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COUNTING FUNCTION OF MAGNETIC EIGENVALUES FOR

NON-DEFINITE SIGN PERTURBATIONS

DIOMBA SAMBOU

Abstract. We consider the perturbed operator H(b, V ) := H(b, 0)+V , where H(b, 0) is
the 3d Hamiltonian of Pauli with non-constant magnetic field, and V is a non-definite sign
electric potential decaying exponentially with respect to the variable along the magnetic
field. We prove that the only resonances of H(b, V ) near the low ground state zero of
H(b, 0) are its eigenvalues and are concentrated in the semi axis (−∞, 0). Further, we
establish new asymptotic expansions, upper and lower bounds on their number near zero.

1. Introduction

In this article, we consider a three-dimensional Pauli operator H(b, V ) = H(b, 0) + V
acting in L2(R3) := L2(R3,C2). Its describes a quantum non-relativistic spin-1

2
particle,

subject to an electric potential V and a non-constant magnetic field B : R3 → R3 of
constant direction. With no loss of generality, we may assume that the magnetic field has
the form

(1.1) B(x1, x2, x3) =
(

0, 0, b(x1, x2)
)

.

Throughout this paper, b : R2 → R will be assumed to be an admissible magnetic field.
That is, there exists a constant b0 > 0 satisfying b(x1, x2) = b0 + b̃(x1, x2), where b̃ is a
function such that the Poisson equation

(1.2) ∆ϕ̃ = b̃, ∆ := ∂2
1 + ∂2

2 ,

admits a solution ϕ̃ ∈ C2(R2) verifying sup(x1,x2)∈R2 |Dαϕ̃(x1, x2)| < ∞, α ∈ N2, |α| ≤ 2,
(

we refer for instance to [25, section 2.1] for more details on admissible magnetic fields
)

.

Notice that b̃ = 0 coincides with the constant magnetic field case.

Let A = (A1, A2, A3) : R
3 → R3 be a magnetic potential generating the magnetic field B.

That is,

(1.3) B(X) = curlA(X), X = (X⊥, x3) ∈ R
3, X⊥ = (x1, x2) ∈ R

2.

2010 Mathematics Subject Classification. Primary: 35B34; Secondary: 35P25.
Key words and phrases. Magnetic Pauli operators, magnetic resonances, non-definite sign perturbations.
This research is partially supported by the Chilean Program Núcleo Milenio de Física Matemática

RC120002. I am grateful to J. F. Bony for suggesting me this study and the exploitation of the reduction
(4.2).

1



2 DIOMBA SAMBOU

The self-adjoint unperturbed Pauli operator H(b, 0) is defined originally on C∞
0 (R3,C2) by

(1.4) H(b, 0) :=

(

(−i∇− A)2 − b 0
0 (−i∇− A)2 + b

)

,

and then closed in L2(R3). Since b is independent of x3, then with no loss of generality, we
may assume that Aj, j = 1, 2, are independent of x3 and A3 = 0. Set ϕ0(X⊥) := b0|X⊥|2/4
and ϕ := ϕ0 + ϕ̃, so that we have ∆ϕ = b. Introduce the operators

(1.5) a = a(b) := −2ie−ϕ ∂

∂z̄
eϕ and a∗ = a∗(b) := −2ieϕ

∂

∂z
e−ϕ,

originally defined on C∞
0 (R2,C), where z := x1+ix2 and z̄ := x1−ix2. Define the operators

(1.6) H1(b) := a∗a and H2(b) := aa∗.

By choosing A1 = −∂2ϕ and A2 = ∂1ϕ, the operator H(b, 0) can be rewritten in L2(R3) =
L2(R2)⊗ L2(R) as

(1.7) H(b, 0) =

(

H1(b)⊗ 1 + 1⊗
(

− ∂2
3

)

0
0 H2(b)⊗ 1 + 1⊗

(

− ∂2
3

)

)

=:

(

H1(b) 0
0 H2(b)

)

,

where −∂2
3 is originally defined on C∞

0 (R,C). From [24, Proposition 1.1], we know that
the spectra sp (Hj) of Hj , j = 1, 2, satisfy the following properties:

sp (H1) ⊆ {0} ∪ [ζ,+∞) with 0 an eigenvalue of infinite multiplicity,

sp (H2) ⊆ [ζ,+∞),
(1.8)

where

(1.9) ζ := 2b0e
−2osc ϕ̃ > 0,

with osc ϕ̃ := supX⊥∈R2 ϕ̃(X⊥)− infX⊥∈R2 ϕ̃(X⊥). Since the spectrum of the operator −∂2
3

coincides with [0,+∞) and is absolutely continuous, then (1.7) and (1.8) imply that this
of H(b, 0) is equal to [0,+∞) and is absolutely continuous

(

see [25, Corollary 2.2]
)

.

