

&

Rð2nþ 4Þ ¼ f

ð44Þ

For 1D-beam case. The elastic shear and peeling stresses on the kth node are computed

through the nodal displacements and are named Te(k) and Se(k), respectively. The projected

shear and peeling stresses on the yield function are named Tp(k) and Sp(k), respectively. As

for the 1D-bar case, the difference between the elastic peeling stress and the projected peeling

stress is:

8k 2 ½2; 2nþ 3'; 8p 2 ½1; nþ 1';
dŜðpÞ ¼ dSðk ¼ 2pÞ ¼ dSðk ¼ 2pþ 1Þ ¼ SeðkÞ # SpðkÞ ð45Þ

Before the application of the prescribed displacements, the relevant components of the

residue vector to normal nodal forces are given in Equation (44), whereas those relevant to

the shear nodal forces are:

Rð0Þ ¼ 0

for p 2 ½1; nþ 1'; Rð2pÞ ¼ #b! / dŜðpÞ
Rð2pþ 1Þ ¼ b! / dŜðpÞ

&

Rð2nþ 4Þ ¼ 0

ð46Þ

3.2.2.1. Case with a mesh with one macro-element. The bonded overlap is meshed with one

macro-element only, which implies a total number of six nodes (see Figure 5).

For the 1D-bar case. The elastic shear stress is computed at any abscissa x with Equation

(6) and is named Te(x). The projected stress on the yield function is named Tp(x). The differ-

ence between these two stresses is named δT(x). The residue is obtained after summation of

δT(x) for any abscissa such δT(x) ≠ 0. More precisely, if the elastic zone is included between

x1 and x2 (see Figure 12), before the application of the prescribed displacements, the

components of the residue vector are:

Figure 12. Plastic zone lengths.



Rð0Þ ¼ 0

Rð2Þ ¼ #b
R x1

0
dTðxÞdx

Rð3Þ ¼ b
R x1

0
dTðxÞdx

Rð4Þ ¼ #b
R L

x2
dTðxÞdx

Rð5Þ ¼ b
R L

x2
dTðxÞdx

8

>

>

>

<

>

>

>

:

Rð6Þ ¼ f

ð47Þ

For the 1D-beam case. The elastic shear stress and peeling stresses are computed at any

abscissa x with Equation (25) and are named Te(x) and Se(x), respectively. The projected shear

and peeling stresses on the yield function are named Tp(x) and Sp(x). The difference between

the elastic and projected shear and peeling stresses are named δT(x) and δS(x). The relevant

components of residue vector to normal nodal forces are the same as those given in Equation

(47). In the same way, before the application of the prescribed displacements, the relevant

components of residue vector to shear nodal forces are:

Rð0Þ ¼ 0

Rð2Þ ¼ #b
R x1

0
dSðxÞdx

Rð3Þ ¼ b
R x1

0
dSðxÞdx

Rð4Þ ¼ #b
R L

x2
dSðxÞdx

Rð5Þ ¼ b
R L

x2
dSðxÞdx

8

>

>

>

<

>

>

>

:

Rð6Þ ¼ 0

ð48Þ

3.2.3. Projected stresses

In the 1D-bar model, only one adhesive stress component is involved. The projected stress

depends only on the yield function following the maximal stress criterion. In the 1D-beam

model, the peeling stress and the shear stress are considered allowing the computation of the

von Mises equivalent stress, named σe, which is chosen as yield criterion:

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3T 2
e þ S2

e

p

ð49Þ

The equivalent projected stress, named σp, is computed as a function of Tp and Sp as:

rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3T 2
p þ S2

p

q

ð50Þ

When the yield criterion is exceeded, the equivalent stress is expressed as:

3T 2
e þ S2

e ¼ r2
p þ Q2 ð51Þ

where, Q characterizes the exceeding of yield criterion.

The Equation (51) can be rearranged as:

r2
p ¼ 3T 2

e þ S2
e #

3T 2
e þ S2

e

3T 2
e þ S2

e

Q2 ð52Þ

leading to:



r2
p ¼ 3 T 2

e #
T 2
e

3T 2
e þ S2

e

Q2

3 4

þ S2
e #

S2
e

3T 2
e þ S2

e

Q2

3 42

ð53Þ

Finally, the projected stresses are written as functions of the elastic stresses and yield cri-

terion excess:

Tp ¼ signðTeÞ Te

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1# Q2

3T2
e þS2e

q

Sp ¼ signðSeÞ Se
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1# Q2

3T2
e þS2e

q

8

<

:

ð54Þ

3.2.4. Solution procedure

The solution procedure is summarized hereafter.

