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Abstract: In this paper, we consider the controller synthesis for continuous flow systems. These lasts are a 

sub-class of hybrid dynamic systems. Their main characteristics are positiveness and linearity. Transport, 

manufacturing, communication and biological systems are examples of continuous flow systems. 

Numerous tools and techniques exist in the literature for modelling and analyzing such systems. As 

positiveness is a hard constraint, an appropriate tool integrating naturally this constraint is strongly needed. 

Hybrid Petri Nets are an elegant modeling tool of positive systems, while Hybrid Automata are a powerful 

tool giving formally the reachable dynamic space. Combining these two tools aim to a sound approach for 

control synthesis of continuous flow systems. We start by considering the process to control and compute 

its reachable state space using specialized software like PHAVer. Algebraic inequalities define this 

reachable state space. The constrained  behaviour is obtained by restricting this state space into a smaller 

desired space. This reduction is expressed in term of linear constraints only over the continuous variables; 

while the control is given by the discrete transitions (occurrence dates of controllable events). The 

controller synthesis methodology is based on the control of a hybrid system modelled by a D-elementary 

hybrid Petri Net. The control consists in modifying the guard of the controllable transitions so as the 

reachable controlled state space is maximally permissive. 


1. INTRODUCTION 

Modelling and control of physical systems are crucial issues. 

In this work we are interested in a particular class of systems, 

such as transport, manufacturing, communication and 

biological systems. These systems have in common that they 

are positive dynamic systems, i.e., the state variables are 

positive. Often continuous and discrete event dynamics 

interact in these systems, so they can be considered as 

positive hybrid dynamic systems. This class of systems 

requires for their description, the use of continuous time 

models like differential equations, and discrete event models 

like finite state automata or Petri nets (PNs). In general, the 

state of a hybrid system is given by the discrete mode and the 

values of the continuous variables. This state may change 

either continuously, according to a differential equation or 

discretely by an instantaneous change of the discrete control 

mode. 

The concept of controller synthesis, considered here, has for 

origin the work of Ramadge and Wonham (1989). The latter 

have introduced controller synthesis for discrete event 

systems. The process is a discrete event system described by 

a finite state automaton. The constraints imposed on its 

behaviour are modelled by any regular language. Both 

models (process and constraints) allow synthesizing a 

controller whose role is to prohibit some controllable events 

in order to always satisfy the specifications. The theory of 

Ramadge and Wonham (1989) has been extended in several 

directions; one of the major extensions of this theory is the 

controller synthesis for timed systems. In this case the 

process model considers time in an explicit manner. Time can 

either be discretized, in this case the process and its 

supervisor are modelled by finite state machines equipped 

with a discrete clock (Brandin and Wonham, 1997); or dense, 

and in this case the process and its supervisor are modelled 

by timed automata (Alur and Dill 1994). Several research 

studies have been devoted to the controller synthesis of timed 

systems (Altisen and Tripakis 1999, Asarin and Maler 

(1997), Asarin et al. 1998). The controller synthesis theory is 

well established for discrete event systems and timed 

systems. However, it has not yet an explicit solution for 

hybrid systems, although some studies have been devoted to 

this field (Wong-Toi, 1997).The difficulty of analysis, in 

general, and of controller synthesis, in particular, of hybrid 

systems, is due to the fact that restrictions are needed on the 

dynamics in order to have an algebraic characterization of the 

reachable state space. Another difficulty comes from the fact 

that the computation is not decidable in the general case. 

Our aim is to develop a controller synthesis technique for 

hybrid dynamic systems modelled by a D-elementary Hybrid 

Petri Nets (HPNs). It is a formal tool with large description 

capacities and is well appropriate for positive hybrid systems 

modelling. Its dynamic analysis and performance calculation 

have been studied in (Ghomri and Alla, 2007). The 



     

continuous part of a D-elementary HPN evolves in a 

piecewise linear manner, according to differential equations 

of the form: xሶ ൌ k, where k is constant. This continuous part 

is controlled by the discrete part which evolves in an 

independent manner (i.e. the discrete part evolution is 

completely independent from the continuous part evolution). 

