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 

Abstract—This paper looks into the vulnerabilities of the 

electric power grid and associated communication network, in the 

face of intermittent power generation and uncertain demand 

within a complex network framework of analysis of smart grids. 

The perspective is typical for the system of systems analysis of 

interdependencies in a critical infrastructure (CI), i.e. the smart 

grid for electricity distribution. We assess how the integration of 

the two systems copes with requests to increase power generation 

due to enhanced power consumption at a load bus. We define 

adequate measures of vulnerability to identify the most limiting 

communication time delays. We quantify the probability that a 

reduction in the functionality of the communication system yields 

a faulty condition in the electric power grid, and find that a 

factual indicator to quantify the coupling strength between the 

two networks is the frequency of load-shedding actions due to 

excessive communication time delay. We evaluate safety margins 

with respect to communication specifications, i.e. the data rate of 

the network, to comply with the safety requirements in the 

electric power grid. Finally, we find a catastrophic phase 

transition with respect to this parameter, which affects the safe 

operation of the CI. 

 
Index Terms—Complex Networks, System of Systems, Critical 

Infrastructures, Smart Grids, Interdependencies, Vulnerability 

Analysis, Uncertainty 

 

I. INTRODUCTION 

HE life and development of modern Societies is supported 

by critical infrastructures (CIs), like the transport and 

communication networks or the electrical grid, which grant the 

necessary continuous production and distribution of goods and 

services [1]. 

A characteristic of these CIs is that they are highly 

interconnected and mutually dependent, i.e. interdependent, in 

complex ways, both physically and through information and 

communication technologies used for data acquisition and 

control, leading to the concept of "systems of systems" [2]. 
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This brings the need of assessing and controlling the 

influences and limitations which interacting CIs impose on 

their operating conditions [3]. 

In particular, a focal subject of interest today is the 

evolution of the networks for electrical energy supply and their 

conception/renovation as “smart” grids [4]-[8] with distributed 

generation, as opposed to the centralized power generation 

structure of the existing electric power grids. One key aspect 

characterizing smart grids is the combination of the electric 

power grid with an information and communication network to 

“improve the observability and controllability of the 

distribution grid and thereby convert it from a static 

infrastructure to be operated as designed to a flexible, dynamic 

infrastructure operated proactively” [4]. 

The concepts and configurations of smart grids vary 

sensibly with respect to the implementation at the different 

levels of the electrical infrastructure, i.e. the transmission and 

distribution systems (the level of the individual costumer, and 

the related pricing issues, lies beyond the scope of the study 

presented in this paper) [5]. 

At the level of the transmission system, the efficiency and 

stability of power system operation could be improved 

substantially by phase angle measurements at many key 

locations and the use of Flexible AC Transmission System 

control devices (FACTS), combined with distributed and 

autonomous control strategies and high-speed communication.  

The level of the distribution system is the one usually 

referred to when introducing concepts of smart grids. Unlike 

the transmission grids that are arranged as meshed networks, 

the distribution networks form tree-like, radial structures, 

characterized by a central distribution hub where power enters 

and is routed to the loads along the parallel branches of the 

distribution feeders. If a malfunctioning occurs, circuit 

breakers automatically disconnect the entire feeder. The use of 

multiple power injection points, and sensors and remote 

control switches that can isolate and cut off the problem would 

guarantee the continuous power supply to the other buses of 

the feeder [9]. Furthermore, at present stage the disconnection 

of the entire feeder is the only strategy to balance a load excess 

when generation is suddenly lost due to an emergency. 

Conversely, a combination of smart meters and advanced 

distribution automation would allow controlling individual 

loads along a distribution feeder so that critical services (such 
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as police stations, hospitals, emergency services) can remain 

connected, while loads that provide less critical services can be 

dropped. Furthermore, the deployment of small-size diffuse 

generation would relieve stresses on transmission and 

distribution systems, and allow the disconnection of the 

distribution feeder from the main power system to run it as an 

isolated island, serving only a few critical loads in case of an 

emergency (this is not currently allowed for technical, legal, 

safety, and regulatory reasons). 

Irrespective of the system level under consideration, the 

smart grid is an auto-balancing, self-monitoring power grid 

that has the ability to sense when a part of its system is 

overloaded and reroute power to reduce overload and prevent 

a potential outage situation. It enables real-time 

communication between users and utility, allowing optimal 

energy usage, and the introduction of renewable energy 

sources for minimizing the collectivity environmental footprint 

[4]. 

The use of renewable energy sources poses challenges to the 

design and the operations of the electric power grid. The 

availability of these sources is strictly dependent on the 

climatic conditions, i.e. cloud cover or wind speed and 

steadiness. Then, the power output of solar and wind electric 

generators is affected by uncertainty and intermittency [10]-

[12]: paradoxically, due to its intrinsic stochastic nature, 

electric power from renewable sources could be abundantly 

available when it is not needed, while scarce in other cases of 

necessity. Moreover, electrical energy from renewable sources 

is typically produced in remote areas, e.g., where strong and 

steady winds are available or solar power plants can be 

conveniently located. This power has to be routed through the 

transmission network and delivered to distant locations where 

it is consumed. Yet, the existing power transmission 

infrastructure is not currently designed to carry intermittent 

electrical flows with possibly large peak flows, and in some 

cases it is inadequate to serve new remote power plants. As an 

example, a recent study [13] commissioned by the Italian 

Association of Energy Producers from Renewable Sources 

(APER) has estimated that between 2008 and 2009 the wind 

farms located in Southern Italy have lost 700 GWh (25% of 

the maximum producible energy) due to the limited current-

carrying capacity of the high-voltage transmission lines and the 

scarce power demand in the area near the plants, 

corresponding to an economic loss of 144 millions of Euros. 