Remark. It is well known
(

see e.g. [12]
)

in the constant magnetic field case, the spectrum
of H1 consists of the Landau levels 2b0N. Further, the multiplicity of each eigenvalue 2b0q,
q ∈ N, is infinite. In particular, this implies that the spectrum of H2 consists of the Landau
levels 2b0N

∗. Further, ζ = 2b0.

On the domain of the operator H(b, 0), we introduce the perturbed operator

(1.10) H(b, V ) = H(b, 0) + V,

where we identify V with the multiplication operator by the function V .

In [29], we investigated the resonances (see Definition 4.1 below) of the operator H(b, V )
near zero. We required V ≡ {Vjk}1≤j,k≤2 to be a hermitian matrix-valued electric potential
satisfying

(1.11) |Vjk(X)| ≤ C 〈X⊥〉−m⊥e−2δ〈x3〉, m⊥ > 0, δ > 0,
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where 〈u〉 :=
√

1 + |u|2, u ∈ Rd, d ≥ 1. For V of definite sign, we obtained in [29, Theorem
2.2] an asymptotic expansion of the number of resonances near zero. Further, we showed
that they are concentrated in some sector. For V of non-definite sign, we obtained in
[29, Theorem 2.1] an upper bound of the number of resonances near zero without their
localization.

The aim of this paper is to study the same problem by considering the class of anti-diagonal
matrix-valued electric potentials

(1.12) V (X) :=

(

0 U(X)
U(X) 0

)

, X ∈ R
3, U(X) ∈ C,

where the function U satisfies the estimate

(1.13) |U(X)| ≤ C 〈X⊥〉−m⊥e−2δ〈x3〉, m⊥ > 0, δ > 0,

with C > 0 a constant.

Remark. Notice that potentials V satisfying (1.12) are of non-definite sign. Indeed, its
eigenvalues are ±|U(X)|.

Novelty in this paper is that we prove the only resonances of H(b, V ) near zero are its
eigenvalues. Further, they are localized in the semi axis (−∞, 0). We give new estimates
on the number of negative eigenvalues H(b, V ) near zero. In particular, they show that
the behaviour of magnetic eigenvalues for unsigned perturbations is different from that for
signed perturbations. The crucial tool is that we exploit the form (1.12) of V in such a way
we reduce the analysis of the resonances of H(b, V ) near z = 0 to that of the semi-effective

effective Hamiltonian H1 − U
(

H2 − z
)−1

U (see Section 4).

The paper is organized in the following manner. Our main results (Theorems 2.1 and 2.2)
are stated in Section 2. In Section 3, we recall auxiliary results on Toeplitz operators and
characteristic values of meromorphic operator-valued functions. In Section 4, we reduce
the analysis of the resonances near zero to a characteristic value problem. Section 5 is
devoted to the proofs of Theorems 2.1 and 2.2.

2. Statement of the main results

In order to formulate our main results, some notations are needed. For T a linear
compact self-adjoint operator in a Hilbert space, we denote

(2.1) n+(s, T ) := rankP(s,∞)(T ), s > 0,

where P(s,∞)(T ) is the orthogonal projection of T in the interval (s,∞). The set of negative

eigenvalues of the operator H(b, V ) is denoted sp
disc

(

H(b, V )
)

, namely its discrete spec-
trum. The orthogonal projection onto KerH1(b) defined by (1.6) is denoted p := p(b). The
corresponding orthogonal projection in the constant magnetic field case will be denoted
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p0 := p(b0).

For a bounded operator B ∈ L
(

L2(R3)
)

, we define on L2(R2) the operator W (B) by

(2.2)
(

W (B)f
)

(X⊥) :=
1

2

∫

R

U(X⊥, x3)B(Uf)(X⊥, x3)dx3, X⊥ ∈ R
2.

Clearly, if I denotes the identity on L2(R3), then W (I) is the multiplication operator by
the function

(2.3) X⊥ 7−→ 1

2

∫

R

|U |2(X⊥, x3)dx3.

The function (2.3) will be denoted W (I) again. Let H2 be the operator defined by (1.7).
If U satisfies (1.13), then [25, Lemma 2.4] implies that the positive self-adjoint operators
pW (I)p and pW

(

H−1
2

)

p are compact on L2(R2).

We are thus led to our first main result, where the resonances are defined in Definition 4.1
below.

Theorem 2.1. Assume that (1.12) and (1.13) hold for V and U respectively. Then, there

exists a discrete set E ⊂ R∗ such that for any ν ∈ R∗ \ E , the operator H(b, νV ) has the

following properties:

(i) Localization: near zero, the resonances are its negative eigenvalues.