A. Linear elastic computation

A.1 The stiffness matrix of the structure is computed (see Section 2).

A.2 Initialization of variables:

• fR= f

• R=F, such tF= (0 … 0 f ).

A.3 Computation of U=K#1R, after applying the boundary conditions in displacement.

A.4 Computation of adhesive elastic stresses for any abscissa of overlap (see Section 2).

A.5 Computation of adhesive equivalent stress σe.
A.6 Computation of S0 (see Section 3.2.1).

B. Yielding test

if σe is inferior to the adhesive yield stress then end,

else computation of Q as the difference of the adhesive equivalent stress and the adhesive

yield stress.

C. Plastic loop

C.1 Projection of adhesive stresses on the yield function (see Section 3.2.3).

C.2 Computation of the difference between the adhesive elastic stresses and the adhesive pro-

jected stress (see Section 3.2.2).

C.3 Update of R (see Section 3.2.2).

C.4 If norm(R) < threshold_2 then go to D, else go to A.3.

D. Global equilibrium

if abs(S0# f) > threshold_2 then fR= fR# (S0# f ) and go to A.3,

else end.

4. Comparison with FE predictions

4.1. Overview

In order to assess and to validate both models based on a simplified approach, FE models are

developed using SAMCEF FE code v14–1. For validation purposes, a 1D-bar FE model is

compared to the current 1D-bar model, without considering any shear deformations in the

adherends. For assessment, a PS and a 3D FE model are compared with the current 1D-beam

model, including a linear variation of the shear stress in the adherends. The joint is clamped

at one end and free to move at the other end in the longitudinal direction only, where the load



is applied. A force per unit of width unit of 10N.mm#1 is applied. The geometry of the sin-

gle-lap joint is that which is introduced in Figure 1 and Table 1. For the 3D FE model, the

width of structure is taken equal to 1mm. The adherends are assumed to be linear elastic and

the material characteristics are given in Table 1. The adhesive is considered as elastic per-

fectly plastic. The adhesive elastic parameters are given in Table 1. In the 1D-bar analysis,

the adhesive remains in its elastic domain if the shear stress is inferior to 0.55MPa. For all

the other analyses, the von Mises yield criterion is employed with a yield stress of 1.6MPa.

The FE computations are geometrically linear. 100 macro-elements are employed in the mod-

els based on the simplified approaches. It is indicated (not discussed here) that a mesh with 1

macro-element leads to almost the same results for all the cases tested. For the PS and 3D FE

models, the stresses are measured along the middle line of the adhesive layer and in the sym-

metry plane for the 3D FE model. Indeed, in contrast to refined PS or 3D FE models [20],

the models based on the simplified approach are not able to capture the edge effects at the

interfaces with the adherends or at the free edges.

4.2. Description of FE models

4.2.1. 1D-bar FE model

The adherends are simulated by beam elements (SAMCEF type T022). The adhesive layer is

simulated by bush elements, which connect the beam elements involved along the overlap.

To simulate the 1D-bar model, the displacements according to the y-axis and the z-axis are

fixed. In order for the bush elements to work in shear only, all the stiffnesses are set to unity

except that for the shear mode. The latter is computed according to [21]. A preliminary study

(not presented in this paper) showed that a number of 100 bush elements regularly distributed

along the overlap allow for accurate results at restricted computational time cost. In the adher-

ends, 204 beam elements are set. Moreover, the unbalanced configuration such that

e2= 2e1= 4.8mm is under consideration.

4.2.2. PS FE model

The adherends and the adhesive are simulated by quadrangular elements (SAMCEF type

T015) under PS conditions. The elements chosen have linear interpolation functions and four

internal modes. The normal integration scheme is chosen. As the adhesive stresses signifi-

cantly vary at the overlap edges, the mesh is thus refined in this area though a progressive

mesh. The smallest element in the adhesive layer is then located at both overlap ends and has

an aspect ratio equal to 1. A nominal number of four elements in the adhesive layer is chosen

(see Section 4.2.3) leading to a minimal size of 0.1mm+ 0.1mm. Furthermore, a transition

ratio equal to one is set at the interface with the adhesive and a progressive mesh is adopted

in the adherends.

