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We consider the perturbed operator H(b, V ) := H(b, 0) + V , where H(b, 0) is the 3d Hamiltonian of Pauli with non-constant magnetic field, and V is a non-definite sign electric potential decaying exponentially with respect to the variable along the magnetic field. We prove that the only resonances of H(b, V ) near the low ground state zero of H(b, 0) are its eigenvalues and are concentrated in the semi axis (-∞, 0). Further, we establish new asymptotic expansions, upper and lower bounds on their number near zero.

Introduction

In this article, we consider a three-dimensional Pauli operator H(b, V ) = H(b, 0) + V acting in L 2 (R 3 ) := L 2 (R 3 , C 2 ). Its describes a quantum non-relativistic spin- 1 2 particle, subject to an electric potential V and a non-constant magnetic field B : R 3 → R 3 of constant direction. With no loss of generality, we may assume that the magnetic field has the form (1.1) B(x 1 , x 2 , x 3 ) = 0, 0, b(x 1 , x 2 ) .

Throughout this paper, b : R 2 → R will be assumed to be an admissible magnetic field. That is, there exists a constant b 0 > 0 satisfying b(x 1 , x 2 ) = b 0 + b(x 1 , x 2 ), where b is a function such that the Poisson equation

(1.2) ∆ φ = b, ∆ := ∂ 2 1 + ∂ 2 2 , admits a solution φ ∈ C 2 (R 2 ) verifying sup (x 1 ,x 2 )∈R 2 |D α φ(x 1 , x 2 )| < ∞, α ∈ N 2 , |α| ≤ 2,
we refer for instance to [25, section 2.1] for more details on admissible magnetic fields . Notice that b = 0 coincides with the constant magnetic field case.

Let A = (A 1 , A 2 , A 3 ) : R 3 → R 3 be a magnetic potential generating the magnetic field B. That is,

(1.3) B(X) = curl A(X), X = (X ⊥ , x 3 ) ∈ R 3 , X ⊥ = (x 1 , x 2 ) ∈ R 2 .
The self-adjoint unperturbed Pauli operator H(b, 0) is defined originally on C ∞ 0 (R 3 , C 2 ) by (1.4) H(b, 0) := (-i∇ -A) 2 b 0 0 (-i∇ -A) 2 + b , and then closed in L 2 (R 3 ). Since b is independent of x 3 , then with no loss of generality, we may assume that A j , j = 1, 2, are independent of x By choosing A 1 = -∂ 2 ϕ and A 2 = ∂ 1 ϕ, the operator H(b, 0) can be rewritten in

L 2 (R 3 ) = L 2 (R 2 ) ⊗ L 2 (R) as (1.7) H(b, 0) = H 1 (b) ⊗ 1 + 1 ⊗ -∂ 2 3 0 0 H 2 (b) ⊗ 1 + 1 ⊗ -∂ 2 3 =: H 1 (b) 0 0 H 2 (b) ,
where -∂ 2 3 is originally defined on C ∞ 0 (R, C). From [24, Proposition 1.1], we know that the spectra sp (H j ) of H j , j = 1, 2, satisfy the following properties:

sp (H 1 ) ⊆ {0} ∪ [ζ, +∞) with 0 an eigenvalue of infinite multiplicity, sp (H 2 ) ⊆ [ζ, +∞), (1.8) 
where (1.9) ζ := 2b 0 e -2osc φ > 0,

with osc φ := sup X ⊥ ∈R 2 φ(X ⊥ ) -inf X ⊥ ∈R 2 φ(X ⊥ ).
Since the spectrum of the operator -∂ Remark. It is well known see e.g. [START_REF] Dimassi | Spectral asymptotics for quantum Hamiltonians in strong magnetic fields[END_REF] in the constant magnetic field case, the spectrum of H 1 consists of the Landau levels 2b 0 N. Further, the multiplicity of each eigenvalue 2b 0 q, q ∈ N, is infinite. In particular, this implies that the spectrum of H 2 consists of the Landau levels 2b 0 N * . Further, ζ = 2b 0 .