(ii) Asymptotic: suppose that n+

(

r, pW
(

H−1
2

)

p
)

→ +∞, r ց 0. Then, there exists a

sequence (rℓ)ℓ tending to 0 such that

(2.4) #spdisc

(

H(b, νV )
)

∩
(

−∞,−r2ℓ
)

= n+

(

rℓ, pW
(

H−1
2

)

p
)

(

1 + o(1)
)

, ℓ −→ ∞.

(iii) Upper-bound: let I be the identity on L2(R3). If W (I) ≤ U⊥ with U⊥ satisfying the

assumptions of Lemma 3.1, then

(2.5) #spdisc

(

H(b, νV )
)

∩
(

−∞,−r2
)

≤ n+

(

r,
1

ζ
pW (I)p

)

(

1 + o(1)
)

, r ց 0.

Remarks. Notice that in virtue of Lemma 3.1, the right hand side of (2.5) implies that
the number of negative eigenvalues of H(b, νV ) near zero is of order O

(

r−1/m⊥

)

, r ց 0.

This order is better than the order O
(

r−2/m⊥

)

obtained in [29] for general perturbations
V satisfying (1.11). Otherwise, if the function U⊥ is compactly supported, then (2.5) and
[25, Lemma 3.4] imply that the number of negative eigenvalues of H(b, νV ) near zero is of
order O

(

(ln | ln r|)−1| ln r|
)

, r ց 0, which is similar to that from [29].

In the constant magnetic field case B = (0, 0, b0), we obtain, in additional, a lower bound
of the number of negative eigenvalues near zero.
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Figure 2.1. Resonances near 0 with respect to the variable k: For
r ≪ 1, the only resonances z(k) = k2 of H(b, 0)+V near zero are its negative
eigenvalues and they satisfy k ∈ i]0,+∞).

Before to state our result, some additional notations are needed. If the function U satisfies
U(X⊥, x3) = U⊥(X⊥)U(x3), where U⊥ and U are not necessarily real functions, we define

(2.6) K1 :=

〈

(−∂2
3 + 2b0)

−1 U ,U
〉

2
,

and

(2.7) n∗

(

(

r

K1

)
1

2

, p0U⊥p0

)

:= n+

(

r

K1

,
(

p0U⊥p0
)∗
p0U⊥p0

)

.

Theorem 2.2 (Lower bound). Let the magnetic field B be constant. Assume that (1.12)
and (1.13) hold for V and U respectively. Then, there exists a discrete set E ⊂ R∗ such

that for any ν ∈ R∗ \ E , the following holds:

Suppose that U(X⊥, x3) = U⊥(X⊥)U(x3). If we have

n∗

(

(

r

K1

)
1

2

, p0U⊥p0

)

= φ(r)
(

1 + o(1)
)

, r ց 0,

where the function φ(r) is as in Lemma 3.5, then

(2.8) #sp
disc

(

H(b, νV )
)

∩
(

−∞,−r2
)

≥ n∗

(

(

r

K1

)
1

2

, p0U⊥p0

)

(

1 + o(1)
)

, r ց 0.

In particular, if U⊥ ≥ 0 and satisfies the assumptions of Lemma 3.1, then

(2.9) #sp
disc

(

H(b, νV )
)

∩
(

−∞,−r2
)

≥ n+

(

(

r

K1

)
1

2

, p0U⊥p0

)

(

1 + o(1)
)

, r ց 0.
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Remarks. Notice that estimates (2.9) and (2.5) imply, in the constant magnetic field case,
the number of negative eigenvalues of

(

H(b, νV )
)

near 0 is such that

Cm⊥
K

1/m⊥

1 r−1/m⊥

(

1 + o(1)
)

≤
#sp

disc

(

H(b, νV )
)

∩
(

−∞,−r2
)

≤ Cm⊥
K

1/m⊥

2 r−1/m⊥

(

1 + o(1)
)

, r ց 0,

(2.10)

where Cm⊥
is the constant defined in Lemma 3.1, and

(2.11) K2 := (4b0)
−1

∫

R

|U(x3)|2dx3.

It is easy to check that K1 < K2. On the other hand, the lower bound in (2.10) implies
that the negative eigenvalues of H(b, νV ) accumulate to zero. One can compare (2.10)
with the results of [25] on the asymptotic of the counting function of the eigenvalues of
H(b, V ) near zero, when V ≡ {Vjk}1≤j,k≤2 has a fixed sign. Indeed, in [25, Corollary 3.6],
the author shows that if the coefficients of the potential V ≥ 0 satisfy

|Vjk(X)| = O
(

〈X〉−ν
)

, 1 ≤ j, k ≤ 2,

for some ν > 3, then the behaviour near zero of the counting function of the negative
eigenvalues of H(b, V ) is of order

O
(

r−2/(ν−1)
)(

1 + o(1)
)

, r ց 0.