4.2.3. 3D FE model

The adherends and the adhesive are simulated by 3D brick elements (SAMCEF type T008).

The elements chosen have linear interpolation functions and nine internal modes (8 nodes and

24 DoF). The normal integration scheme is chosen. The mesh of the 3D model consists in an

extrusion in the width direction of the PS FE model mesh. Symmetry conditions are applied

in an external plane, the normal of which is the direction of extrusion. The stresses are mea-

sured along the middle line of the adhesive layer and on the symmetry plane.



The maximum value of adhesive shear and peeling stresses depends on the mesh density.

As the objective of this comparison of PS and 3D FE predictions is to assess the relevance of

the 1D-beam model, the dependency of shear and peeling peaks on the mesh density has to

be addressed. The study consists then in measuring the maximum values of the adhesive

shear and peeling stresses as a function of the number of elements in the adhesive layer thick-

ness. The number of elements in the adhesive layer varies, while keeping the aspect ratio of

the smallest element in the adhesive layer (located at both overlap ends) equal to 1. It is

shown that the shear (peeling) peak increases (decreases) with the increasing number of ele-

ments in the adhesive layer (see Figure 13). However, this increasing or decreasing tendency

significantly slows down with the increasing number of elements. Table 2 shows changes to

Figure 13. Shear (a) and peeling (b) peaks on the adhesive middle line as a function of the number of
elements in the adhesive thickness.



Table 2. Relative difference to the case with 32 elements, when the number of elements in the
adhesive thickness varies.

Number of elements

Relative difference to the case with 32 elements

Shear stress peak (%) Peeling stress peak (%)

2 #3.94 25.8
4 #1.16 2.80
8 #0.559 #1.83
16 #0.361 0.372

Figure 14. Shear (a) and peeling (b) peaks on the adhesive upper (or lower) line compared to the
shear (a) and peeling (b) peak on the adhesive center line, as a function of the number of elements in
the adhesive thickness.



the adhesive shear and peeling peaks for varying number of elements, relative to those for 32

elements. It can be observed that these relative differences are quite low, except for the peel-

ing peak for the case with two elements. It could be thought that the hypothesis of an elastic

perfectly plastic adhesive material behavior allows for the saturation of the adhesive peak

stresses, contributing to low variations. In order to understand the elevated difference on the

peak stress for the case with two elements, the shear and peeling peak adhesive stress on the

upper (or lower) external line of the adhesive layer is measured while the number of elements

varies. These peaks on the adhesive upper (or lower) line are located at overlap ends, as for

the adhesive middle line. As shown in Figure 14, whereas the increase of the number of ele-

ments in the adhesive layer decreases the relative difference to the middle line on the shear

peak, this relative difference increases significantly. The influence of the edge effect on the

adhesive stress at the middle line thus seems to be reduced by refining the mesh in the adhe-

sive thickness. Finally, it is considered that almost steady values for shear and adhesive peaks

can be obtained, when the side height of the smallest element in the adhesive layer is inferior

to 0.1mm (i.e. four elements in an adhesive thickness of 0.4mm).

4.3. Comparison of results

4.3.1. 1D-bar present model vs. 1D-bar FE model

Firstly, it is indicated (not presented here) that, when the adhesive is supposed linear elastic,

the 1D-bar present model (without any shear in the adherends) and 1D-bar FE model provide

exactly the same adhesive shear stress distribution along the overlap. Considering the elasto-

plastic behavior of the adhesive, the 1D-bar present model (without any shear in the adher-

ends) and 1D-bar FE model provide exactly the same adhesive shear stress distribution along

the overlap, for the balanced and unbalanced configuration, as shown in Figures 15 and 16,

respectively.

4.3.2. 1D-beam present model vs. PS and 3D FE models

The 1D-beam present model with a linear shear stress in the adherends is compared to the PS

and 3D FE models, in case of a balanced configuration for example. The distribution of the

Figure 15. Comparison of the adhesive shear stress distribution along the overlap between the 1D-bar
present model and 1D-bar FE models, on a balanced structure.



adhesive shear, peeling and von Mises stresses along the overlap are provided in Figures 17–

19. Although the stress tensor component number is restricted to two in the 1D-beam present

model, a good agreement is shown.