The deployment of small-size renewable power generation 

at the electric distribution level is also rapidly changing the 

nature of this infrastructure. Traditionally a passive recipient 

of a unidirectional flow from the transmission network, the 

distribution network should now support injections of active 

power from its users. In this perspective, both the transmission 

and the distribution networks require a real-time control 

approach with an increasing level of complexity due to the 

broad space distribution of the generators and to the high 

degree of variability that characterizes electrical power from 

renewable sources [6]. 

Electric transmission networks already have some 

instrumentation that allows control centers to automatically 

monitor power flows and open or close circuit breakers at 

substations as a result of human- and computer-generated 

control decisions [5]. This communication level is based on 

heterogeneous technologies and platforms which are poorly 

integrated [14]. On the contrary, distribution networks lack 

instruments for the information exchange and the system 

control. 

Considering the present lack of standards, the 

communication network will have to evolve with the 

developing Smart Grid. Communication links will need to use 

all kinds of resources, varying from hard-wired links to fiber 

optics, power line communication [15], wireless [16], satellites 

and micro-wave links, in order to serve the large geographical 

territory covered by the smart grid [7]. All of these 

communication links constitute opportunities but also 

introduce vulnerabilities, due to functional failures and 

exposition to malevolent attacks aiming at causing system-

wide instabilities and blackouts, especially if they are not 

protected in dedicated supports but can be accessed over the 

Internet. 

The coupling between the electric power and 

communication networks in Smart Grids raises safety and 

security issues [17]. In the smart grids, the continuous delivery 

of electric power is supported by the communication 

infrastructure and, vice versa, the exchange of information 

relies on the energy input of the electric power grid. Faults 

originating in one of the two networks impact on the other 

interdependent one. For example, the interruption or even the 

delay of the information flow communicating a control action 

upon the electric power grid may result in power unbalance 

and system instability that could trigger a blackout [7], [18]. 

Vulnerability analysis must then be concerned with the 

interconnected, mutually dependent systems to properly 

account for the influences and limitations which the interacting 

electrical power grids and communication networks impose on 

the individual system operating conditions, for avoiding fault 

propagation by designing redundancies and alternative modes 

of operations, and by detecting and recognizing threats. 

This paper looks into the vulnerabilities of the electric 

power grid and associated communication network, in the face 

of intermittent power generation and uncertain demand within 

a complex network framework of analysis of smart grids. 

Complex network approaches for the analysis of distributed 

systems [19]-[25] take a holistic perspective in which the 

overall system behavior emerges as the result of the complex 

interactions of its constituents. The two main objectives of the 

analysis are (i) to identify preliminary vulnerabilities by 

topology-driven and dynamic analysis, and (ii) to guide and 

focus further detailed analyses of critical areas based on 

physical codes (e.g. incorporating line impedances and 

Kirchhoff's laws to assess the power flows from the generators 

to the loads of an electric network). Purely-topological, 

complex network models of the electric power grid [19]-[25], 
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which abstract the physical details of the provided service and 

characterize the topology of network systems, are here 

extended to capture essential operating features, i.e. the power 

is routed through the least resistant paths, the components are 

physically specialized in “generators” and “distributors”, the 

lines are subjected to limits on their carrying-flow capacities 

and the power generation and consumption levels vary within a 

range of uncertain values. 

In order to account for the interdependence effects due to 

the coupling [26], we adopt a framework in which the 

communication delays are integrated in the electric CI. The 

communication network is assumed to be made of dedicated 

control signal channels. The coupling between the two 

interdependent networks occurs at the components level. Each 

node of the electric network is coupled with a router that 

ensures communication with the other elements of the network. 

The time required to exchange data from the measurement 

location to a control center or data concentrator, and the time 

required ultimately to communicate these data to the control 

devices, is collectively denoted as communication delay or 

latency. As stated before, excessive communication delay may 

result in power unbalance and system instability that could 

trigger a blackout. The calculation method of the 

communication delay encompasses several sources, including 

routing delays which are modeled as a series of M/M/1 queues, 

which symbolizes the cumulative time delay along the routing 

path from the measurement site to the control unit [27]. 

According to the shorthand notation developed for queuing 

systems, the three-part descriptor M/M/1 denotes a one-server 

queuing system with exponentially-distributed inter-arrival and 

service times [28]. 

We assess the vulnerability of the two interdependent 

networks subject to the specific hazard defined by the request 

of increase of power generation due to enhanced power 

consumption of one load. To this aim, we introduce 

vulnerability measures that identify the most critical 

communication time delays, and assess the probability that a 

reduction in the functionality of the communication system 

will generate a faulty condition in the electric power grid. 

The paper is organized as follows: the embraced 

interpretation of vulnerability is detailed in Section II; the 

modeling of the smart grid CI with interdependencies is 

presented in Section III; Section III.A describes the model of 

power flow in the electrical transmission network and Section 

III.B describes the model of information flow in the 

communication network; Section III.C details the simulation 

procedure devised for analyzing the vulnerabilities of the two 

coupled CIs.  In Section IV, the proposed model is applied to 

two interdependent networks whose structures are based on the 

380 kV Italian power transmission network [29], [30], and 

Section IV.A discusses the numerical results. Conclusions are 

drawn in Section V. 

 

II. VULNERABILITY ANALYSIS OF CRITICAL 

INFRASTRUCTURES 

While the concept of risk is fairly mature and consensually 

agreed, the concept of vulnerability is still evolving and not yet 

established. In general terms, risk refers to a combination of 

the probability of occurrence of a specific event leading to 

loss, damage or injury and its extent. These quantities and their 

associated uncertainties are regarded as being numerically 

quantifiable. 