Because of the strong interaction between the discrete and the 

continuous parts and the lack of analysis tools (software) for 

D-elementary HPNs, we have proposed to translate it into a 

linear hybrid automaton, which has a great analysis power. In 

this way, we associate the modelling power of HPNs to the 

analysis power of hybrid automata. This paper is focused on 

the control synthesis, for more details on HPNs and hybrid 

automata the reader may refer to the basic papers [DAV, 10], 

[ALU, 95]. 

The rest of the paper is organized as follows: Section 2 gives 

an intuitive presentation of the ideas developed in this paper. 

Section 3 will be devoted to modelling tools; namely: D-

elementary HPNs and hybrid automata, as well as their use in 

the process description. Section 4 corresponds to the main 

contribution on this paper; it is divided into two parts. In the 

first part we will show how to model specifications imposed 

on the system, and in the second part we will explain the 

proposed approach to solve the control problem. The problem 

is formally solved for a location and some directions are 

given for the synthesis of the whole controller. Finally a 

conclusion and some perspectives will be given in Section 5. 

2. INTUITIVE PRESENTATION 

For the control approach that we propose here we start by 

considering a system whose abstraction is a hybrid dynamic 

system, and we want to restrict its continuous dynamics by 

acting on the discrete variables. These dynamics are 

expressed in term of constraints (also called specifications) 

over the continuous variables. Restricting the reachable state 

space needs variables such that the control of these variables 

will prohibit the state space to reach any undesirable value. 

We set here the fundamental hypothesis: 1) the control points 

are the discrete variables, more precisely the occurrence dates 

of controllable events, and 2) there is no control in the 

continuous part. The controller synthesis will take advantage 

on the coupling between the discrete and continuous 

dynamics. This is illustrated in the following example. 

Example: Consider a producer consumer system composed 

of a machine that supplies a buffer with a production rate of 

20 parts/mn (Figure 1.a). The buffer is used to satisfy a 

demand of 13 parts/mn. Stop or start the machine is effective 

after a delay of 2 mns. Initially the buffer contains 50 parts. 

Figure 1.b shows the D-elementary hybrid PN modelling this 

system. The discrete part is represented by simple lines and 

the continuous part by double lines. Transitions T3 and T4 

represent respectively the discrete events stop and start of the 

machine. The main advantage of this modelling tool is to 

show explicitly the physical elements of the process. For 

example the buffer is only modelled by place P1 while, as we 

will see, in the automaton model, this information will be less 

explicit. 

  

Figure 1.a. A producer consumer system; b. The D-

elementary hybrid PN model of the producer consumer 

system; 

In this example, it is obvious that the number of parts in the 

buffer can be infinite, i.e. the firing of T3 is infinitely delayed. 

Let us suppose that we want to impose to the buffer level to 

never exceed 100 parts (specification). In order to control the 

buffer level we must act on the stop date of the machine. 

Even for this simple case it is difficult to calculate the firing 

instants of the discrete transitions so that the specification 

given above is always verified, for any location. The 

specification presented in this example comes to limit the 

state space reached by the continuous variable. The 

translation of a D-elementary HPN in linear hybrid automata 

allows calculating the reachable space using specialized 

software like PHAVer (Figure 2.a). In this paper our control 

objective is to determine formally the new guards of discrete 

transitions, so that specifications are met. This control must 

be maximally permissive as we will show in the sequel; This 

is indicated in the unfolded hybrid automaton in Figure 2.b. 

Our control synthesis approach is based on the following 

three steps: 

Modelling the system without constraints by a  

D-elementary HPN; 

Translating the D-elementary HPN in a linear hybrid 

automaton; 

Modelling the specifications and computing the new 

transitions guards that ensure the specifications compliance; 

These three steps are summarized in Figure 3 below. Each 

block in this Figure corresponds to a step. The two first steps 

correspond to previous results and the contribution of this 

paper corresponds to the third step.  

3. MODELING OF POSITIVE HYBRID DYNAMIC 

SYSTEMS 

This section corresponds to the two first steps of our 

approach, i.e. blocks 1 and 2 in Figure 3. As previously 

mentioned, we are interested here with positive hybrid 

dynamic systems. We use D-elementary HPNs for modelling 
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these systems. Not only this formalism inherits all the 

advantages of classical PNs, but also it is well suitable for the 

class of systems considered here. 