4.3.3. Evolution of adhesive stress distribution with the applied load

In order to illustrate the effect of plasticity of the adhesive stress distribution, the adhesive

shear, peeling, and von Mises stress distribution obtained with the 1D-beam present model

are provided in Figures 20–22, respectively, at two intermediate applied loads (5 and 7N.

mm#1). The structure chosen is the unbalanced configuration such that e2= 2e1= 4.8mm.

The adhesive layer is meshed with four elements in its thickness (leading to a side length of

0.1mm for the smallest element). Furthermore, the stress distributions at an applied load of

Figure 16. Comparison of the adhesive shear stress distribution along the overlap between the 1D-bar
present model and 1D-bar FE models, on an unbalanced structure.

Figure 17. Comparison of the adhesive shear stress distribution along the overlap between the 1D-
beam present and PS and 3D FE models, on a balanced structure.



10N.mm#1 are compared to those predicted by the 3D FE models, resulting in a good agree-

ment. Moreover, it appears that the adhesive stress peak saturation is balanced by the increase

of the minimal adhesive stress level reached along the overlap.

4.4. Assessment of the relevance of the model

In order to assess the relevance of the present 1D-beam model, unbalanced configurations

such that e2= 2e1= 4.8mm with isotropic adherends are under consideration. The study

described in this section consists of measuring the relative differences between the 3D FE

model predictions and the 1D-beam model predictions, in terms of adhesive shear and peeling

stresses, when: (i) the adherend stiffness varies then (ii) the adhesive thickness varies. Con-

Figure 18. Comparison of the adhesive peeling stress distribution along the overlap between the 1D-
beam present model and PS and 3D FE models, on a balanced structure.

Figure 19. Comparison of the adhesive Von Mises stress distribution along the overlap between the
1D-beam present model and PS and 3D FE models, on a balanced structure.



cerning the influence of the adherend stiffness, the variation of the adherend stiffness is

achieved by fixing the Young’s modulus of the adherend 1 at its value in Table 1

(E1= 72GPa), while the Young’s modulus of the adherend 2 is varying such E2= (0.5, 1,

2, 3)+E1. In the 3D FE model, the adhesive layer is meshed with four elements in its thick-

ness (leading to a side length of 0.1mm for the smallest element). As shown in Table 3, the

1D-beam model provides adhesive shear and peeling peaks very close to those predicted by

the 3D FE model, with relative differences inferior to 10%. Moreover, in terms of stress dis-

tribution along the overlap, a good correlation is obtained, as shown in Figures 23–25 for the

case E2/E1= 3. In particular, the overstress for abscissas close to zero, due to the unbalance of

Figure 20. Comparison of the adhesive shear stress distribution along the overlap between the 1D-
beam present model and PS and 3D FE models, on an unbalanced structure. The distributions at various
intermediated applied forces are shown.

Figure 21. Comparison of the adhesive peeling stress distribution along the overlap between the 1D-
beam present model and PS and 3D FE models, on an unbalanced structure. The distributions at various
intermediated applied forces are shown.



Table 3. Relative difference to the FE predictions, when the adherend stiffness varies.

E1/E2

Relative difference to the 3D FE model predictions

Shear stress peak (%) Peeling stress peak (%)

0.5 0.642 #4.93
1 #2.57 #1.46
2 #3.53 7.41
3 #1.83 5.00

Figure 22. Comparison of the adhesive von Mises stress distribution along the overlap between the
1D-beam present model and PS and 3D FE models, on an unbalanced structure. The distributions at
various intermediated applied forces are shown.

Figure 23. Comparison of the adhesive shear stress distribution along the overlap between the 1D-
beam present model and 3D FE models, on an unbalanced structure.



Figure 24. Comparison of the adhesive peeling stress distribution along the overlap between the 1D-
beam present model and 3D FE models, on an unbalanced structure.

Figure 25. Comparison of the adhesive von Mises stress distribution along the overlap between the
1D-beam present model and 3D FE models, on an unbalanced structure.

Table 4. Relative difference to the FE predictions, when the adhesive stiffness varies.