The term vulnerability has been introduced as the concept of 

risk is somehow limited in portraying the hazard-centric 

perception of disasters. A hazard of low intensity could have 

severe consequences, while a hazard of high intensity could 

have negligible consequences: the level of vulnerability is 

making the difference [31]. The concept of vulnerability seen 

as a global system property focuses on three elements [32]: (i) 

degree of loss and damages due to the impact of a hazard; (ii) 

degree of exposure to the hazards, i.e., likelihood of being 

exposed to hazards of a certain degree and susceptibility of an 

element at the risk of suffering loss and damages; (iii) degree 

of resilience, i.e., the ability of a system to anticipate, cope 

with/absorb, resist and recover from the impact of a hazard or 

disaster. 

Vulnerability is here interpreted as a flaw in the design, 

implementation or operation of an infrastructure system, or its 

elements, that renders it susceptible to destruction or 

incapacitation when exposed to a hazard or threat, or reduces 

its capacity to resume new stable conditions [1], [33]. The 

latter can be provided with a likelihood (frequency) while a 

measure for destruction or incapacitation needs specific 

elaborations. In this study, the vulnerability of the two 

interdependent networks is expressed in terms of frequency of 

load-shedding actions due to excessive communication time 

delay, with respect to several ranges of power increase request.  

The goals of vulnerability analysis, and the associated 

modeling and simulation efforts, could be: (i) given a system 

and the end state of interest, identify the set of events and 

event sequences that can cause damages and loss effects; (ii) 

identify the relevant set of ‘‘initiating events’’ and evaluate 

their cascading impact on a subset of elements, or the system 

as a whole; (iii) given a system and the end state of interest, 

identify the set of events or respective event sequences that 

would cause this effect; (iv) given the set of initiating events 

and observed outcomes, determine and elaborate on 

(inter)dependencies (within the system and among systems) 

and on coupling effects of different orders [1]. 

The achievement of these goals relies on the analysis of the 

system, its parts and their interactions within the system; the 

analysis must account for the environment which the system 

lives in and operates, and finally for the objectives the system 

is expected to achieve. The ultimate goal is to identify the 

vulnerabilities for managing and reducing them.  
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III. DYNAMIC MODEL OF INTERDEPENDENT NETWORKS AND 

SIMULATION PROCEDURE 

The electric power grid and the communication network are 

represented by two graphs G1(N1,K1) and G2(N2,K2) with N1, 

N2 nodes connected by K1, K2 links, respectively. In our case, 

it has been assumed (without loss of generality) that N1=N2=N 

and K1=K2=K. The networks are specified by NN adjacency 

(connection) matrices whose entries are 1 if there is an edge 

joining node i to node j or 0, otherwise, and by connection 

length matrices whose entries are the physical length of the 

line connecting node i to node j if there is an edge joining node 

i to node j or 0, otherwise. 

In the electric power grid, the nodes correspond to buses. 

They are further specified into NG generators, i.e. the providers 

of the service, and ND distributors, i.e. the recipient of the 

service. The edges correspond to electrical connections.  

In the communication network, the nodes correspond to 

routers and the edges to dedicated control signal channels that 

connect them.  

The interdependencies within the CI are due to the presence 

of routers on each electrical bus. Routers send and receive 

control commands that try to match the generation profile with 

the power demand in the electrical network according to the 

increase of electrical load.  

The system, then, does not rely on a centralized control 

center. Control decisions are locally taken at the router/bus 

level and communicated to the other interacting buses/routers 

[33]. During this process, the total time required to the system 

to balance generation and demand, i.e. the communication 

time delay, T, is monitored. 

A. The functional model of power flow in the electrical 

transmission network 

The functional model of the electric power grid abstracts the 

physical details while at the same time capturing its essential 

operating features. The elements of the network are 

characterized by loading values normalized in the interval [0, 

1] that identify how close to the limit capacity they are 

operating. For generator and distributor nodes, L
i
  [0, 1] 

identifies the fraction of maximum power that generator i is 

injecting in the network, or alternatively, the fraction of 

maximum power that distributor i is absorbing from the 

network. The value L
i
 = 1 identifies the maximum power that a 

generator i can inject in the system, or alternatively, the 

maximum power that distributor i has agreed to receive by 

contractual agreement.  For lines, L
ij
  [0, 1] identifies the 

fraction of the maximum flow-carrying capacity that the line 

connecting node i to node j is serving. The value L
ij
 = 1 

indicates that the line connecting node i to node j, hereafter 

also called line ij, is operating at its maximum flow carrying-

capacity.   

The loading scenario is identified when the N values of L
i
 

and the K values of L
ij
 are known. To account for the 

variability that characterizes generation and consumption, the 

L
i
 values are sampled from uniform probability distributions in 

the intervals [LG
min

, LG
max

] for generators and [LD
min

, LD
max

] 

for distributors.  

We assume that the flow of electrical power from generator 

i to distributor j follows the least resistant path between i and j. 

We further assume line resistance to be proportional to line 

length; hence the least resistant paths and the shortest paths 

coincide. We find the shortest paths that connect any generator 

i to any distributor j, and rank in descending order the lines 

with respect to their participation to the shortest paths. The L
ij
 

values are then also sampled from uniform probability 

distributions. In particular, two probability distributions are 

assumed that describe two possible states [Llow
min

, Llow
max

] for 

lines that are likely to accommodate low values of power, and 

[Lhigh
min

, Lhigh
max

] for lines that are likely to accommodate large 

values of power. To this aim, The L
ij
 value is sampled from 

[Lhigh
min

, Lhigh
max

] if line ij belongs to the first half of the rank, 

while it is sampled from [Llow
min

, Llow
max

] if line ij belongs to 

the second half of the rank. This sampling procedure assigns 

on the average a higher power flow to those lines that are 

traversed by many generator-distributor shortest paths, i.e. that 

have a high betweenness centrality [36]. 

