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Abstract: In this paper, we propose a data-driven block thresholding procedure for wavelet-
based non-blind deconvolution. The approach consists in appropriately writing the problem in
the wavelet domain and then selecting both the block size and threshold parameter at each
resolution level by minimizing Stein’s unbiased risk estimate. The resulting algorithm is simple
to implement and fast. Numerical illustrations are provided to assess the performance of the
estimator.

Keywords: Inverse problem; Estimation parameters; Deconvolution; Signal reconstruction;
Coloured noise.

1. INTRODUCTION

1.1 Problem statement

Let A : H → K be a known linear operator between the
Hilbert spaces H and K endowed with the corresponding
inner products and associated norms. Assume that we
observe the data Y according to

Y = Af + ǫW, (1)

where f ∈ H is the unknown function we wish to recover,
ǫ > 0 is the noise level and W is a zero-mean Gaussian
white noise. We aim to estimate a function f from the
observations Y .

1.2 Motivating example

In this paper, we consider the problem of deconvolution,
but other examples can also be considered as well, e.g.,
density with error in variable, tomography, etc., if the
operator possesses K the so-called Wavelet-Vaguelette
Decomposition (WVD) of Donoho [1995]. The degradation
process can be modelled as a blurring operator A which is
characterised by the kernel g (i.e. also often referred to as
a point spread function (PSF) or impulse response)

Af : Ω → R

t 7→ Af(t) = g ⊛ f(t) =

∫

Ω

g(s)f(t− s)ds, t ∈ Ω

where Ω = [0, 1] and both f and g belong to H =
L
2
per(Ω) = {h; h is 1-periodic on Ω and

∫
Ω
|h(t)|2dt <∞}.

Deconvolution is a challenging ill-posed inverse problem.

1.3 Overview of previous work and contributions

There is already an extensive literature on deconvolution
for the case where A is known (see, e.g., Donoho [1995],

Cavalier [2008], Cavalier et al. [2004], Cavalier [2002],
Chesneau [2007], Johnstone [1999]).

In this work, we consider adaptive block estimators
based on the Wavelet-Vaguelette Decomposition (WVD)
of Donoho [1995]. Minimaxity of James-Stein block thresh-
olding over Besov balls with fixed block size has been
established for deconvolution in Chesneau et al. [2010].
The performance of Block thresholding estimators strongly
depends on the block size L and threshold level λ. In the
nonparametric regression setting, in order to choose these
two key parameters in an optimal way, Cai and Zhou [2009]
proposed an adaptive James-Stein block thresholding es-
timator whose parameters minimize the Stein’s unbiased
risk estimate (SURE) and established its minimax rates
of convergence under the mean squared error over Besov
balls. Johnstone [1999] described a SURE-based level-
dependent term-by-term thresholding estimator for a class
of linear inverse problems possessing aWVD. Recently, the
SURE has proved to be a powerful tool for signal/image
restoration Luisier et al. [2007], Pesquet et al. [2009],
Vaiter et al. [2012]. For image denoising problems, a Stein
risk estimator have been proposed in Peyré et al. [2011] to
both adapt the block-sparsity structure and the threshold.

In this work, we extend several of the previous works to
solve linear inverse problems, mainly deconvolution here,
with wavelet block thresholding estimators. Our estimator
is constructed using a periodized Meyer wavelet basis and
two popular block thresholding estimators; namely Block-
Soft and Block James-Stein (JS) (defined in the sequel).
The corresponding optimal block size and threshold pa-
rameter are determined by minimizing the SURE after
rewriting the model appropriately in the wavelet domain.

The paper is organized as follows. Section 2 briefly re-
views wavelets and Besov balls and describes the block
thresholding-based deconvolution estimator. Section 3 dis-



cusses numerical results, before conclusions are drawn in
Section 4.

2. NONLINEAR ESTIMATION VIA BLOCK
THRESHOLDING

2.1 Wavelets and Besov balls

For the purpose of this paper, we use the periodized Meyer
wavelet bases on L

2
per(Ω). Any function f ∈ L

2
per(Ω) can

be expanded into a wavelet series

f(t) =

2j0−1∑

k=0

αj0,kφj0,k(t) +

∞∑

j=j0

2j−1∑

k=0

βj,kψj,k(t), t ∈ Ω,

where

αj0,k = 〈f, φj0,k〉, βj,k = 〈f, ψj,k〉 (2)

with 〈f, g〉 =
∫
Ω fg, and φj0,k and ψj,k are scaled and

translated versions of the father and mother wavelets φ
and ψ. The family {φj0,k, k = 0, . . . , 2j0 − 1;ψj,k, j ≥
j0, k = 0, . . . , 2j − 1} forms an orthonormal basis of
L
2
per(Ω). Meyer wavelets are compactly supported in the

Fourier domain with{
Dj = supp

(
(φj,k)ℓ

)
⊂ [−2j+1c, 2j+1c],

Cj = supp
(
(ψj,k)ℓ

)
⊂ [−2j+2c,−2jc] ∪ [2jc, 2j+2c],

where c = 2π/3, gℓ = 〈g, eℓ〉 with eℓ = e2πiℓt, and
supp denotes the support. See Meyer [1992] for a detailed
account.