Adhesive thickness (mm)

Relative difference to the 3D FE model predictions

Shear stress peak (%) Peeling stress peak (%)

0.1 0.336 #18.7
0.2 1.25 #8.25
0.3 0.224 1.56
0.4 #2.25 3.16
0.5 #0.520 4.61



the joint, is correctly retrieved. Concerning the influence of the adhesive thickness, five adhe-

sive layer thicknesses are chosen: 0.1, 0.2, 0.3, 0.4, and 0.5mm. In the 3D FE model, the

number of elements in the adhesive thickness is taken such that the side length of the smallest

element is equal to 0.5mm (e.g. eight elements in an adhesive thickness of 0.4mm). As

shown in Table 4, the 1D-beam model provides adhesive shear and peeling peaks very close

to the ones predicted by the 3D FE model (see Figures 20–22, for the case e = 0.4mm), with

relative differences inferior to 10%, except for the peeling peak for an adhesive thickness of

0.1mm. However, when the adhesive thickness is equal to 0.1mm, it is meshed with only

two elements, resulting in a significant influence of edge effects on the peeling stress at over-

lap ends when measured in the adhesive middle line (see Section 4.2.3).

Finally, the computation times required for the FE models of Section 4.2.3, when the

number of elements in the adhesive thickness varies, are expressed as functions of the compu-

tation time recorded for the 1D-beam model (equal to 1.3 s). All the computations are per-

formed on the same computer (HP Z800). Table 5 shows that the less refined mesh is

consuming 49 times more of computation time than the 1D-beam model. Nevertheless, it is

underlined that the 3D FE models allow for a more refined stress analysis than the simplified

approaches.

5. Conclusion

A 1D-bar and 1D-beam simplified approach for the stress analysis of bonded joints involv-

ing an elasto-plastic adhesive is presented and illustrated for the single-lap joint configura-

tion. The example of the single-lap bonded joint configuration should not be seen as a

restriction, since various single-lap geometries could be simulated through simple manipula-

tions of the structure stiffness matrix. The simplified approach, relying on the simplifying

hypotheses provided in Section 2.1.1.1 and Section 2.2.1.1, is based on the formulation of a

four-node macro-element able to simulate a full bonded overlap. Firstly, 1D-bar and 1D-

beam macro-elements are formulated assuming a linear elastic adhesive behavior and taking

into account a linear variation of the shear stress in the adherends. It is shown that the same

hypotheses lead to the same results when the adhesive stress distributions along the overlap

are compared with the reference ones. Secondly, an iterative procedure, employing the linear

elastic computation of the stiffness matrix, is presented to take into account an elasto-plastic

adhesive behavior. Assuming a yield function (elastic perfectly plastic behavior) and a yield

criterion, the residue vector is computed through the projection of the current stress state,

up to reaching equilibrium for a prescribed tolerance. Finally, the results provided by the

models based on the simplified approach are compared to those of 1D-bar, PS, and 3D FE

models, assuming an elastic perfectly plastic adhesive behavior. A good agreement is

shown.

Table 5. Comparisons of computation times between the 3D FE models and the 1D-beam model
(1.3 s).

3D FE models

Number of elements in the adhesive thickness

2 4 8 16 32

Computation time in s 6.40E+01 4.30E+02 3.90E+03 7.42E+04 3.08E+05
Number of times higher than

for 1D-beam model
49 331 2996 57,099 237,231



Nomenclature and units

Aj extensional stiffness (N) of the adherend j
Bj extensional and bending coupling stiffness (Nmm) of the adherend j
Dj bending stiffness (Nmm2) of the adherend j
Ej Young’s modulus (MPa) of the adherend j
E Young’s modulus (MPa) of in the adhesive
F vector of forces
G Coulomb’s modulus (MPa) of the adhesive
Gj Coulomb’s modulus (MPa) of the adherend j
K stiffness matrix
KBBa stiffness matrix of the bonded-bars element
KBBe stiffness matrix of the bonded-beams element
L length (mm) of the overlap
Mj moment (Nmm) in the adherend j around the z direction
Nj force (N) in the adherend j in the x direction
Qσ nodal normal force (N) applied to the node σ in the x direction (σ= i, j, k, l)
Rσ nodal shear force (N) applied to the node σ in the y direction (σ= i, j, k, l)
Sσ nodal bending moment (Nmm) applied to the node σ around the z direction (σ= i, j, k, l)
S adhesive peel stress (MPa)
T adhesive shear stress (MPa)
U vector of displacements
Vj shear force (N) in the adherend j in the y direction
b width (mm) of the adherends
e thickness (mm) of the adhesive
ej thickness (mm) of the adherend j
f force (N) applied to the joint in the x direction
lj length (mm) of the beam outside the overlap of the adherend j
n number of macro-elements
uj displacement (mm) of the adherend j in the x direction
ua displacement (mm) of the node a in the x direction (a = i, j, k, l)
wj displacement (mm) of the adherend j in the y direction
wa displacement (mm) of the node a in the y direction (a = i, j, k, l)
Δ length (mm) of a macro-element
hj angular displacement (rad) of the adherend j around the z direction
ha angular displacement (rad) of the node a around the z direction (a = i, j, k, l)
(x, y, z) direct orthonormal base
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Appendix A