In the following, we assess how the CI copes with an 

increase in the electrical power demand. To this aim, starting 

from an initial loading scenario, we simulate a request of 

additional power, W, by distributor i. We assume that W is 

described by a uniform probability distribution [W
min

, W
max

]. 

The overall load L
i
 + W may also possibly exceed the 

maximum contractual power that i has agreed to receive from 

the system, i.e. 1. 

B. The model of information flow in the communication 

network 

In [27], Stahlhut et al. assess how the communication delay 

for measurements and control signals in a power system 

impacts the control system response. In the following, we 

embrace their calculation of the communication delay, and 

assume that the data transmitted are in the form of packets. 

The packets are a formatted block of information and are 

typically arranged in three sections: the header, the payload, 

and the trailer. The header has the following information: 

packet length, origin and destination address, packet type, and 

packet number (if a sequence of packets is being sent). The 

payload carries the data taken from the measurement. The 

trailer is at the end of the packet and carries information which 

permits the receiving device to identify the end of the packet. 

The time delay calculation encompasses several different 

delays that occur in communication systems. These delays 

typically are: 

• serial delays: the delay of having bits being sent one after 

another; 

• “between packet” serial delays: the time after a packet is 

sent to when the next packet is sent; 

• propagation delays: the time required to transmit data over 

a particular communication medium; 

• routing delays: the time required for data to be sent 

through a router, and resent to another location. 
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The total signal time delay may be represented as 

 

s b p rT T T T T     (1) 

s s rT P D  (2) 

PT l v  (3) 

 

where Ts is the serial delay, Tb is the between packet delay, 

Tp is the propagation delay, Tr is the routing delay, Ps is the 

size of the packet (bits/packet), Dr is the data rate of the 

network, l is the length of the communication medium, and v is 

the velocity at which the data are sent through the 

communication medium (e.g., 0.6 to c, where c is the speed of 

light). 

Routers are a major part of the communication 

infrastructure in a communication network. There are a 

number of methods by which routing delay can be 

approximated [37]-[41]. A simple and fast calculation method 

of routing delay can be used to approximate the delay at a 

router: this calculation method is based on a series of M/M/1 

queues [28], in which a path from the measurement to the 

control center is traced, and all of the routing delays are added 

up to represent the total routing delay for the measurement. 

For this calculation, 

 

 

1

N
i

r r

i

T T


  (4) 

 

where Tr is the total routing delay, 
 i

rT  is the routing delay 

for a single router at location i, and N is the total number of 

routers. The M/M/1 queue is used to approximate the value of 
 i

rT  for each router i, and it is modeled as a one-server 

queuing system with exponentially-distributed inter-arrival and 

service times [28]. The M/M/1 queue has several associated 

performance measures such as: the average number of 

customers in line, the average number of customers in the 

system, the time waiting in line, and the time required to pass 

through the system [39], [42]. In this context, the customers 

are the sensory messages in the communication network. A 

noteworthy performance measure is the total waiting time 

(system time), and this encompasses both the amount of time 

waiting in line (waiting time), as well as the amount of time 

being served (service time). The total waiting time is 

quantified as  

 

 



   
 (5) 

 

where   is the rate at which objects come in the system 

(e.g., packets/s) and µ is the rate at which the objects are being 

served (e.g., packets/s). The routing time 
 i

rT  for each router i 

can be estimated from (5) and used in (4) to calculate the total 

routing delay 

 
 

      1

iN

r i i i
i

T


  


 

  (6) 

 

We assume that information from router i to router j flows 

along the shortest path connecting i and j. Therefore, the total 

routing time, Tr, from router i to router j is evaluated as the 

sum of the routing delays of the encountered routers along the 

shortest path connecting i and j. 

The maximum time delay that the smart grid can tolerate 

depends on the system task to be executed and ranges from 

tenths of milliseconds up to tenths of seconds [6], [7]. For 

example, the standard specifies that for an unintentional island 

in which the distributed generation energizes a portion of the 

distribution network, the control system shall detect the island 

and cease to energize the portion within 2s of the formation of 

an island. Moreover, latencies in the tens of ms allow rapid 

detection of faults and are the accepted fault detection times 

[7]. On the contrary, voltage and active power regulation 

actions should be accomplished within 10s and some minutes, 

respectively [6]. 

 

C. Simulation procedure 

To test the vulnerability of the CI with respect to the 

stability upon a power increase request, W, we proceed in 

successive stages as follows: 

1. All N components of the electric power grid are working 

under independent uniformly random initial loads. In 

particular, L
i
  [LG

min
, LG

max
] for generator i = 1,…NG, L

i
   

[LD
min

, LD
max

] for distributor i = 1+ NG,…ND + NG, and L
ij
 

 [Lhigh
min

, Lhigh
max

], or L
ij
  [Llow

min
, Llow

max
], if line ij 

belongs to the first or second half of the betweenness 

centrality rank (Section III.A), respectively, i , j = 1,…, N. 

These values identify the loading scenario. 

2. A distributor node i is chosen randomly and its power 

demand is increased from L
i
 to L

i
 + W, where W is sampled 

from the uniform probability distribution [W
min

, W
max

].  

3. The NG generators that are connected to i are sorted by 

ascending distance from i, i.e. ascending resistance. The 

closest generator j = 1 is selected. Communication delay T is 

set to zero. 