On the domain of the operator H(b, 0), we introduce the perturbed operator

(1.10) H(b, V ) = H(b, 0) + V,
where we identify V with the multiplication operator by the function V .

In [START_REF] Sambou | Résonances près de seuils d'opérateurs magnétiques de Pauli et de Dirac[END_REF], we investigated the resonances (see Definition 4.1 below) of the operator H(b, V ) near zero. We required V ≡ {V jk } 1≤j,k≤2 to be a hermitian matrix-valued electric potential satisfying

(1.11) |V jk (X)| ≤ C X ⊥ -m ⊥ e -2δ x 3 , m ⊥ > 0, δ > 0,
where The aim of this paper is to study the same problem by considering the class of anti-diagonal matrix-valued electric potentials

u := 1 + |u| 2 , u ∈ R d , d ≥ 1. For V of
(1.12) V (X) := 0 U (X) U(X) 0 , X ∈ R 3 , U(X) ∈ C,
where the function U satisfies the estimate

(1.13) |U(X)| ≤ C X ⊥ -m ⊥ e -2δ x 3 , m ⊥ > 0, δ > 0,
with C > 0 a constant.

Remark. Notice that potentials V satisfying (1.12) are of non-definite sign. Indeed, its eigenvalues are ±|U(X)|.

Novelty in this paper is that we prove the only resonances of H(b, V ) near zero are its eigenvalues. Further, they are localized in the semi axis (-∞, 0). We give new estimates on the number of negative eigenvalues H(b, V ) near zero. In particular, they show that the behaviour of magnetic eigenvalues for unsigned perturbations is different from that for signed perturbations. The crucial tool is that we exploit the form (1.12) of V in such a way we reduce the analysis of the resonances of H(b, V ) near z = 0 to that of the semi-effective effective Hamiltonian H 1 -U H 2z -1 U (see Section 4).

The paper is organized in the following manner. Our main results (Theorems 2.1 and 2.2) are stated in Section 2. In Section 3, we recall auxiliary results on Toeplitz operators and characteristic values of meromorphic operator-valued functions. In Section 4, we reduce the analysis of the resonances near zero to a characteristic value problem. Section 5 is devoted to the proofs of Theorems 2.1 and 2.2.

Statement of the main results

In order to formulate our main results, some notations are needed. For T a linear compact self-adjoint operator in a Hilbert space, we denote (2.1) n + (s, T ) := rank P (s,∞) (T ), s > 0, where P (s,∞) (T ) is the orthogonal projection of T in the interval (s, ∞). The set of negative eigenvalues of the operator H(b, V ) is denoted sp disc H(b, V ) , namely its discrete spectrum. The orthogonal projection onto Ker H 1 (b) defined by (1.6) is denoted p := p(b). The corresponding orthogonal projection in the constant magnetic field case will be denoted

p 0 := p(b 0 ).
For a bounded operator B ∈ L L 2 (R 3 ) , we define on L 2 (R 2 ) the operator W (B) by

(2.2) W (B)f (X ⊥ ) := 1 2 R U (X ⊥ , x 3 )B(Uf )(X ⊥ , x 3 )dx 3 , X ⊥ ∈ R 2 .
Clearly, if I denotes the identity on L 2 (R 3 ), then W (I) is the multiplication operator by the function

(2.3) X ⊥ -→ 1 2 R |U| 2 (X ⊥ , x 3 )dx 3 .
The function (2.3) will be denoted W (I) again. Let H 2 be the operator defined by (1.7).

If U satisfies (1.13), then [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Fields[END_REF]Lemma 2.4] implies that the positive self-adjoint operators pW (I)p and pW H -1

2 p are compact on L 2 (R 2 ).
We are thus led to our first main result, where the resonances are defined in Definition 4.1 below.