In particular, this shows that the behaviour of eigenvalues for unsigned perturbations is
different from that for signed perturbations.

3. Auxiliary results

3.1. Some results on Berezin-Toeplitz operators by Raikov [25], [22]. Consider
U⊥ ∈ L∞(R2). The asymptotic eigenvalues of the Berezin-Toeplitz operator pUp is the
subject of the next lemma. An integrated density of states (IDS) for the operator H1 =
H1(b) is defined as follows. For X⊥ ∈ R

2, let χT,X⊥
be the characteristic function of the

square X⊥ +
(

−T
2
, T
2

)2
with T > 0. Denote PI(H1) the spectral projection of H1 in the

interval I ⊂ R. A non-increasing function g : R −→ [0,∞) is called an IDS for H1 if it
satisfies for any X⊥ ∈ R2

g(t) = lim
T→∞

T−2Tr
[

χT,X⊥
P(−∞,t)(H1)χT,X⊥

]

,

for each point t of continuity of g
(

see e.g. [25]
)

. If the magnetic field is constant, then
there exists naturally an IDS for the operator H1 given by

g(t) =
b0
2π

∞
∑

q=0

χR+
(t− 2b0q), t ∈ R,

where χR+
is the characteristic function of R+.
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Lemma 3.1. [22, Theorem 2.6] Consider U⊥ ∈ C1(R2) such that

0 ≤ U⊥(X⊥) ≤ C1〈X⊥〉−α, |∇U⊥(X⊥)| ≤ C1〈X⊥〉−α−1, X⊥ ∈ R
2,

where α > 0 and C1 > 0. Assume that

• U⊥(X⊥) = u0(X⊥/|X⊥|)|X⊥|−α
(

1 + o(1)
)

as |X⊥| → ∞, where u0 is a

continuous function on S
1 which does not vanish identically,

• b is an admissible magnetic field,

• there exists an IDS g for the operator H1(b).
Then we have

n+(s, pU⊥p) = Cαs
−2/α

(

1 + o(1)
)

, s ց 0,

where

(3.1) Cα :=
b0
4π

∫

S1

u0(t)
2/αdt.

3.2. Results on characteristic values by Bony-Bruneau-Raikov [7]. Let H be a
separable Hilbert space. We denote S∞(H ) (resp. GL(H )) the set of compact (resp.
invertible) linear operators acting in H .

Let D ⊆ C be a connected open set, Z ⊂ D be a discrete and closed subset, A : D\Z −→
GL(H ) be a finite meromorphic operator-valued function

(

see e.g. [7, Definition 2.1]
)

and
Fredholm at each point of Z. The index of A, with respect to a positive oriented contour
γ, is defined by

(3.2) IndγA :=
1

2iπ
Tr

∫

γ

A′(z)A(z)−1dz =
1

2iπ
Tr

∫

γ

A(z)−1A′(z)dz.

Here, the operator A does not vanish on the integration contour γ. Let D be a domain
of C containing 0. Consider a holomorphic operator-valued function T : D −→ S∞(H ).
For a domain Ω ⊂ D \ {0}, a complex number z ∈ Ω is said to be a characteristic value

of z 7→ T (z) := I − T (z)
z

if the operator T (z) is not invertible. The multiplicity of a
characteristic value z0 is defined by

(3.3) mult(z0) := Indγ

(

I − T (·)
)

,

where γ is a small contour positively oriented, containing z0 as the unique point z satisfying
T (z) is not invertible.

Define

Z(Ω) :=

{

z ∈ Ω : I − T (z)

z
is not invertible

}

.

If there exists z0 ∈ Ω such that I − T (z0)
z0

is not invertible, then Z(Ω) is a discrete set
(

see

e.g. [15, proposition 4.1.4]
)

. So we define

N (Ω) := #Z(Ω).
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Assume that T (0) is self-adjoint. Introduce Ω ⋐ C \ {0} and the sector

(3.4) Cα(a, b) := {x+ iy ∈ C : a ≤ x ≤ b,−αx ≤ y ≤ αx},
with a > 0 tending to 0 and b > 0. Let

n(Λ) := Tr1Λ(T (0))

be the number of eigenvalues of the operator T (0) lying in the interval Λ ⊂ R∗, and counted
with their multiplicity. Denoted Π0 the orthogonal projection onto KerT (0).

Lemma 3.2. [7, Corollary 3.4] Let T be as above and I − T ′(0)Π0 be invertible. Assume

that Ω ⋐ C \ {0} is a bounded domain with smooth boundary ∂Ω which is transverse to the

real axis at each point of ∂Ω ∩ R.