4. Distributor i queries generator j for additional power W. 

Generator j answers providing the value of the power 

available to i, i.e.    min ,1 jSG j W L  , where 1 - L
j
 is 

the maximum additional power that j can provide. 

Communication time delay, T, is updated. 

5. Check whether the shortest path between i and j can 

accommodate the additional power SG(j). To this aim, every 

line yz on the shortest path between i and j is tested for 

infringement of the current-carrying capacity limit in the 

new configuration, i.e. L
yx

 + SG(j)  1. If at least one limit is 

exceeded the additional power is updated to the maximum 

power value that satisfies all the line constraints, i.e. 
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   min 1 yz

yz
SG j L  , for every line yz on the shortest path 

between distributor i and generator j, SG(j) = 0 in case that a 

line yz is already operating at its maximum flow-carrying 

capacity. The residual power that distributor i still requires, 

U(i), and the power that generator j could not supply, UG(j), 

are evaluated as    
1

( )
j

s

U i UG j W SG s


   . They are 

recorded for the vulnerability evaluation. Communication 

time delay, T, is updated. 

6. The generator index j is incremented by 1, and the 

procedure is returned to step 4 until U(i) = 0, in case of a 

successful system state, or j = NG and U(i) > 0, in case the 

power request is not satisfied. The final communication time 

delay, T, is recorded. 

The value of U(i) at the end of the simulation is the fraction 

of the additional load W that has to be shed in order to balance 

the power generation and the power consumption. Therefore, 

we assume that load can be continuously shed.  

Furthermore, it can be noticed that the power that generator 

j could not supply, UG(j) can be greater than 0 for two 

different causes: either j is operating at its maximum capacity, 

or there is no path for the power produced by j for reaching the 

distributor i where it is needed. This feature of the algorithm is 

consistent with the behavior of smart grids that include 

intermittent and remotely-generated electricity from renewable 

energy sources, as discussed in Section I. 

To incorporate the effects of load and generation 

uncertainties, the above algorithm is embedded in a Monte 

Carlo simulation framework, in which a large number of 

additional load requests, e.g., 100000 in this study, is 

simulated for the same range of [LG
min

, LG
max

], [LD
min

, LD
max

], 

[Lhigh
min

, Lhigh
max

], [Llow
min

, Llow
max

] and [W
min

, W
max

], in order to 

obtain statistically significant results for various realizations of 

the same average loading condition. 

During the simulations, relevant statistics are recorded to 

evaluate different vulnerability indexes, i.e. the distribution of 

the communication time delay, T, in case of a successful (no 

load-shedding is required to balance consumption and 

generation) or unsuccessful (load-shedding is required to 

balance consumption and generation) final system state. 

The effects of the interdependencies between the electric 

power grid and the communication network are evaluated with 

respect to the communication time delay, T , that elapses from 

the instant in which the request for power increase is done, 

until the request is fulfilled. As seen in Section III.B, the 

maximum time delay requirements, T
MAX

, for the smart grid 

range from tenths of milliseconds up to tenths of seconds 

depending on the system task to be executed. In this respect, 

various communication network configurations differing for 

the value of the data rate, Dr, can be tested to quantify the 

probability that a malfunction in the communication system, 

i.e. a communication delay, will generate a faulty condition in 

the electric power grid. The compliance with T
MAX

, i.e. T < 

T
MAX

, is evaluated at the end of the simulations. 

 

IV. CASE STUDY 

The approach to evaluate the vulnerability of the smart grid 

CI with interdependencies between power and communication 

networks introduced in Section III, is exemplified with 

reference to the topological network of the 380 kV Italian 

power transmission network (Fig. 1), focusing only on its 

structure with no further reference on the electrical properties, 

coupled with a dedicated communication network. For 

simplicity, but with no loss of generality, we assume that the 

two networks have the same topologies. The developed 

methodology can be applied to interdependent networks with 

different topologies. The 380 kV Italian power transmission 

network is a branch of a high voltage level transmission, which 

can be modeled as a network of N=127 nodes (NG=30 

generator and ND=97 distributor nodes) connected by K=171 

links [29], [30], defined by its N×N adjacency (connection) 

matrix aij and connection length matrix lij. We assume that the 

communication network consists of dedicated control signal 

channels, which follow the same layout of the overhead 

electrical lines. Therefore, both the electric power grid and the 

communication network are described by the same aij and lij 

matrices (without loss of generality): the topology and the 

geographical location of the 380 kV Italian power transmission 

network components serve as reference. 
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Fig. 1.  The 380 kV Italian power transmission network [29], [30]. 

 

 

We test the vulnerability of the two interdependent networks 

with respect to the stability upon a power increase request, W, 

for eight increasing ranges of [W
min

, W
max

] reported in Table II, 

while the other system parameters are constant and specified in 

Table I. We assume that the electric power grid operates with 

an average 20% safety margin for all the components except 

for the highly loaded lines which operate with an average 15% 

safety margin. The data for the communication network have 

been taken from [27] and assume a dedicated communication 

network. 

 
TABLE I 

SPECIFICATIONS OF THE ELECTRIC POWER GRID AND OF THE COMMUNICATION 

NETWORK USED IN THE SIMULATIONS 

LGmin 0.7 Data rate of the network, Dr 5 Mbps 

LGmax 0.9 Between packet delay, Tb 0 

LDmin 0.7 Packet size, Ps 2 kb 

LDmax 0.9 Data velocity, v 0.6c 

Lhigh
min 0.8 Measurement rate,  50 packets/s 

Lhigh
max 0.9 Router serving rate, µ 50 Mbps 

Llow
min 0.7   

Llow
max 0.9   

 

Then, we test the vulnerability of the two interdependent 

networks with respect to the stability upon a power increase 

request, W  [W
min

, W
max

], for thirteen values of data rate of 

the network, Dr, in Table III which identify different dedicated 

network configurations for the communication CI. We aim at 

quantifying the probability that a malfunction in the 

communication system, i.e. a communication delay, will 

generate a faulty condition in the electric power grid. 