Theorem 2.1. Assume that (1.12) and (1.13) hold for V and U respectively. Then, there exists a discrete set E ⊂ R * such that for any ν ∈ R * \ E, the operator H(b, νV ) has the following properties: (i) Localization: near zero, the resonances are its negative eigenvalues.

(ii) Asymptotic: suppose that n + r, pW H -1 2 p → +∞, r ց 0. Then, there exists a sequence (r ℓ ) ℓ tending to 0 such that

(2.4) #sp disc H(b, νV ) ∩ -∞, -r 2 ℓ = n + r ℓ , pW H -1 2 p 1 + o(1) , ℓ -→ ∞.
(iii) Upper-bound: let I be the identity on L 2 (R 3 ). If W (I) ≤ U ⊥ with U ⊥ satisfying the assumptions of Lemma 3.1, then

(2.5) #sp disc H(b, νV ) ∩ -∞, -r 2 ≤ n + r, 1 ζ pW (I)p 1 + o(1) , r ց 0.
Remarks. Notice that in virtue of Lemma 3.1, the right hand side of (2.5) implies that the number of negative eigenvalues of H(b, νV ) near zero is of order O r -1/m ⊥ , r ց 0. This order is better than the order O r -2/m ⊥ obtained in [START_REF] Sambou | Résonances près de seuils d'opérateurs magnétiques de Pauli et de Dirac[END_REF] for general perturbations V satisfying (1.11). Otherwise, if the function U ⊥ is compactly supported, then (2.5) and [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Fields[END_REF]Lemma 3.4] imply that the number of negative eigenvalues of H(b, νV ) near zero is of order O (ln | ln r|) -1 | ln r| , r ց 0, which is similar to that from [START_REF] Sambou | Résonances près de seuils d'opérateurs magnétiques de Pauli et de Dirac[END_REF].

In the constant magnetic field case B = (0, 0, b 0 ), we obtain, in additional, a lower bound of the number of negative eigenvalues near zero.
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Resonances near 0 with respect to the variable k: For r ≪ 1, the only resonances z(k) = k 2 of H(b, 0)+V near zero are its negative eigenvalues and they satisfy k ∈ i]0, +∞).

Before to state our result, some additional notations are needed. If the function U satisfies

U(X ⊥ , x 3 ) = U ⊥ (X ⊥ ) U(x 3 )
, where U ⊥ and U are not necessarily real functions, we define (2.6)

K 1 := (-∂ 2 3 + 2b 0 ) -1 U, U 2 , and (2.7 
)

n * r K 1 1 2 , p 0 U ⊥ p 0 := n + r K 1 , p 0 U ⊥ p 0 * p 0 U ⊥ p 0 .
Theorem 2.2 (Lower bound). Let the magnetic field B be constant. Assume that (1.12) and (1.13) hold for V and U respectively. Then, there exists a discrete set E ⊂ R * such that for any ν ∈ R * \ E, the following holds:

Suppose that U(X ⊥ , x 3 ) = U ⊥ (X ⊥ ) U(x 3 ). If we have n * r K 1 1 2 , p 0 U ⊥ p 0 = φ(r) 1 + o(1) , r ց 0,
where the function φ(r) is as in Lemma 3.5, then

(2.8) #sp disc H(b, νV ) ∩ -∞, -r 2 ≥ n * r K 1 1 2 , p 0 U ⊥ p 0 1 + o(1) , r ց 0.
In particular, if U ⊥ ≥ 0 and satisfies the assumptions of Lemma 3.1, then

(2.9) #sp disc H(b, νV ) ∩ -∞, -r 2 ≥ n + r K 1 1 2 , p 0 U ⊥ p 0 1 + o(1) , r ց 0.
Remarks. Notice that estimates (2.9) and (2.5) imply, in the constant magnetic field case, the number of negative eigenvalues of H(b, νV ) near 0 is such that