We say that a function f belongs to the Besov ball
Bs
p,r(M) if and only if

∫
Ω
|f(t)|pdt ≤ M , and there exists

a constant M∗ > 0 (depending on M) such that the
associated wavelet coefficients (2) satisfy

2j0(1/2−1/p)




2j0−1∑

k=0

|αj0,k|
p




1/p

+




∞∑

j=j0


2j(s+1/2−1/p)




2j−1∑

k=0

|βj,k|
p




1/p



r


1/r

≤M∗,

with a smoothness parameter 0 < s < q, and the
norm parameters p and r. Besov spaces capture a variety
of smoothness features in a function including spatially
inhomogeneous behavior, see Meyer [1992].

2.2 Smoothness of the kernel g

In this study, we focus on the standard context of ordinary
smoothness of g. That is, that there exist three constants,
cg > 0, Cg > 0 and δ > 1 such that, for any ℓ ∈ Z,

cg
1

(1 + ℓ2)δ/2
≤ |gℓ| ≤ Cg

1

(1 + ℓ2)δ/2
. (3)

This assumption controls the decay of the Fourier coef-
ficients of g. It is a standard hypothesis usually adopted
in the field of nonparametric estimation for deconvolution
problems, see e.g. Cai [2002], Donoho [1995], Pensky and
Vidakovic [1999].
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Fig. 1. Illustration of the blocks partition at a given scale.

2.3 Wavelet deconvolution in the Fourier domain

We set, fℓ = 〈f, eℓ〉,Wℓ = 〈W, eℓ〉, where Wℓ are i.i.d.
standard (complex-valued) Gaussian random variables.
Then, re-writing the model (1) in the Fourier domain

yℓ = fℓgℓ + ǫWℓ, ℓ ∈ Z. (4)

Moreover, we can compute the wavelet transform via the
Parseval formula

βj,k =
∑

ℓ∈Z

fℓ(ψj,k)ℓ,

where (·j,k)ℓ = 〈·j,k, eℓ〉, Then, combining the latter with
(4), we get

∑

ℓ∈Cj

yℓ
gℓ
(ψj,k)ℓ =

∑

ℓ∈Cj

fℓ(ψj,k)ℓ + ǫ
∑

ℓ∈Cj

eℓ
gℓ
(ψj,k)ℓ .

Thus, we can perform wavelet transform and deconvolu-
tion simultaneously and (4) reduces to a general sequence
model with correleted noise

zj,k = βj,k + ǫWj,k, (5)

whereWj,k =
∑
ℓ∈Cj

eℓ
gℓ
(ψj,k)ℓ ∼ N

(
0, ǫ2

∑
ℓ∈Cj

|(ψj,k)ℓ|
2

|gℓ|2

)
.

Let us denote by σj the standard deviations of the noise
process Wj,k and let λj = λσj be a sequence of thresholds
to be applied to the wavelet coefficients at level j. In view
of (3), we have at level j that σj ∼ ǫ2jδ. We define the
estimator of the wavelet coefficients of f as

β̂∗
j,k = η∗(zj,k, λj), (6)

where η∗ is either Block-Soft or Block-JS thresholding
defined in (8).

2.4 Block deconvolution estimator

Let the observed signal Y be the vector of n observations
Y1, . . . , Yn. Let j1 = ⌊ln2(lnn)⌋ be the coarsest resolution
level, and j2 = ⌊(1/(2δ + 1)) ln2(n/ lnn)⌋, where, for
any a ∈ R, ⌊a⌋ denotes the integer part of a. For any
j ∈ {j1, . . . , j2}, let L ≥ 1 be the block size.

Let Aj = {1, . . . , ⌊2jL−1⌋} be the set indexing the blocks
at resolution j. For each j, let {bj,K}K∈Aj

be a uni-

form and disjoint open covering of {0, . . . , 2j − 1}, i.e.⋃
K∈Aj

bj,K = {0, . . . , 2j − 1} and for any (K,K ′) ∈ A2
j

with K 6= K ′, bj,K ∩ bj,K′ = ∅ and Card(bj,K) = L, where
bj,K = {k ∈ {0, . . . , 2j − 1}; (K − 1)L ≤ k ≤ KL − 1} is
the Kth block (see Fig.1).



We define our block estimator f̂λ of f by

f̂λ(t) =

2j1−1∑

k=0

α̂j1,kφj1,k(t) +

j2∑

j=j1

∑

K∈Aj

∑

k∈bj,K

β̂∗
j,kψj,k(t),

(7)
t ∈ [0, 1], where for any resolution level j and position
k ∈ bj,K within the Kth block, the wavelet coefficients of
f are estimated via (6) with one of the rules

ηSoft(zj,k, λ) =

(
1−

λ

‖zbj,K‖2

)

+

zj,k,

ηJS(zj,k, λ) =

(
1−

λ2

‖zbj,K‖22

)

+

zj,k,

(8)

with, ‖zbj,K‖22 =
∑

k∈bj,K
|zj,k|

2, and (a)+ = max(a, 0).