The continuous dynamics are linear in the sense of the linear 

hybrid automata. HPN is a generic name for a set of 

formalisms used for modelling hybrid systems. This set has 

in common the integration of a discrete PN and a continuous 

PN. D-elementary HPN is a specific HPN which integrates a 

T-time PN that controls a constant speed continuous PN. 

 

Figure 2.Hybrid automaton modelling the producer consumer 

system; a) before control; b) After control; 

  

Figure 3. Controller synthesis approach  

We have supposed that all the discrete transitions are 

associated with controllable events, and the continuous part is 

uncontrollable. This represents the current cases met in real 

life systems, however taking into account uncontrollable 

events in the discrete part is a direct extension of the 

proposed approach and constitutes a future research direction.  
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Definition 1 (D-elementary hybrid Petri nets):  

A D-elementary HPN is a structure PN = (P, T, h, E, , Pre, 

Post, U, V, m0) such that: 

1. P = {P1, P2, …,Pn} is a finite set of n places;  

P = PC  PD, such that PC = {P1, P2, …, Pnc} is the set 

of nC continuous places, and PD = {PnC+1, Pnc+2, …, Pn} 

is the set of discrete places. 

2. T = {T1, T2, …, Tm} is a finite set of m transitions; 

T = TC  TD, such that TC = {T1, T2, …, Tmc} is the set of 

mC continuous transitions, and TD = {Tmc+1, 

TmC + 2, …, Tm} is the set of discrete transitions. 

3. h: PT→{C, D} defines the set of continuous nodes, 

(h(x) = C) and discrete nodes, (h(x) = D). 

4. E is a set of events;  

5. : TD → E is a function that associates to each discrete 

transition an event from E; 

6. Pre: P x T → N and Post: P x T → N are the backward 

and forward incidence mappings. These mappings are 

such that: 

(Pi, Tj)  PCxTD, Pre(Pi, Tj) = Post(Pi, Tj) = 0    (1) 

(Pi, Tj)  PDxTC, Pre(Pi, Tj) = Post(Pi, Tj)          (2) 

7. U: E → R+ x (R +{∞}) associates to each 

event ej its firing interval [αj, βj]. 

8. V: TC → R+ associates a maximal firing speed Vj to each 

C-transition Tj. 

9. m0 = ቀܕ૙۱ܕ૙۲ቁ is the initial marking vector; it is the 

concatenation of m0C, the real-valued continuous 

palaces initial marking, and m0D the natural-valued 

discrete places initial marking. 

                      

The condition (1) of point 6, in the above definition means 

that no arcs connect continuous places to discrete transitions. 

Physically, that means that the continuous dynamics has no 

influence on the discrete dynamics. This last has a fully 

independent behaviour. The condition (2) in the same point 

means and if an arc connects a discrete Place Pi to a 

continuous transition Tj, the arc connecting Tj to Pi must 

exist. This appears graphically as loops connecting discrete 

places to continuous transitions. Physically this means that 

the discrete dynamics controls the evolution of the 

continuous dynamics. In a D-elementary hybrid Petri net, 

there is no transformation of tokens, neither from the 

continuous state to the discrete state, nor in the other sense. 

A HPN combines a discrete and a continuous PN, its state at 

time θ is given by the state of the two models. This strong 

coupling makes it hard to analyse the hybrid model. The 

translation of HPNs in hybrid automata allows using formal 

tools developed for the latter; and it is possible thereby to 

combine the description power of HPNs to the analysis 

power of hybrid automata. 

Hybrid automata were introduced by Alur et al. (1995). They 

are the most general formalism to model hybrid dynamic 

systems, in the sense that they can model the largest range of 

this class of systems. They combine: differential equations, 

which are the basic description model of continuous dynamic 

systems, and finite state automata that represent the basic 

model for describing discrete event systems. This is why the 

hybrid automata are the most used formalism in model-

checking and controller synthesis algorithms for hybrid 

dynamic systems. 