(i) If Ω∩R = ∅, then N (sΩ) = 0 for s small enough. This implies that the characteristic

values z ∈ Z(D) near 0 satisfy |Im z| = o(|z|).
(ii) Moreover, if the operator T (0) has a definite sign (±T (0) ≥ 0), then the characteristic

values z near 0 satisfy ±Re z ≥ 0, respectively.

(iii) If T (0) is of finite rank, then there are no characteristic values in a pointed neigh-

bourhood of 0. Moreover, if the operator T (0)1[0,+∞)(±T (0)) is of finite rank, then there are

no characteristic values in a neighbourhood of 0 intersected with {±Re z > 0}, respectively.

Lemma 3.3. [7, Theorem 3.7] Let T be as above and I −T ′(0)Π0 be invertible. For α > 0
fixed, let Cα(r, 1) ⊂ D be defined as in (3.4). Then, for all δ > 0 small enough, there exists

s(δ) > 0 such that, for all 0 < s < s(δ), we have

N
(

Cα(r, 1)
)

= n
(

[r, 1]
)(

1 +O
(

δ| ln δ|2
))

+O
(

| ln δ|2
)

n
(

[r(1− δ), r(1 + δ)]
)

+Oδ(1),
(3.5)

where the O’s are uniform with respect to s, δ but the Oδ may depend on δ.

Lemma 3.4. [7, Corollary 3.9] Let the assumptions of Lemma 3.3 hold true. Assume that

there exists γ > 0 such that

n([r, 1]) = O(r−γ), r ց 0,

and that n([r, 1]) grows unboundedly as r ց 0. Then there exists a positive sequence (rk)k
tending to 0 such that

(3.6) N (Cα(rk, 1)) = n([rk, 1])(1 + o(1)), k → ∞.

Lemma 3.5. [7, Corollary 3.11] Let the assumptions of Lemma 3.3 hold true. Suppose

that

n
(

[r, 1]
)

= Φ(r)
(

1 + o(1)
)

, r ց 0,

with Φ(r) = r−γ, or Φ(r) = | ln r|γ, or Φ(r) =
(

ln | ln r|
)−1| ln r|, for some γ > 0. Then

(3.7) N
(

Cα(r, 1)
)

= Φ(r)
(

1 + o(1)
)

, r ց 0.

4. Resonances

From here to the end, we assume that V and U satisfy (1.12) and (1.13) respectively.
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4.1. A preliminary property. We establish the main property allowing to reduce the
study of the resonances of H(b, V ) near z = 0 to that of the semi-effective Hamiltonian

H1 − U
(

H2 − z
)−1

U .

Let z ∈ C be small enough. We have

(

H(b, V )− z
)

(

1 0
−(H2 − z)−1U (H2 − z)−1

)

=

(

H1 − z − U(H2 − z)−1U U(H2 − z)−1

0 1

)

.

(4.1)

Therefore,

(4.2) H(b, V )− z is invertible ⇔ H1 − z − U(H2 − z)−1U is invertible.

Further,

(

H(b, V )− z
)−1

=

(

1 0
−(H2 − z)−1U (H2 − z)−1

)

×
(

(

H1 − z − U(H2 − z)−1U
)−1 −

(

H1 − z − U(H2 − z)−1U
)−1

U(H2 − z)−1

0 1

)

.

(4.3)

Hence, for z small enough, property (4.2) allows to reduce the non-invertibility of the
operator H(b, V )− z to that of H1 − z − U(H2 − z)−1U .

4.2. Reduction to a semi-effective problem. Consider z lying in the upper half-plane
C+. Make the change of variables

(4.4) z := z(k) = k2 for k ∈ C
+
1/2 :=

{

k ∈ C
+ : k2 ∈ C

+
}

.

Introduce the punctured disk

(4.5) D(0, ǫ)∗ :=
{

k ∈ C : 0 < |k| < ǫ
}

, ǫ < min
(

δ,
√

ζ
)

,

where the constants δ and ζ are respectively defined by (1.13) and (1.9).

Proposition 4.1. [29, Proposition 4.1]
Let R(z) denote the resolvent of the operator H(b, V ). Then, the operator valued-function

k 7−→
(

R
(

z(k)
)

: e−δ〈x3〉L2(R3) −→ eδ〈x3〉L2(R3)
)

,

admits a meromorphic extension from C
+
1/2 ∩ D(0, ǫ)∗ to D(0, ǫ)∗. We shall denote this

extension R(z) again.

Definition 4.1. We define the resonances of H(b, V ) near zero as the poles of the mero-

morphic extension R(z).
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Set R(z) :=
(

H1 − z −U(H2 − z)−1U
)−1

and R2(z) := (H2 − z)−1. From (4.3) we deduce
that

e−δ〈x3〉R(z)e−δ〈x3〉

=

(

e−δ〈x3〉R(z)e−δ〈x3〉 −e−δ〈x3〉R(z)UR2(z)e
−δ〈x3〉

−e−δ〈x3〉R2(z)UR(z)e−δ〈x3〉 e−δ〈x3〉R2(z)UR(z)UR2(z)e
−δ〈x3〉 + e−δ〈x3〉R2(z)e

−δ〈x3〉

)

.