This appendix details the resolution of the differential equation system in Equation (24). The characteris-
tic polynomial expression is:

PðRÞ ¼ âR3 þ b̂R2 þ ĉRþ d̂ ¼ 0

R ¼ r2

â ¼ 1

b̂ ¼ #k1
ĉ ¼ k4
d̂ ¼ k2k3 # k1k4

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ðA:1Þ

To determine the roots, the Cardan’s method is employed. Then, Equation (A.1) is modified as:



R03 þ p̂R0 þ q̂ ¼ 0

p̂ ¼ # k2
1

3
þ k4

q̂ ¼ # k1
27
ð2k21 # 9k4Þ þ k2k3 # k1k4

8

<

:

ðA:2Þ

where,

R0 ¼ R# k1

3
ðA:3Þ

and the determinant is:

!̂ ¼ q̂2 þ 4

27
p̂3 ðA:4Þ

By defining:

û ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

#q̂þ
ffiffiffi

!̂

p
2

q

v̂ ¼ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffi

#q̂#
ffiffiffi

!̂

p
2

q

8

<

:

ðA:5Þ

The roots of the reduced equation are written as:

R0
1 ¼ ûþ v̂

R0
2 ¼ jûþ"jv̂

R0
3 ¼ j2ûþ j2v̂

8

<

:

ðA:6Þ

Consequently, the roots of the characteristic Equation (A.1) are given by:

R1 ¼ ûþ v̂þ k1
3
¼ r2

R2 ¼ #1
2
ðûþ v̂Þ þ k1

3
þ i

ffiffi

3
p

2
ðû# v̂Þ ¼ ðsþ itÞ2

R3 ¼ #1
2
ðûþ v̂Þ þ k1

3
# i

ffiffi

3
p

2
ðû# v̂Þ ¼ ðs# itÞ2

8

>

<

>

:

ðA:7Þ

Finally, the adhesive stresses have to be determined as:

SðxÞ ¼ K1e
sx sinðtxÞ þ K2e

sx cosðtxÞ þ K3e
#sx sinðtxÞ

þK4e
#sx cosðtxÞ þ K5e

rx þ K6e
#rx

: ;

TðxÞ ¼ K1e
sx sinðtxÞ þ K2e

sx cosðtxÞ þ K3e
#sx sinðtxÞ

þK4e
#sx cosðtxÞ þ K5e

rx þ K6e
#rx þ K7

: ;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ûþ v̂þ k1
3

q

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ðReðR2Þ þ jR2jÞ

q

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ðjR2j # ReðR2ÞÞ

q

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

ðA:8Þ

Appendix B

Determination of nodal displacements and forces.



With the Equations (18) and (19), it is possible to express the derivatives of the longitudinal and trans-
verse displacements as functions of adhesive stresses and their derivatives:

d4w1

dx4
¼ A10

dT
dx
þ B10S

d4w2

dx4
¼ A20

dT
dx
þ B20S

d3u1
dx3

¼ C10
dT
dx
þ D10S

d3u2
dx3

¼ C20
dT
dx
þ D20S

8

>

>

>

<

>

>

>

:

ðB:1Þ

where,

A10 ¼ # b
2!1

½2B1 þ e1A1'; B10 ¼ #A1b

!1

A20 ¼ b
2!2

½2B2 # e2A2'; B20 ¼ A2b

!2

C10 ¼ # b
2!1

½e1B1 þ 2D1'; D10 ¼ #B1b

!1

C20 ¼ b
2!2

½#e2B2 þ 2D2'; D20 ¼ B2b

!2

8

>

>

>

<

>

>

>

:

ðB:2Þ

To obtain the expressions of displacements in the adherends, Equation (B.1) has to be integrated.
Before integrating Equation (B.1), the differential Equation (22) is written as:

S ¼ 1
k2k3#k1k4

k3
d3T
dx3

þ k1
d4S
dx4

D E

dT
dx
¼ 1

k1k4#k2k3
k4

d3T
dx3

þ k2
d4S
dx4

D E

(

ðB:3Þ

and introduced in Equation (B.1). The displacements in the adherends are then expressed as:

w1 ¼ A10k4#B10k3

ðk1k4#k2k3Þ2
k4

dT
dx
þ k2

d2S
dx2

< =

þ A10k2#B10k1
k1k4#k2k3

S þ J0
x
!