To be able to take advantage both from of HPNs and hybrid 

automata, a translation approach was developed in (Ghomri 

and Alla, 2007). This approach allows translating D-

elementary HPNs into hybrid automata. The translation 

approach has been proven formally in (Ghomri and Alla, 

2013). It is presented in appendix A.  

The translation of D-elementary HPN in figure 1.b gives the 

hybrid automaton of figure 4, that we label elementary hybrid 

automaton in this paper. It has particular properties, as 

detailed in the following definition. For a general definition 

of a linear hybrid automaton, the reader may refer to 

(Henzinger, 1996). 

Figure 4. Hybrid automaton resulting from the translation of 

the D-elementary HPN in figure 1.b. 

Definition 3 (Elementary hybrid automata): An 

elementary hybrid automaton A = (Loc, X, E, δ, F, Inv) such 

that: 

1. Loc = {q1, q2, …} is a finite set of locations; 

2. X= ൬XେXୈ൰ is the continuous state space. It is composed 

of two vectors: XC = (m1, m2, …,mnc)
T is the vector of 

nc real-valued variables modelling the continuous 

places marking; and XD = {t1, t2, …, tk} is the vector of 

clocks corresponding to enabled transitions. A valuation 

v is a function that assigns a real-valued v(x)  R n to 

each variable x  X. 
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3. E is a set of events;  

4. δ is a finite set of transitions, each transition is a 

quintuple T = (q, a, g, Ȗ, q’) such that: 

 q  Loc is the source location; 

 a  E is the event associated to the firing of T; 

 g is the transition guard, it is a linear predicate on X; 

a transition can be fired whenever its guard is 

satisfied.  

 Init is a reset function that affects a linear expression 

to variables of X when taking the corresponding 

transition; 

 q’ Loc is the target location; 

5. F is a function that assigns to each location a continuous 

linear vector field on X. While in discrete location q, the 

continuous variables mi mC evolve according to a 

differential equation of the form mనሶ ൌ B୧, where Bi is a 

the dynamic balance of the continuous place Pi. and the 

clocks tj TD evolves according to the differential 

equation t఩ሶ ൌ 1. 

6. Inv is a function that affects to each location q, a linear 

predicate Inv(q) that must be satisfied by the continuous 

variables in order to stay in the location q. 

                         

A state of a HA is a pair (q, v) consisting of a location q and a 

valuation of continuous variables v. This state can evolve in 

two manners: either continuously; in this case the continuous 

variables evolves according to the vector field and the 

discrete location remains unchanged; or discretely by firing a 

discrete transition. Several problems, related to analysis of 

HA properties, could be expressed as a reachability problem. 

Note that this problem is generally undecidable unless 

restrictions are added to the basic model, to obtain special 

sub-classes of HA (Henzinger et al 1995).  Our models are 

often well formed and the translation algorithm always 

terminates.  A future research will consist in characterizing 

formally the sub class of HPNs such that the translation 

algorithm terminates always. It is an interesting modelling 

problem which must be solved. 

Remark 1: In the elementary hybrid automaton the 

transitions guards are function of only one variable since a 

controllable transition correspond to the firing of a discrete 

transition in the HPN. They have guards of the form  

αi ≤ ti ≤ ȕi; where ti is a clock and αi, ȕi are real constants. 

Uncontrollable transitions correspond to emptying a 

continuous place marking. They have guards of the form  

mi = 0. 

                     

The controller synthesis consists first in solving the problem 

for a location q and then to iterate the procedure for the 

whole elementary hybrid automaton. Figure 5.a gives the 

structural representation of a location; we suppose, in a first 

time, that q has only one output transition, which is 

controllable. The guard of a controllable transition is only 

function of one clock ti. This guard is of the form: αi ≤ ti ≤ ȕi, 

where αi and ȕi are real constants. Figure 5.b schematizes 

R(A, q) the reachable state space in location q, which 

depends on the input state space R0(A, q), the vector Field 

F(q) and on the invariant Inv(q). We will resume the location 

q throughout this paper to explain the controller synthesis 

procedure and to indicate the consequences of each step of 

the procedure on the reachable state space in q. 