(4.6)

This together with Proposition 4.1 and assumption (1.13) show that the poles of R(z)
coincide with those of R(z). Then, near z = 0, the investigation of the resonances of
H(b, V ) is reduced to that of the semi-effective Hamiltonian H1 − U(H2 − z)−1U .

4.3. Study of the semi-effective problem. With the help of the decomposition

(4.7) (H2 − z)−1 = H−1
2

(

1− zH−1
2

)−1

= H−1
2

∑

k≥0

zkH−k
2 ,

z being sufficiently small, we obtain

(4.8) (H2 − z)−1 = H−1/2
2

(

H−1/2
2 +H−1/2

2 M(z)
)

,

where

(4.9) M(z) := z
∑

k≥0

zkH−k−1
2 .

So, (4.8) implies that

(4.10) U(H2 − z)−1U = UH−1/2
2

(

H−1/2
2 U +H−1/2

2 M(z)U
)

.

Now define the operator

(4.11) w := H−1/2
2 U.

Thus, putting together (4.10) and (4.11) we obtain

(4.12) U(H2 − z)−1U = w∗(1 +M(z)
)

w.

We therefore have proved the following

Lemma 4.1. For z small enough, the operator U(H2 − z)−1U admits the representation

(4.13) U(H2 − z)−1U = w∗(1 +M(z)
)

w.

Further, the operator-valued function z 7−→ M(z) is analytic near z = 0.

Let R1(z) denote the resolvent of the operator H1. Under the notations of Lemma 4.1, the
following lemma holds:

Lemma 4.2. For z small enough, the operator valued-function

D(0, ǫ)∗ ∋ k 7−→ TV

(

z(k)
)

:=
(

1 +M
(

z(k)
)

)

wR1

(

z(k)
)

w∗,

is analytic with values in S∞ (L2(R3)).
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Proof. The analyticity of TV

(

z(k)
)

holds since M
(

z(k)
)

and R1

(

z(k)
)

are well defined
and analytic for k ∈ D(0, ǫ)∗.

The compactness of TV

(

z(k)
)

follows from that of UR1

(

z(k)
)

U , using the diamagnetic
inequality and [32, Theorem 2.13]. �

We have the following characterization of the resonances.

Proposition 4.2. For k near zero, the following assertions are equivalent:

(i) z(k) = k2 is a resonance of H(b, V ),

(ii) 1 is an eigenvalue of TV

(

z(k)
)

.

Proof. The equivalence follows directly from the identity

(4.14)
(

I −
(

1 +M(z)
)

wR1(z)w
∗
)(

I +
(

1 +M(z)
)

wR(z)w∗
)

= I,

and the fact that the poles of R(z) coincide with those of R(z). �

So, the multiplicity of a resonance z := z(k) is defined by

(4.15) mult(z) := Indγ

(

I − TV

(

z(·)
)

)

,

where γ is a small positively oriented contour containing k as the unique point satisfying
z(k) is a resonance of H(b, V )

(

see (3.2)
)

.

Using the terminology of characteristic value recalled in Subsection 3.2, Proposition 4.2
can be formulated as follows:

Proposition 4.3. For k near zero, the following assertions are equivalent.

(i) z = z(k) is a resonance of H(b, V ),

(ii) k is a characteristic value of I − TV

(

z(·)
)

.

Further, according to (4.15), the multiplicity of the resonance z(k) coincides with this of

the characteristic value k.

5. Proof of the main results

First, let us introduce some tools. For p = p(b), set q := I − p. Define on L2(R3) the
projections P := p ⊗ 1 and Q := q ⊗ 1. If z lies in the resolvent set the operator H1, we
have

(H1 − z)−1 = (H1 − z)−1P + (H1 − z)−1Q

= p⊗R(z) + (H1 − z)−1Q,
(5.1)

where the resolvent R(z) :=
(

− ∂2
3 − z

)−1
admits the integral kernel

(5.2) Nz(x3 − x′
3) = iei

√
z|x3−x′

3|/(2
√
z), Im

√
z > 0.

5.1. Proof of Theorem 2.1.
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5.1.1. Preliminary results. Firstly, we need to split the operator TV

(

z(k)
)

of Lemma 4.2
with the help of (5.1). We get

TV

(

z(k)
)

= wp⊗R(k2)w∗ +M
(

z(k)
)

wp⊗R(k2)w∗

+
(

1 +M
(

z(k)
)

)

wR1

(

z(k)
)

Qw∗.
(5.3)

The operators M
(

z(k)
)

and R1

(

z(k)
)

Q are analytic near zero. Then, it is not difficult to
see that the third term of the right hand side of (5.3) is holomorphic near zero, with values
in S∞ (L2(R3)). By (5.2), the integral kernel of N(k) := e−δ〈x3〉R(k2)e−δ〈x3〉 is given by

(5.4) e−δ〈x3〉 ie
ik|x3−x′

3
|

2k
e−δ〈x′

3〉.