< =3þJ1
x
!

< =2þJ2
x
!
þ J3

h i

w2 ¼ A20k4#B20k3

ðk1k4#k2k3Þ2
k4

dT
dx
þ k2

d2S
dx2

< =

þ A20k2#B20k1
k1k4#k2k3

S þ J0
x
!

< =3þJ1
x
!

< =2þJ2
x
!
þ J3

h i

u1 ¼ C10k4#D10k3
k1k4#k2k3

T þ C10k2#D10k1
k1k4#k2k3

dS
dx
þ J4

x
!

< =2þJ5
x
!
þ J6

h i

u2 ¼ C20k4#D20k3
k1k4#k2k3

T þ C20k2#D20k1
k1k4#k2k3

dS
dx
þ J4

x
!

< =2þJ5
x
!
þ J6

h i

h1 ¼ A10k4#B10k3
k1k4#k2k3

ðT # K7Þ þ A10k2#B10k1
k1k4#k2k3

dS
dx
þ 3J0

x2

!3 þ 2J1
x
!2 þ J2

!

h i

h2 ¼ A20k4#B20k3
k1k4#k2k3

ðT # K7Þ þ A20k2#B20k1
k1k4#k2k3

dS
dx
þ 3J0

x2

!3 þ 2J1
x
!2 þ J2
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h i

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ðB:4Þ

Fourteen new integration constants are involved. However, following the resolution scheme in [18],
the total number of integration constants can be reduced to 12.

Firstly, the second equation of system (18) gives:

dN2

bdx
¼ T ) A2

d2u2

dx2
# B2

d3w2

dx3
¼ bT ðB:5Þ

Hence:

A2

2J4

!2
# B2

6J0

!3
¼ bK7 ) J4 ¼

b!2K7

2A2

þ 3B2J0

A2!
ðB:6Þ



In the same way, by considering the adherend 2, it becomes:

J4 ¼ #b!2K7

2A1

þ 3B1J0

A1!
ðB:7Þ

Secondly, the difference between the transverse displacements of both adherends provides:

w1 # w2 ¼
e

E
S þ ðJ0 # J0Þ

x

!

6 73

þðJ1 # J1Þ
x

!

6 72

þðJ2 # J2Þ
x

!
þ J3 # J3 ðB:8Þ

According to the definition of the peeling stress, it becomes:

Ji ¼ Ji; i ¼ 1; 3 ðB:9Þ

The difference of the longitudinal displacements provide:

u2 # u1 #
1

2
e1h1 #

1

2
e2h2 ¼

e

G
T þ PðxÞ ðB:10Þ

where, P(x) is a quadratic polynomial, all coefficients of which have to be equal to zero:

J4 # J4 #
3

2
e1
J0

!
# 3

2
e2
J0

!
¼ 0 ðB:11Þ

J5 # J5 # e1
J1

!
# e2

J1

!
¼ 0 ðB:12Þ

J6 # J6 #
e1

2

J2

!
# e2

2

J2

!
þ K7

k1k4 # k2k3

k4
e1
2
A10 þ e2

2
A20

< =

#k3
e1
2
B10 þ e2

2
B20

< =

: ;

¼ 0 ðB:13Þ

The displacements in the adherends are then expressed under the shape of Equation (27),
with:

~b1 ¼ C10k4#D10k3
k1k4#k2k3

; b1 ¼ C10k2#D10k1
k1k4#k2k3

~b2 ¼ C20k4#D20k3
k1k4#k2k3

; b2 ¼ C20k2#D20k1
k1k4#k2k3

~b5 ¼ A10k4#B10k3
k1k4#k2k3

; b5 ¼ A10k2#B10k1
k1k4#k2k3

~b6 ¼ A20k4#B20k3
k1k4#k2k3

; b6 ¼ A20k2#B20k1
k1k4#k2k3

~b3 ¼
~b5

k1k4#k2k3
; ~b4 ¼

~b6
k1k4#k2k3

J0 ¼
b!3 1

A1
þ 1

A2

6 7

3ðe1þe2Þþ6
B1
A1
#B2

A2

6 7K7

8
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>
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<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ðB:14Þ