 

Figure 5.a) a location q from the elementary hybrid 

automaton, b) reachable state space in location q. 

4. CONTROLLER SYNTHESIS  

The controller synthesis consists in realizing the last step 

described in block 3 of Figure 3. It will be solved in this 

paper for a location; therefore we will develop in this section 

the calculation of the new guards so that the location state 

space verifies the specifications. Some directions will be 

given to extend this hard computation problem in order to 

determine the final controller. 

4.1 Control Specifications Modelling 

In hybrid dynamic systems, specifications can be imposed on 

the discrete part or on the continuous part. We consider here 

specifications on the continuous behaviour; we think that it is 

the most currently met cases in real life systems. It means 

that specifications are only related to continuous variables mi 

and never on clocks. They have the form of linear 

inequalities.  

Definition 3 (Specification): Let S = (s1 s2 …snc)
T be a real-

valued constant vector and b be a real constant. A 
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specification Spec on the continuous behaviour of the 

elementary hybrid automaton is a predicate of the form: 

ଵܵ݉ଵ ൅ ܵଶ݉ଶ ൅ڮ൅ ܵ௡௖݉௡௖ ൑ ܾ 

Then  ST.MC ≤ b 

Let us recall that MC is a vector of nc real-valued variables 

modelling the continuous places marking (Definition 2). 

We note by Spec(q) the general form of a specification, it is 

the conjunction of all the specifications imposed on the state 

space in location q:  

Spec(q) = SpecISpec2 …Speck 

                         

A continuous specification Spec(q) is a set of constraints on 

the continuous space reached by the HA in any discrete 

location q. The automaton must stay in q if Spec(q) is 

satisfied, and must leave q by firing a transition before the 

violation of Spec(q). Of course, a specification can be 

different from a location to another one. 

An example is given for location q1 described in Figure 6. 

Thanks to PHAVer software, the computation of the 

reachable space in this location is obtained. It is determined 

by the following set of inequalities:  

RሺA, qଵሻ ൌ  
ەۖۖ
۔ۖۖ
ۓۖۖ
 mଵ െ ͵t ൒ ͵ͻ      mଶ െ t ൒ ͷͲ         ͵mଶ െmଵ ൒ ͳͲͺ mଶ ൒ ͷ͵                mଵ െ ͵mଶ ൒ ͳͳͶmଵ ൒ Ͷͺ                mଶ െ t ൑ ͷ͵        t ൒ ͳ                      mଵ െ ͵t ൑ Ͷͺ       mଵ ൑ ͳͲͲ             

     

Let us add the following specification: m1 - m2 ≤ 20, which 

must be verified at any time. The state space above contains a 

subset of values that violate this specification. The goal of the 

next section is to compute the new output guard so that this 

specification is always verified. 

4.2 Control computation 

The controller is obtained by modifying the guards on 

transitions of the elementary hybrid automaton such as the 

specification are verified in the maximally permissive way. 

This corresponds to block 3 of Figure 3. This calculation is 

made using the reachable state space of automaton A. 

Let us consider the general case of a location q from A 

(Figure 7.a) and the controllable output transition Tj whose 

guard is function of the clock ti: αi ≤ ti ≤ ȕi. The addressed 

problem is to calculate the largest interval [α’i, ȕ’i]  [αi, ȕi] 

in the dynamic behaviour of the elementary hybrid 

automaton. i.e. the guard α’i ≤ ti ≤ ȕ’i that allows to meet the 

specifications. 

 

Figure 6. a) Autonomous behaviour, b) Specification 

 

Each marking evolves according to a linear function when in 

a specific location since its time derivative is constant, and 

there is an indeterminism in the initial values of time and 

marking. This can be formalized as below. 

Property 1: In a location q, each continuous variable mi can 

be written as:  

mi = ci(t - t0) + di0 

where t0 [t0min t0max] and di0 [d0imin d0imax] are time and 

marking initial values.  