This together with (4.9) imply that the second term of the right hand side of (5.3) is
analytic in a vicinity of zero, with values in S∞ (L2(R3)).

Now let us focus on the first term wp⊗R(k2)w∗. According to (5.4), we can write

(5.5) N(k) =
1

k
a + b(k),

where a : L2(R) −→ L2(R) is the rank-one operator defined by

(5.6) a(u) :=
i

2
〈u, e−δ〈·〉〉e−δ〈x3〉,

and b(k) is the Hilbert-Schmidt operator
(

for k ∈ D(0, ǫ)∗
)

with integral kernel

(5.7) e−δ〈x3〉i
eik|x3−x′

3
| − 1

2k
e−δ〈x′

3
〉.

Thus,

(5.8) wp⊗R(k2)w∗ =
i

k
× 1

2
w
(

p⊗ τ
)

w∗ + w
(

p⊗ s(k)
)

w∗,

where τ and s(k) are operators acting from e−δ〈x3〉L2(R) to eδ〈x3〉L2(R), with integral kernels
respectively given by 1 and

(5.9)
1− eik|x3−x′

3|

2ik
.

We therefore have proved the following

Proposition 5.1. Let k ∈ D(0, ǫ)∗. Then,

(5.10) TV

(

z(k)
)

= i
w(p⊗ τ)w∗

2k
+B(k),

where

B(k) := w
(

p⊗ s(k)
)

w∗ +M
(

z(k)
)

wp⊗R(k2)w∗

+
(

1 +M
(

z(k)
)

)

wR1

(

z(k)
)

Qw∗,
(5.11)
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is holomorphic in D(0, ǫ) := D(0, ǫ)∗ ∪ {0}, with values in S∞ (L2(R3)).

Notice that w(p⊗ τ)w∗ is a positive self-adjoint compact operator. Indeed, if we define e±
as the multiplication operators by the functions e± : x3 7−→ e±δ〈x3〉, it is easy to check that

(5.12) w(p⊗ τ)w∗ = we+(p⊗ c∗c)e+w∗ =
(

(p⊗ c)e+w∗)∗((p⊗ c)e+w∗).

Here, c : L2(R) −→ C is defined by c(f) := 〈f, e−〉, so that c∗ : C −→ L2(R) is given by
c∗(λ) = λe−. Now, with the help of (5.12), we deduce that

(5.13) n+

(

r,
w(p⊗ τ)w∗

2

)

= n+

(

r,
(p⊗ c)e+w

∗
we+(p⊗ c∗)
2

)

, r > 0,

where the quantity n+(r, ·) is defined by (2.1). By the definition (4.11) of w, we have
w∗w = UH−1

2 U . This together with sp(H2) ⊆ [ζ,+∞) imply that

(5.14)
(p⊗ c)e+w∗we+(p⊗ c∗)

2
= pW

(

H−1
2

)

p ≤ pW (I)p

ζ
,

where for B ∈ L
(

L2(R3)
)

, W (B) is the operator defined by (2.2). Then, by combining
(5.13) with (5.14) we obtain

n+

(

r,
w(p⊗ τ)w∗

2

)

= n+

(

r, pW
(

H−1
2

)

p
)

≤ n+

(

r,
pW (I)p

ζ

)

, r > 0.

(5.15)

Otherwise, according to Proposition 4.3, the study of the resonances z(k) = k2 of H(b, νV )
near zero, is reduced to that of the characteristic values of the operator

I − TνV

(

z(k)
)

= I + ν2T (ik)

ik
.

Here, taking into account Proposition 5.1, T (ik) := w(p⊗τ)w∗

2
− ikB(k) so that T (0) =

w(p⊗τ)w∗

2
. Let Π0 be the orthogonal projection onto KerT (0). Since T ′(0)Π0 is com-

pact, then, there exists a sequence (νn)n such that I − νT ′(0)Π0 is invertible for any
ν ∈ R\{νn, n ∈ N}. Note that we can take νn = λ−1

n , where {λn, n ∈ N} is the set of
eigenvalues of the operator T ′(0)Π0.

5.1.2. Back to the proof of Theorem 2.1. Notations are those from Subsection 3.2.

(i): its follows immediately from Lemma 3.2 with z = −ik/ν2.