C m ⊥ K 1/m ⊥ 1 r -1/m ⊥ 1 + o(1) ≤ #sp disc H(b, νV ) ∩ -∞, -r 2 ≤ C m ⊥ K 1/m ⊥ 2 r -1/m ⊥ 1 + o(1) , r ց 0, (2.10) 
where C m ⊥ is the constant defined in Lemma 3.1, and

(2.11)

K 2 := (4b 0 ) -1 R |U(x 3 )| 2 dx 3 .
It is easy to check that K 1 < K 2 . On the other hand, the lower bound in (2.10) implies that the negative eigenvalues of H(b, νV ) accumulate to zero. One can compare (2.10) with the results of [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Fields[END_REF] on the asymptotic of the counting function of the eigenvalues of H(b, V ) near zero, when V ≡ {V jk } 1≤j,k≤2 has a fixed sign. Indeed, in [25, Corollary 3.6], the author shows that if the coefficients of the potential V ≥ 0 satisfy

|V jk (X)| = O X -ν , 1 ≤ j, k ≤ 2,
for some ν > 3, then the behaviour near zero of the counting function of the negative eigenvalues of

H(b, V ) is of order O r -2/(ν-1) 1 + o(1) , r ց 0.
In particular, this shows that the behaviour of eigenvalues for unsigned perturbations is different from that for signed perturbations.

Auxiliary results

3.1. Some results on Berezin-Toeplitz operators by Raikov [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Fields[END_REF], [START_REF] Raikov | Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips[END_REF]. Consider U ⊥ ∈ L ∞ (R 2 ). The asymptotic eigenvalues of the Berezin-Toeplitz operator pUp is the subject of the next lemma. An integrated density of states (IDS) for the operator

H 1 = H 1 (b) is defined as follows. For X ⊥ ∈ R 2 , let χ T,X ⊥ be the characteristic function of the square X ⊥ + -T 2 , T 2 
2 with T > 0. Denote P I (H 1 ) the spectral projection of H 1 in the interval I ⊂ R. A non-increasing function g : R -→ [0, ∞) is called an IDS for H 1 if it satisfies for any X ⊥ ∈ R 2 g(t) = lim T →∞ T -2 Tr χ T,X ⊥ P (-∞,t) (H 1 )χ T,X ⊥ ,
for each point t of continuity of g see e.g. [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Fields[END_REF] . If the magnetic field is constant, then there exists naturally an IDS for the operator H 1 given by

g(t) = b 0 2π ∞ q=0 χ R + (t -2b 0 q), t ∈ R, where χ R + is the characteristic function of R + . Lemma 3.1. [22, Theorem 2.6] Consider U ⊥ ∈ C 1 (R 2 ) such that 0 ≤ U ⊥ (X ⊥ ) ≤ C 1 X ⊥ -α , |∇U ⊥ (X ⊥ )| ≤ C 1 X ⊥ -α-1 , X ⊥ ∈ R 2 ,
where α > 0 and C 1 > 0. Assume that

• U ⊥ (X ⊥ ) = u 0 (X ⊥ /|X ⊥ |)|X ⊥ | -α 1 + o(1) as |X ⊥ | → ∞
, where u 0 is a continuous function on S 1 which does not vanish identically, • b is an admissible magnetic field,

• there exists an IDS g for the operator H 1 (b).

Then we have n + (s, pU ⊥ p) = C α s -2/α 1 + o(1) , s ց 0,
where 

(3.1) C α := b 0 4π S 1 u 0 (t)
Ind γ A := 1 2iπ Tr γ A ′ (z)A(z) -1 dz = 1 2iπ Tr γ A(z) -1 A ′ (z)dz.
Here, the operator A does not vanish on the integration contour γ. Let D be a domain of C containing 0. Consider a holomorphic operator-valued function T : D -→ S ∞ (H ).