 

A. Numerical results 

Table II reports the frequency of unsatisfied power request, 

i.e. load-shedding intervention, with respect to the eight 

sampling intervals [W
min

, W
max

]. As W
max

 increases, a greater 

amount of additional load W is requested on the average and 
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the generators closest to the increasing load cannot provide the 

total required amount. Thus, distant generators are queried, but 

power cannot always find a path to reach the increasing load 

due to growing likelihood of line limit infringement along the 

path, and the system has little chances to fully satisfy W. 

 
TABLE II 

FREQUENCY OF UNSATISFIED POWER REQUEST, I.E. LOAD-SHEDDING 

INTERVENTION, AND THE ASSOCIATED STANDARD ERROR VS. THE WIDTHS OF 

THE EIGHT UNIFORM SAMPLING INTERVALS FOR THE ADDITIONAL POWER, W. 

THE NUMBER OF SIGNIFICANT DIGITS THAT WE REPORT THROUGHOUT THE 

PAPER IS EVALUATED BY YONEDA’S RULE [43]. 

Sampling interval for the 

additional power request, W 

Frequency of 

unsatisfied request 
Standard error 

[0.10, 0.15] 0.6670 % 0.1252 % 

[0.10, 0.20] 1.1950 % 0.1263 % 

[0.10, 0.25] 2.6000 % 0.1717 % 

[0.10, 0.30] 6.565 % 0.384 % 

[0.10, 0.35] 11.788 % 0.316 % 

[0.10, 0.40] 17.587 % 0.554 % 

[0.10, 0.45] 23.083 % 0.425 % 

[0.10, 0.50] 28.835 % 0.553 % 

 

 

[Fig. 2-7 in the previous manuscript were removed in order 

to comply with the  12 page limit for IEEE Transactions on 

Systems, Man and Cybernetics, Part A –Systems and Humans 

regular papers. Table 3-6 in the previous manuscript were 

removed in order to comply with the  12 page limit for IEEE 

Transactions on Systems, Man and Cybernetics, Part A –

Systems and Humans regular papers. The comments to the 

removed results were also removed.] 

 

 

The frequency of unsatisfied power request in Table II 

characterizes the self-limitations that the electric power grid 

imposes on its own operations due to its structural 

configuration, the limits on flow-carrying capacities of lines, 

the intermittent nature of power generation from renewable 

energy sources and the uncertainties in the load demand 

profile. We now devote our attention to the temporal aspects 

that characterize the power balance procedure in the CI. In this 

respect, Fig. 2 shows the probability distribution function of 

the communication time delay, PDF(T), when the request to 

increase load is not satisfied by generators, i.e. U > 0, for the 

eight sampling intervals [W
min

, W
max

] in Table II. Fig. 2 is 

relative to situations in which the additional load request W 

could not be met by generators, and the communication signal 

spans the entire extension of the network to query for 

additional generation capability. This appears from the larger 

T values in the PDF(T) plot, which are the communication time 

delays needed to route the power to the increasing load bus 

from remote regions of the network. 

 

 
Fig. 2.  Probability distribution function of the communication time delay, 

PDF(T), when the request to increase load is not satisfied by generators, i.e. U 

> 0, for the eight sampling intervals [Wmin, Wmax] in Table II. 

 

The differences in the communication time delay, T, 

distribution for normal operations and load shedding appear in 

Fig. 3, where the CDF(T)’s are plotted for these two situations 

and encompass the eight sampling intervals [W
min

, W
max

] in 

Table II. We expect that CDF(T) for normal operations (solid 

curve in Fig. 3) is shifted to smaller T values than the one 

relative to load-shedding interventions (dashed curve in Fig. 

3). When the extra power request is satisfied, U = 0, only a 

fraction of the total number of generators is queried for 

additional power. On the contrary, when the extra power 

request is not satisfied, U > 0, the communication signal spans 

the entire generation set looking for additional generation 

capability that is not found. 

 

 
Fig. 3.  Cumulative distribution function of the communication time delay, T, 

when the request to increase load is not satisfied, i.e. U > 0 (dashed line), and 

when the request to increase load is fully satisfied by generators, i.e. U = 0 

(solid line), for the eight sampling intervals [Wmin, Wmax] in Table II. 

 

The communication time delay, T, is distributed within the 

intervals T[62.6, 951] ms and T[643, 2000] ms, in case of 

normal operations and of load-shedding actions, respectively. 
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Given the maximum admissible communication time delay, 

T
MAX

, Fig. 3 allows identifying the frequency of load-shedding 

due to the excess of communication latency, i.e. T > T
MAX

, 

even for those loading scenarios that would eventually result in 

U = 0 otherwise (solid line in Fig. 3). As detailed in Section 

III.B, T
MAX

 depends on the system task to be executed and 

ranges from tenths of milliseconds up to tenths of seconds. In 

this context, T
MAX

 can be thought of as the maximum time 

delay before instabilities arise in the electric power grid due to 

the imbalance between generation and consumption. If the 

value T
MAX

 equal to 100 ms is assumed, we evaluate CDF(T = 

T
MAX

 = 100 ms) = 96.77% ± 0.06%, and we discover that due 

to latency constraints the frequency of faulty conditions is 

3.23% ± 0.06% even for those scenarios that we classified as 

normal operations because the additional power request is 

fully satisfied, i.e. U = 0 (solid line in Fig. 3). If a narrower 

latency constraint is assumed, e.g., T
MAX

 = 50 ms, we evaluate 

CDF(T = T
MAX

 = 50 ms) = 87.85% ± 0.10%, and conclude that 

the frequency of faulty conditions is 12.2% ± 0.10% even for 

those scenarios that we classified as normal operations because 

the additional power request is fully satisfied, i.e. U = 0. 