α̂j1,k =
∑

ℓ∈Dj1

yℓ
gℓ
(φj,k)ℓ is the empirical approximation

coefficient.

Note that (7) is simple to implement and fast (thanks to
the Fast Fourier Transform algorithm) which allows us to
perform the selection procedure in a reasonable time.

Block thresholding estimators depend on both the block
size L and threshold parameter λ which mainly determine
the performance of the resulting estimator. So it is impor-
tant to select these parameters in an optimal way.

2.5 Unbiased risk estimation for automatic parameter
selection

Since the discrete wavelet transform is orthogonal, the

risk of an estimator f̂ of f will be the same as that of

its wavelets coefficients. The risk R(f̂ , f) = E(‖f̂ − f‖2)
will measure the estimation error in the Mean Square
Error sense. Since the blocks are also non-overlapping,
an estimator of the risk is derived by summing the risk
estimates over blocks and resolution levels j.

More precisely, since each of the thresholding rules in (8) is
weakly differentiable with an essentially bounded gradient,
Stein lemma allows to get an estimator of the risk in each
block, which solely depends on the observation. Denoting
zbj,K = (zj,k)k∈bj,K , the SURE on each block bj,K is given
by

JSoft(zbj,K , λj , σj) = Lσ2
j + (L‖zbj,K‖2 − 2Lσ2

j )1{‖zbj,K ‖<λj}

+ (Lλ2j − 2σ2
j (L− 1)

λj
‖zbj,K‖

)1{‖zbj,K ‖>λj}

JJS(zbj,K , λj , σj) = Lσ2
j + (L‖zbj,K‖2 − 2Lσ2

j )1{‖zbj,K ‖<λj}

+
Lλ2j − 2σ2

j (L − 2)

‖zbj,K‖
2/λ2j

1{‖bj,K‖>λj},

where 1{·} denotes the indicator function of the event in

its argument. Thus, the overall SURE of β̂∗
j,k is computed

by simple summation

J∗({zj,k}j,k, λ) =

j2∑

j=j1

∑

K∈Aj

∑

k∈bj,K

J∗(zbj,K , λj , σj) . (9)

This is indeed an unbiased estimator of the risk. Conse-
quently, our approach can be used as a principled way to
objectively choose the optimal parameters λ and L that
minimize (9).

2.6 Deconvolution algorithm

The deconvolution algorithm can be summarized as fol-
lows:

Algorithm 1. deconvolution algorithm

Parameters: The observed blurred and noisy signal Y ,
the PSF g.
Initialization:

• Block size: L = ⌊lnn⌋.
• Coarsest decomposition scale j1 = ⌊ln2(lnn)⌋.

Step one: Fourier and wavelet domain.
• Apply an inverse filtering on the data using FFT (i.e.
1/gℓ).

• Perform one Forward wavelet transform: zj,k =∑
ℓ∈Cj

yℓ
gℓ
(ψj,k)ℓ.

• Compute and store the variance σ2
j .

Step two: Compute the risk.
• For each possible dyadic block bj,K compute
J∗(zbj,K , λj , σj) and sum over the scale to get
J∗({zbj,K}, λj , σj).

Step three: Optimal parameters.
• Get the optimal parameters λ and L by a grid search.

Output: Get deconvolved signal f̂λ at the optimal λ and
L.

3. SIMULATION EXPERIMENTS

Three test functions, representing different degrees of
irregularity, were used. The signals have been blurred with
a Laplacian PSF and were corrupted by a zero-mean white
Gaussian noise. Fig. 2 depicts the SURE and true risk
curves as a function of the block size and the threshold
λ, for each thresholding rule, plotted at each scale with
the optimal block size (1st row) and summed over scales
for each block size used (2nd row). It can be observed
that the SURE gives a very reliable estimate for the risk,
and in turn, also a high-quality estimate of the optimal λ.
The restoration quality can be assessed both visually and
quantitatively in Fig. 3, which shows the restored signals
at the optimally chosen λ and L, with an input BSNR
= 30 dB.

4. CONCLUSION

In this paper, a data-driven block wavelet-based decon-
volution estimator was presented. Its usefulness has been
illustrated on automatic selection of the both the block size
L and threshold level λ for signal deconvolution. Although
we focused on one-dimensional convolution, the approach
can handle other operators A and easily extended to a
multi-dimensional setting (e.g. images). We reported some
simulation experiments to support our findings. Our ef-
forts are now directed towards establishing the theoretical
minimax performance of this estimator.
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Fig. 2. SURE and risk as a function of the threshold
for Soft (left) and JS (right) block thresholding both
at each scale with the optimal block size (top) and
summed over scales for each block size used (bottom).
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