The constitutive Equation (19) allow for the computation of normal and shear forces and of bending
moments in both adherends, under the shape of Equation (28) with:



~a1 ¼ A1
~b1 # B1

~b5; a1 ¼ A1b1 # B1b5

~a2 ¼ A2
~b2 # B2

~b6; a2 ¼ A2b2 # B2b6

~a3 ¼ #B1
~b1 þ D1

~b5; a3 ¼ #B1b1 þ D1b5

~a4 ¼ #B2
~b2 þ D2

~b6; a4 ¼ #B2b2 þ D2b6

8

>

>

>

<

>

>

>

:

ðB:15Þ

Appendix C

Modification in the BBe element, induced by a linear shear stress in the adherends.

The Equation (21) is modified as:

du1
dx

¼ D1N1þB1M1þ½D1C1#B1C
0
1
'dT
dx

!1

d2w1

dx2
¼ A1M1þB1N1þ½B1C1#A1C

0
1
'dT
dx

!1

du2
dx

¼ D2N2þB2M2þ½D2C2#B2C
0
2
'dT
dx

!2

d2w2

dx2
¼ A2M2þB2N2þ½B2C2#A2C

0
2
'dT
dx

!2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ðC:1Þ

The expression of the adhesive shear stress then becomes:

T ¼ ~G
e
u2 # u1 # 1

2
e1h1 # 1

2
e2h2

< =

~G ¼ G

1þn2

n2 ¼ 3
8

G
e

e1
G1
þ e2

G2

h i

8

>

>

<

>

>

:

ðC:2Þ

Moreover, the system of differential equations in terms of adhesive stresses (Equation (22))
becomes:

d3T
dx3

¼ k01
dT
dx
þ k02S

d4S
dx4

¼ #k04S # k03
dT
dx

(

ðC:3Þ

with,

k01 ¼ k1
1#aT

k02 ¼ k2
1#aT

k03 ¼ k3 þ k01k5

k04 ¼ k4 þ k02k5

k5 ¼ E
e

B2C2#A2C
0
2

!2
# B1C1#A1C

0
1

!1

h i

aT ¼ ~G
e

D1C1#B1C
0
1

!1
# D2C2#B2C

0
2

!2
þ e1

2

B1C1#A1C
0
1

!1
þ e2

2

B2C2#A2C
0
2

!2

h i

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ðC:4Þ

Then, the expressions of constants of Equation (B.2) are modified together with the expressions of
displacements in Equation (27) accordingly:



A10 ¼ # b
2!1

½2B1 þ e1A1' þ B1C1#A1C
0
1

!1
k01; B10 ¼ #A1b

!1
þ B1C1#A1C

0
1

!1
k02

A20 ¼ b
2!2

½2B2 # e2A2' þ B2C2#A2C
0
2

!2
k01; B20 ¼ A2b

!2
þ B2C2#A2C

0
2

!2
k02

C10 ¼ # b
2!1

½e1B1 þ 2D1' þ D1C1#B1C
0
1

!1
k01; D10 ¼ #B1b

!1
þ D1C1#B1C

0
1

!1
k02

C20 ¼ b
2!2

½#e2B2 þ 2D2' þ D2C2#B2C
0
2

!2
k01; D20 ¼ B2b

!2
þ D2C2#B2C

0
2

!2
k02
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>

>

>

>

>

<

>

>

>

>

>

:

ðC:5Þ

Finally, the last equations to modify are the constants expressing the forces and moments in adher-
ends in Equation (B.15):

~a1 ¼ A1
~b1 # B1

~b5 # C1; a1 ¼ A1b1 # B1b5

~a2 ¼ A2
~b2 # B2

~b6 # C2; a2 ¼ A2b2 # B2b6

~a3 ¼ #B1
~b1 þ D1

~b5 þ C0
1; a3 ¼ #B1b1 þ D1b5

~a4 ¼ #B2
~b2 þ D2

~b6 þ C0
2; a4 ¼ #B2b2 þ D2b6

8

>

>

<

>

>

:

ðC:6Þ