The frequency of faulty conditions due to the excess of 

communication time delay, T, quantifies the limitations that the 

communication system imposes on the operations of the 

interdependent electric system. It can be used to measure the 

strength of the interdependency or the degree of the coupling 

between these two systems within the CI. 

After having found an index that quantifies the extent to 

which the delay in the communication network impacts on the 

operations of the electric power grid, we investigate how the 

frequency of faulty conditions due to the excess of 

communication time delay, T, varies with respect to different 

configurations of the communication network. We test several 

networks characterized by decreasing values of the data rate, 

Dr (Table III first column), that is defined as the number of 

bits that are conveyed or processed per unit of time. Since 

higher investments correspond to higher Dr, this kind of 

analysis allows identifying the optimal communication 

network that respects the constraint relative to the frequency of 

faulty conditions due to the excess of communication time 

delay, T. Alternatively, we can evaluate the extent to which a 

malfunction that reduces the speed of communication, Dr, will 

impact on the power grid due to the interdependencies between 

the two systems. 

Fig. 4 shows the cumulative distribution functions of the 

communication time delay, T, for decreasing values of the data 

rate of the communication network, Dr, reported in Table III 

first column, and W  [0.10, 0.25]. These results correspond 

to scenarios of the electric power grid for which a final balance 

between generation and consumption could be found, i.e. U = 

0. Fig. 4 allows evaluating the extent to which Dr values 

influence the degree of coupling between the two CIs. Smaller 

Dr values produce CDF(T) that are shifted to larger T values. If 

we assume a maximum admissible communication time delay, 

T
MAX

, from Fig. 4 we identify the frequency of load-shedding 

due to the excess of communication latency, i.e. T  > T
MAX

, 

even for those loading scenarios that would eventually result in 

U equal to 0 otherwise. As an example, if T
MAX

 is equal to 100 

ms, the scenarios that are found to the right of the vertical 

dash-dotted line in Fig. 4 will require load-shedding activity. 

 

 
Fig. 4.  Cumulative distribution functions of the communication time delay, 

T, for decreasing values of the data rate of the communication network, Dr, 

reported in Table III and W  [0.10, 0.25]. Smaller Dr values yield 

distributions shifted towards larger T values. The vertical dash-dotted line 

indicates the maximum allowable communication time delay, TMAX = 100 ms. 

 

We quantify the effects of the interdependency between the 

two networks by two complementary indexes that provide 

safety margins with respect to the coupled operations of the 

two CIs. The 95
th

 percentile of the distribution of T quantifies 

the minimum admissible time delay, T
MAX

, that limits to 5% the 

frequency of load-shedding due to excessive latency. From 

Table III second column and Fig. 5, we see how the 95
th

 

percentile varies with Dr.  

 

 
Fig. 5.  95th percentile of the communication time delay, T, vs. the values of 

the data rate of the communication network, Dr, and W  [0.10, 0.25]. 

 

For small Dr, e.g., Dr = 2‧ 10
4
 bps, the system must tolerate 
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a minimum latency T
MAX

 greater than or equal to 2.069 s ± 

0.140 s, in order to limit to 5% the frequency of load-shedding 

due to excessive latency. In other words, power increase 

operations that must be safely carried out within a time smaller 

than 2.069 s ± 0.140 s should not be attempted, if one wants to 

comply with the safety margin of 5% load-shedding frequency. 

Conversely, if Dr is equal to 5‧ 10
6
 bps, the system can admit 

a minimum latency as small as T
MAX

 equal to or greater than 

0.6678 s ± 0.0149 s, and the frequency of load-shedding due to 

excessive latency would still be limited to 5%. 

 
TABLE III 

95TH
 PERCENTILE OF THE COMMUNICATION TIME DELAY, T, (SECOND COLUMN) 

AND PROBABILITY THAT T  TMAX
 (THIRD COLUMN) WITH STANDARD 

ERRORS, FOR DECREASING VALUES OF THE DATA RATE OF THE 

COMMUNICATION NETWORK, DR, (FIRST COLUMN) AND W  [0.10, 0.25]. 

Data rate of the 

network, Dr [bps] 

95th Percentile of the 

communication time 

delay, T [ms] 

P(T  TMAX) = CDF(T = TMAX 

= 100ms) 

5‧ 106 66.789 ± 1.489 96.77% ± 0.06% 

2.5‧ 106 80.94 ± 2.95 96.47% ± 0.06% 

1‧ 106 108.986 ± 1.029 94.69% ± 0.07% 

5‧ 105 148.97 ± 4.31 88.89% ± 0.10% 

3‧ 105 202.22 ± 3.25 81.14% ± 0.13% 

2‧ 105 268.91 ± 6.27 72.48% ± 0.14% 

1‧ 105 468.9 ± 12.5 31.18% ± 0.15% 

9‧ 104 513.33 ± 3.31 30.99% ± 0.15% 

7‧ 104 640 ± 53 0% 

5‧ 104 869 ± 41 0% 

2‧ 104 2069 ± 140 0% 

9‧ 103 4513 ± 300 0% 

5‧ 103 8069 ± 200 0% 

 

Because the admissible latency T
MAX

 is a constraint in the 

system, a somewhat more intuitive safety margin is provided 

with respect to P(T  T
MAX

) = CDF(T = T
MAX

), i.e. the 

probability of final safe conditions (no load-shedding is 

required), given the admissible latency T
MAX

. In Table III third 

column and Fig. 6, P(T  T
MAX

 = 100ms) = CDF(T = T
MAX

 = 

100ms) values are presented as functions of Dr, given W  

[0.10, 0.25] and T
MAX

 = 100ms. From Table III third column, 

we see that when Dr = 1‧ 10
5
 bps, the probability of final safe 

conditions is 31.18% ± 0.15% and, consequently, the 

frequency of load-shedding due to excessive latency is 68.82% 

± 0.15%. 