For a domain Ω ⊂ D \ {0}, a complex number z ∈ Ω is said to be a characteristic value of z → T (z) := I -T (z) z if the operator T (z) is not invertible. The multiplicity of a characteristic value z 0 is defined by

(3.3) mult(z 0 ) := Ind γ I -T (•) ,
where γ is a small contour positively oriented, containing z 0 as the unique point z satisfying T (z) is not invertible.

Define

Z(Ω) := z ∈ Ω : I - T (z) z is not invertible .
If there exists z 0 ∈ Ω such that I -T (z 0 ) z 0 is not invertible, then Z(Ω) is a discrete set see e. (ii) Moreover, if the operator T (0) has a definite sign (±T (0) ≥ 0), then the characteristic values z near 0 satisfy ±Re z ≥ 0, respectively.

(iii) If T (0) is of finite rank, then there are no characteristic values in a pointed neighbourhood of 0. Moreover, if the operator T (0)1 [0,+∞) (±T (0)) is of finite rank, then there are no characteristic values in a neighbourhood of 0 intersected with {±Re z > 0}, respectively. Lemma 3.3. [7, Theorem 3.7] Let T be as above and I -T ′ (0)Π 0 be invertible. For α > 0 fixed, let C α (r, 1) ⊂ D be defined as in (3.4). Then, for all δ > 0 small enough, there exists s(δ) > 0 such that, for all 0 < s < s(δ), we have

N C α (r, 1) = n [r, 1] 1 + O δ| ln δ| 2 + O | ln δ| 2 n [r(1 -δ), r(1 + δ)] + O δ (1), (3.5)
where the O's are uniform with respect to s, δ but the O δ may depend on δ. Lemma 3.4. [7, Corollary 3.9] Let the assumptions of Lemma 3.3 hold true. Assume that there exists γ > 0 such that n([r, 1]) = O(r -γ ), r ց 0, and that n([r, 1]) grows unboundedly as r ց 0. Then there exists a positive sequence (r k ) k tending to 0 such that 

(3.6) N (C α (r k , 1)) = n([r k , 1])(1 + o(1)), k → ∞.

Resonances

From here to the end, we assume that V and U satisfy (1.12) and (1.13) respectively.

4.1.

A preliminary property. We establish the main property allowing to reduce the study of the resonances of H(b, V ) near z = 0 to that of the semi-effective Hamiltonian

H 1 -U H 2 -z -1 U.
Let z ∈ C be small enough. We have

H(b, V ) -z 1 0 -(H 2 -z) -1 U (H 2 -z) -1 = H 1 -z -U(H 2 -z) -1 U U (H 2 -z) -1 0 1 . (4.1)
Therefore,

(4.2) H(b, V ) -z is invertible ⇔ H 1 -z -U(H 2 -z) -1 U is invertible.
Further,

H(b, V ) -z -1 = 1 0 -(H 2 -z) -1 U (H 2 -z) -1 × H 1 -z -U (H 2 -z) -1 U -1 -H 1 -z -U (H 2 -z) -1 U -1 U (H 2 -z) -1 0 1 . (4.3)
Hence, for z small enough, property (4.2) allows to reduce the non-invertibility of the operator Let R(z) denote the resolvent of the operator H(b, V ). Then, the operator valued-function

H(b, V ) -z to that of H 1 -z -U (H 2 -z) -1 U.
k -→ R z(k) : e -δ x 3 L 2 (R 3 ) -→ e δ x 3 L 2 (R 3 ) ,
admits a meromorphic extension from C + 1/2 ∩ D(0, ǫ) * to D(0, ǫ) * . We shall denote this extension R(z) again. Definition 4.1. We define the resonances of H(b, V ) near zero as the poles of the meromorphic extension R(z).