[t0min t0max] and [d0imin d0imax] are convex intervals given by the 

input space R0(A, q),  

With  t0min, ci, d0imin+ and t0max, d0imax+{∞} 

                     

For any location q in A, We note by:  

C = (c1 c2 … cnC)T the vector of the mi variables slopes 

(dynamics of the markings), 

D0min = (d01min d02min … d0nCmin)
T the vector of minimal input 

values in R0(A,q), 

D0max = (d01max d02max … d0nCmax)
T the vector of maximal input 

values in R0(A, q), 

S- = ൮ minሺݏଵ, Ͳሻminሺݏଶ, Ͳሻڭminሺݏ௡஼ , Ͳሻ൲   and     S+ = ൮ maxሺݏଵ, Ͳሻmaxሺݏଶ, Ͳሻڭmaxሺݏ௡஼ , Ͳሻ൲ 

Where S is the vector of specification decomposed into 2 sub 

vectors S- and S+ 

Such that: S = S- + S+; 

dmax  is the maximal sojourn time in R(A, q). 

‐a‐ mͳ ‐mʹ ൑ ʹͲ 
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t  ሾͳ  ͵ሿmͳ ሾͶͺ  ͷͳሿmʹ ሾͷ͵  ͷͶሿ t ൒ ͵

‐b‐ 



     

 

Figure 7.a) Location q in A, b) Constrained  behaviour 

Theorem 1: The maximal permissive control of a discrete 

controllable transition Ti meeting the specification: ST.MC ≤ b 

on the continuous part is given by the new guard: α’i ≤ ti ≤ β’i 

Such that: 

α’i = max (αi, timin) 

And  

β’i = min (βi, timax) 

Where: timin = t0min  

And ti max is calculated as follows: 

- If ST.C > 0   tu = 
௕ାௌ೅஼.௧బ ೘೔೙ିௌశ೅஽బ೘ೌೣିௌష೅஽బ೘೔೙ௌ೅஼  

i. If tu < α’i  then  q is forbidden; 

ii. If tu  ≥ α’i then  ti max = tu 

- if ST.C <  0    tu = 
௕ାௌ೅஼.௧బ ೘೔೙ିௌశ೅஽బ೘೔೙ିௌష೅஽బ೘ೌೣௌ೅஼  

i. If tu > t0min   then q is forbidden. 

ii. If tu ≤ t0min   then timax = dmax 

- if ST.C =  0, 

i. If STD0  ≤ b,  the specification is always verified; 

ii. If STD0 > b,  Location q is forbidden. 

                

Proof: 

The value of timin is obvious; it is given by the reachable 

space from location q in A. 

The value of timax is derived from the specification:  

ST.MC ≤ b 

As (from property 1): 

MC = C(t - t0) + D0 

We can write: 

ST.(C(t - t0)+D0) ≤ b 

The sign of the scalar ST.C is very important in the 

calculation of the maximal value of the time upper bound. It 

combines the weights in the specification with the slopes of 

the marking. Depending on the sign of ST.C, three cases must 

be distinguished: 

1st case:   ST.C > 0  t ≤ 
௕ାௌ೅.஼.௧బିௌ೅.஽బௌ೅.஼   

is the condition verifying the specification. 

And the more constraining bound for t is: tu = 
௕ାௌ೅஼.௧బ೘೔೙ ିௌశ೅஽బ೘ೌೣିௌష೅஽బ೘೔೙ௌ೅.஼  

- If  tu < α’i, then the new guard is empty and location 

q is forbidden. 

- If  tu  ≥ α’i, then timax = tu   and β’i  = min (βi, 

timax) 

2nd case:   ST.C < 0  t ≥ 
௕ାௌ೅.஼.௧బିௌ೅.஽బௌ೅.஼  

is the condition verifying the specification. 

And the more constraining bound for t is:   

tu = 
௕ାௌ೅.஼.௧బ೘೔೙ିௌశ೅.஽బ೘೔೙ିௌష೅஽బ೘ೌೣௌ೅.஼  

- If  tu > t0 min then the specification is not verified for 

the entrance space and location q is forbidden. 

- If tu ≤ t0 min then ti max = dmax (maximal sojourn time 

for location q in A) 

and β’i  = min (βi, timax) 

3rd case:   ST.C = 0  

- If  ST.D0  ≤ b,  then the specification is always 

verified 

 

- If  ST.D0 > b, then the specification is not 

verified for some values of the entrance marking in 

location q which is forbidden. 