Fig. 6 displays how the probability of final safe conditions 

decreases as Dr progressively decreases from Dr = 1‧ 10
6
 bps 

to Dr = 5‧ 10
3
 bps. P(T  T

MAX
 = 100ms) exhibits a 

catastrophic transition in the range Dr  [3‧ 10
5
, 7‧ 10

4
] bps, 

as Dr values decrease below 3‧ 10
5
 bps. No final safe 

condition is realized below Dr = 7‧ 10
4
 bps, i.e. every 

additional power request, W, involves some load-shedding 

actions due to excessive latency in the communication, T > 

T
MAX

. 

The information in Fig. 6 can be used during the design 

phase of the CI with the aim of identifying the communication 

specifications that comply with the required safety standards, 

given T
MAX

, i.e. the smallest admissible time delay, and [W
min

, 

W
max

], i.e. the electric load profile. In our example, a 

communication network with Dr  1.26‧ 10
6
 bps has to be 

selected to comply with the 95% safety margin, i.e. 5% 

probability of load-shedding, when T
MAX

 = 100ms and W  

[0.10, 0.25]. Furthermore, the information in Fig. 6 can be 

used during operations to quantify the extent to which a 

possible loss of quality in the communication, i.e. a Dr 

reduction, impacts on the electric power grid. In our example, 

a Dr reduction from Dr = 5‧ 10
6
 bps (normal operations) to Dr 

= 1.94‧ 10
5
 bps (anomalous operations), entails a reduction of 

the safety margin from 96.77% ± 0.06% to approximately 

70%, i.e. the probability of load-shedding increases from 

3.23% ± 0.06% to approximately 30%. Yet, most important is 

the fact that an additional small Dr reduction to Dr = 7‧ 10
4
 

bps entails the complete disappearance of the safety margin. 

Therefore, the knowledge of the relation in Fig. 6 is vital for 

operating the CI with interdependencies in a region of the 

system parameters that is far from the catastrophic phase 

transition point. 

 

 
Fig. 6.  Probability of final safe conditions, i.e. P(T  TMAX) = CDF(T = 

TMAX = 100ms), given the admissible latency TMAX, vs. data rate of the 

communication network, Dr, and W  [0.10, 0.25]. 

 

V. CONCLUSIONS 

In this paper, we have looked into the vulnerabilities that 

arise when complex networks are coupled, with reference to 

smart grids modeled as a combination of the electric power 

grid and the communication network. We have adopted a 

modeling framework in which the communication delays are 

integrated in the electric CI. The complex network approach 

proposed extends the purely-topological models of the electric 

power grid to capture essential operating features, i.e. the 

power is routed through the least resistant paths, the 

components are physically specialized in “generators” and 

“distributors”, and the lines are subjected to limits on their 

carrying-flow capacities; moreover, it includes the further 
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complexity that arises from the variability of power generation 

from renewable energy sources and intermittent load 

consumption. However, given the somewhat abstract level of 

the modeling supporting complex network analysis, the 

insights gained with respect to the vulnerable areas in the 

system (first findings) may not be clear-cut, and major hidden 

vulnerabilities may still be expected. Then, to accurately 

model the physical behavior of the interconnected systems, 

computational frameworks that propagate the flows of power 

and information based on physical laws have to be embraced, 

and more detailed information about the system and its 

operating environment may be needed. For large, real-scale 

systems, this requires the development of adequate 

computational methodologies through clustering computing, 

co-operative simulation, or similar architectures [44]-[48]. 

We have quantified the limitations that both the electric 

power grid and the communication network impose on the 

operations of the CI with interdependencies, when a load bus 

demands additional power from the generators. In the 

application to the 380 kV Italian power transmission network, 

with the assumptions made and the numerical data used, we 

have observed that a factual indicator for quantifying the 

coupling strength between the two integrated systems is the 

frequency of load-shedding actions due to excessive 

communication time delay. By means of this indicator, we 

have evaluated the extent to which a loss of quality in the 

communication impacts on the electric power grid, and we 

have selected appropriate communication specifications, i.e. 

the data rate of the network, that comply with the required 

safety requirements in the electric power grid. 

Finally, we have detected a catastrophic phase transition 

point in the frequency of faulty conditions with respect to the 

data rate of the communication network. The CI with 

interdependencies safely operate only in a region of the system 

parameters that are far from this catastrophic transition point. 

To this aim, the introduction of adequate safety margins with 

respect to the data rate of the communication network is 

suggested. 

In summary, the main contributions to the knowledge 

generated for the network general case are: (i) the extension of 

the purely-topological complex network modeling framework 

by inclusion of relevant physical aspects of the system; (ii) the 

use of the frequency of load-shedding actions due to excessive 

communication time delay as a quantitative indicator for 

quantifying the vulnerability of the smart grid; (iii) the 

detection of a catastrophic phase transition with respect to the 

data rate of the communication network in the smart grid. 

[APPENDIX] 

[Appendix was removed because it was related to the results 

of Section IV.A which were also removed.] 
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