(ii): Theorem 2.1 (i) shows, in particular, for |k| small enough the resonances z(k) = k2

are concentrated in the sector
{

k ∈ D(0, ǫ)∗ : −ik/ν2 ∈ Cα(r, r0)
}

, for any α > 0. Hence,
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if Res
(

H(b, νV )
)

denotes the set of resonances of H(b, νV ), we have

#
{

z(k) = k2 ∈ Res
(

H(b, νV )
)

: r < |k| ≤ r0
}

= #
{

z(k) = k2 ∈ Res
(

H(b, νV )
)

: −ik/ν2 ∈ Cα(r, r0)
}

+O(1)

= N
(

Cα(r, r0)
)

+O(1), r ց 0.

(5.16)

On the other hand, we have

(5.17) n
(

[r, r0]
)

= Tr1[r,r0]

(

T (0)
)

= n+

(

r,
w(p⊗ τ)w∗

2

)

+O(1).

This together with the inequality in (5.15) imply that

n
(

[r, r0]
)

≤ n+

(

r,
pW (I)p

ζ

)

+O(1).

Then, Theorem 2.1 (ii) follows from (5.16) together with Lemma 3.4, (5.17) and the equal-
ity in (5.15).

(iii): if we have W (I) ≤ U⊥, with U⊥ satisfying the assumptions of Lemma 3.1, then

(5.18) n+

(

r,
pW (I)p

ζ

)

= Cm⊥
(ζr)−1/m⊥

(

1 + o(1)
)

, r ց 0,

where m⊥ is the constant defined by (1.13). Similarly to the inequality in (5.15), we can
show that

(5.19) n
(

[r, r0]
)

≤ Tr1[r,r0]

(

pW (I)p

ζ

)

=: ñ
(

[r, r0]
)

.

Note that due to (5.18),

(5.20) ñ
(

[r, r0]
)

= Cm⊥
(ζr)−1/m⊥

(

1 + o(1)
)

, r ց 0.

Now if φ(r) = r−γ, γ > 0, then φ
(

r(1 ± ν)
)

= r−γ(1 ± ν)−γ = φ(r)
(

1 + O(ν)
)

. If

ñ
(

[r, 1]
)

= φ(r)
(

1 + o(1)
)

with φ
(

r(1± δ)
)

= φ(r)
(

1 + o(1) +O(δ)
)

, then

(5.21) ñ
([

r(1− ν), r(1 + ν)
])

= ñ
(

[r, 1]
)(

o(1) +O(ν)
)

.

Then, Theorem 2.1 (iii) follows from (5.16) together with Lemma 3.3, (5.19), (5.20) and
(5.21).

5.2. Proof of Theorem 2.2. To obtain (2.8), it suffices to prove that if the function U
satisfies U(X⊥, x3) = U⊥(X⊥)U(x3), then the following operator inequality holds:

(5.22) K1

(

p0U⊥p0
)∗(

p0U⊥p0
)

≤ p0W
(

H−1
2

)

p0.

Indeed, if (5.22) is true, then with respect to the constant magnetic field, the quantity

n
(

[r, r0]
)

= Tr1[r,r0]

(

w(p0⊗τ)w∗

2

)

= Tr1[r,r0]

(

p0W
(

H−1
2

)

p0

)

satisfies

(5.23) n∗
(

[r, r0]
)

:= Tr1[r,r0]

[

K1

(

p0U⊥p0
)∗(

p0U⊥p0
)]

≤ n
(

[r, r0]
)

.
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Further, if we have

n∗

(

(

r

K1

)
1

2

, p0U⊥p0

)

:= n+

(

r

K1

,
(

p0U⊥p0
)∗
p0U⊥p0

)

= φ(r)
(

1 + o(1)
)

, r ց 0,

where the function φ(r) is as in Lemma 3.5, then

(5.24) n∗
(

[r, r0]
)

= φ(r)
(

1 + o(1)
)

, r ց 0.

Thus, (2.8) follows by arguing as in the proof of Theorem 2.1 (iii) above.

Now let us proof (5.22). If the magnetic field is constant, then H2 satisfies

H−1
2 ≥ H−1

2 p0 = p0 ⊗
(

− ∂2
3 + 2b0

)−1
.

This together with the definition (2.2) of W
(

H−1
2

)

imply that, if U(X⊥, x3) = U⊥(X⊥)U(x3),

then for any f ∈ L2
(

R2
)

(5.25)
〈

W
(

H−1
2

)

f, f
〉

≥ K1

〈

U⊥p0U⊥f, f
〉

.

This means that we have the operator inequality

W
(

H−1
2

)

≥ K1U⊥p0U⊥.

Thus,

p0W
(

H−1
2

)

p0 ≥ K1

(

p0U⊥p0
)∗(

p0U⊥p0
)

,

which is exactly (5.22). This concludes the proof of Theorem 2.2.
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