                

Specሺqሻ 

ሶܺ ൌ  ሺܺሻ qܨ
Invሺqሻ  Ti, Ƚi൑ ti ൑ Ⱦi 
‐a‐ 

‐b‐ 
RሺA, qሻ 

The constrained  behaviour Specሺqሻ ר RሺA, qሻ 



     

Figure 7 illustrates the two first cases of Theorem 1. In 

Figure 8.a, the specification: 

m1- m2 ≤ 20 gives  

ST= (1 -1), and ST.C = (1 -1).ቀͳ͵ቁ = 2 

Then ti max = 
ଶ଴ାଶିହଵାହଷଶ  = 12 and the new guard is  

[3, 12]. 

In Figure 8.b, the specification m2– m1 ≤ 20 gives 

ST = (-1 1), and ST.C = (-1 1).ቀͳ͵ቁ = -2 

Then ti max = 
ଶ଴ିଶିହଷାହଵିଶ  = -8; In that case, it is necessary to 

compute the maximal sojourn time in the location, dmax= Min ቀଵ଴଴ିସ଼ଷ , ͳͲͲ െ ͷ͵ቁ = 17.33. The new guard is [3, 17.33]. 

 

Figure 8. Control computation: a) ST.C > 0 , b) ST.C < 0 

 

Remark 2: 

1) In the case of a general specification of the form: 

Spec(qi) = Speci1  Speci2   …  Specik 

Then each Specik is studied alone with Theorem 1. The final 

solution consists in considering the conjunction of the 

different guards [α’ik β’ik] in order to obtain the final guard. It 

can be noticed that the computation of the reachable space of 

Automaton A is done only once. 

2) When a location has several output transitions, each guard 

is computed as it is alone. There will be several output 

concurrent transitions. 

                

Our approach is powerful since it gives the control thanks to 

an algebraic computation. This allows considering any kind 

of specifications, which can be different from a location to 

another one.  However it needs the knowledge of the intervals 

of the different variables of the entrance space and in some 

cases the maximal sojourn time in a location. These intervals 

are given using linear programming on the reachable spaces.  

We have soled formally the problem for a location. In order 

to have the complete controller, it is necessary to iterate the 

formal procedure for the whole automaton, leading to a 

decidability problem. It is well known that for a hybrid 

automaton the computation of the reachability spaces does 

not terminate in general. However, real life systems own 

good properties that make this computation decidable. Then it 

will be interesting to characterize the set of systems for which 

the controller synthesis is possible. This constitutes our future 

research.  

Example: 

Let us consider again the producer consumer system and the 

specification that imposes to never exceed 100 parts in the 

buffer. The controller guarantying to meet this specification 

is schematized in Figure 9. This controller is built location by 

location applying Theorem 1. A control is computed for one 

input state pace, called a visit. It is why he final controller 

given in Figure 9 is an unfolded automaton. This model is 

only timed since the control points are given by the discrete 

timed transitions. The continuous dynamic does not appear, 

its influence is taken into account in the computation of the 

guard.  By acting on the discrete controls Start and Stop in 

the control timed intervals, the respect of the specification is 

guaranteed. 

5. CONCLUSION 

In this paper, we have presented a controller synthesis 

technique for hybrid dynamic systems modelled by D-

elementary HPNs.  This model is first translated in a hybrid 

automaton before controller synthesis. We have highlighted 

our contribution on the computation of the control for a 

location. Specifications are added to the hybrid automaton in 

order to limit its reachable state space to a desired one.  

This is obtained thanks to the computation of new guards 

associated with the controllable discrete transitions. We have 

determined algebraic formulas giving the new time bounds 

that allow respecting the specifications. This computation 

needs the bounds of the different variables for the input state 

space, which are obtained by linear programming. The 

controller is a timed automaton; it is optimal in the sense that 

it gives the most permissive state space of the system 

‐a‐ 

‐b‐ 

݉ଵሶ ൌ ͵݉ଶሶ ൌ ͳݐሶ ൌ ͳ  
qͳ 

mͳ ൑ ͳͲͲ mʹ ൑ ͳͲͲ

t  ሾͳ  ͵ሿ mͳ ሾͶͺ  ͷͳሿ mʹ ሾͷ͵  ͷͶሿ  ͵ ൑ t ൑ ͳʹ

Specification: mͳ ‐mʹ ൑ ʹͲ 

Specification: mʹ –mͳ ൑ ʹͲ 

݉ଵሶ ൌ ͵݉ଶሶ ൌ ͳݐሶ ൌ ͳ  
qͳ 

mͳ ൑ ͳͲͲ mʹ ൑ ͳͲͲ

t  ሾͳ  ͵ሿ mͳ ሾͶͺ  ͷͳሿ mʹ ሾͷ͵  ͷͶሿ  ͵ ൑ t ൑ ͳ͹,͵͵



     

guarantying the specifications. This optimality is obtained via 

an algebraic calculation.   

 

Figure 9. Controller of the consumer producer system. 

The obtained timed automaton is the model of the closed loop 

system. It represents the system coupled to its controller, and 

has a nondeterministic  behaviour. It is possible to choose 

one deterministic  behaviour from an infinite number. It is 

also possible to calculate an optimal  behaviour according to 

a given criterion. 

Our future work consists in: 1) establishing a general 

algorithm for the automatic determination of the controller, 

starting from any D-elementary HPN; 2) Taking into account 

uncontrollable events in the discrete part; and 3) 

characterizing formally the sub class of HPNs such that the 

translation algorithm terminates always. 
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Appendix A: Translation approach. 

The translation approach can be summarized in the following 

three steps: 

1. Isolate the discrete PN of the hybrid model and construct 

its equivalent timed automaton: Several algorithms 

permitting the translation of a Time PN in a timed automaton 

exist in the literature. We reuse the existing algorithms for 

this first step of our approach. Locations of the resulting 

timed automaton are said macro-locations in the following. 

2. Construct the hybrid automaton corresponding to each 

macro-location of the timed automaton resulting from the 

previous step: Indeed, a macro-location represents a marking 

of the discrete PN, and therefore a configuration (set of 

locations) of the system. In this second step we determine the 

continuous PN corresponding to each macro-location and we 

translate it in a hybrid automaton. At the end of this second 

step we have a hierarchical model containing macro-

locations, each of which comprises a hybrid automaton. 

3. Replace transitions between macro-locations by transitions 

between internal locations: This last step transforms the 

hierarchical model of the previous step in a linear hybrid 

automaton. 

                         

To illustrate the different steps of the translation approach, let 

us consider again the D-elementary HPN representing the 

producer consumer system in Figure A1.a. 

In Figure A1.b below we isolate the discrete part of the HPN 

of Figure A1.a. The time PN obtained has two reachable 

markings and only one transition enabled at a time. It is 

modelled by a timed automaton with two locations, that 

represent the markings, and one clock, representing the time 

during which a transition is enabled (Figure A1.c). 

To each marking of the discrete part (time Petri net) 

corresponds a configuration of the system. Each 

configuration corresponds to one or several locations. The 

running of a constant speed continuous PN can be modelled 

by a linear hybrid automaton where the state variables are the 

continuous places marking. 

 

Figure A1.a. HPN of the producer-consumer system; b. T-

Time Petri net of the discrete part; c. Equivalent hybrid 

automaton. 

Only one type of events can change the continuous variables 

derivative, this autonomous event is the emptiness of a 

continuous place marking. This is always an uncontrollable 

event. For the HPN in Figure A1.a, the discrete part has 2 

reachable markings, then 2 configurations for the continuous 

part. Figure A2 represents the hierarchical form of the hybrid 

automaton. 

The final form of the hybrid automaton is obtained by 

replacing each transition between macro-locations by 

transitions between internal locations. A reachability analysis 

can be useful to eliminate the unreachable locations and non 

fireable transitions. The hybrid automaton resulting from the 

translation of the HPN in figure A1.a is represented in Figure 

A4. 
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Figure A2. Continuous  behaviour corresponding to each discrete marking. 

 

Figure A3. Hierarchical form of the hybrid automaton 

 
Figure A4. Hybrid automaton resulting from the translation approach 
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