Set R(z)

:= H 1 -z -U (H 2 -z) -1 U -1 and R 2 (z) := (H 2 -z) -1 . From (4.3) we deduce that e -δ x 3 R(z)e -δ x 3 = e -δ x 3 R(z)e -δ x 3 -e -δ x 3 R(z)U R 2 (z)e -δ x 3 -e -δ x 3 R 2 (z)U R(z)e -δ x 3 e -δ x 3 R 2 (z)U R(z)U R 2 (z)e -δ x 3 + e -δ x 3 R 2 (z)e -δ x 3 . (4.6) 
This together with Proposition 4.1 and assumption (1.13) show that the poles of R(z) coincide with those of R(z). Then, near z = 0, the investigation of the resonances of H(b, V ) is reduced to that of the semi-effective Hamiltonian H 1 -U(H 2z) -1 U.

4.3.

Study of the semi-effective problem. With the help of the decomposition

(4.7) (H 2 -z) -1 = H -1 2 1 -zH -1 2 -1 = H -1 2 k≥0 z k H -k 2 ,
z being sufficiently small, we obtain

(4.8) (H 2 -z) -1 = H -1/2 2 H -1/2 2 + H -1/2 2 M(z) , where (4.9) M(z 
) := z k≥0 z k H -k-1 2 .
So, ( 

U (H 2 -z) -1 U = U H -1/2 2 H -1/2 2 U + H -1/2 2 M(z)U . 4.8) implies that (4.10) 

U.

Thus, putting together (4.10) and (4.11) we obtain (4.12)

U (H 2 -z) -1 U = w * 1 + M(z) w.
We therefore have proved the following Lemma 4.1. For z small enough, the operator U(H 2z) -1 U admits the representation

(4.13) U (H 2 -z) -1 U = w * 1 + M(z) w.
Further, the operator-valued function z -→ M(z) is analytic near z = 0.

Let R 1 (z) denote the resolvent of the operator H 1 . Under the notations of Lemma 4.1, the following lemma holds: Lemma 4.2. For z small enough, the operator valued-function

D(0, ǫ) * ∋ k -→ T V z(k) := 1 + M z(k) wR 1 z(k) w * , is analytic with values in S ∞ (L 2 (R 3 )).
Proof. The analyticity of T V z(k) holds since M z(k) and R 1 z(k) are well defined and analytic for k ∈ D(0, ǫ) * .

The compactness of T V z(k) follows from that of UR 1 z(k) U, using the diamagnetic inequality and [START_REF] Simon | Trace ideals and their applications[END_REF]Theorem 2.13].

We have the following characterization of the resonances.

Proposition 4.2. For k near zero, the following assertions are equivalent:

(i) z(k) = k 2 is a resonance of H(b, V ), (ii) 1 is an eigenvalue of T V z(k) .
Proof. The equivalence follows directly from the identity So, the multiplicity of a resonance z := z(k) is defined by

(4.15) mult(z) := Ind γ I -T V z(•) ,
where γ is a small positively oriented contour containing k as the unique point satisfying

z(k) is a resonance of H(b, V ) see (3.2) .
Using the terminology of characteristic value recalled in Subsection 3.2, Proposition 4.2 can be formulated as follows:

Proposition 4.3. For k near zero, the following assertions are equivalent.

(i) z = z(k) is a resonance of H(b, V ), (ii) k is a characteristic value of I -T V z(•) . Further, according to (4.15), the multiplicity of the resonance z(k) coincides with this of the characteristic value k.

Proof of the main results

First, let us introduce some tools. For p = p(b), set q := Ip. Define on L 2 (R 3 ) the projections P := p ⊗ 1 and Q := q ⊗ 1. If z lies in the resolvent set the operator H 1 , we have

(H 1 -z) -1 = (H 1 -z) -1 P + (H 1 -z) -1 Q = p ⊗ R(z) + (H 1 -z) -1 Q, (5.1)
where the resolvent R(z) := -∂ 2 3z -1 admits the integral kernel

(5.2) N z (x 3 -x ′ 3 ) = ie i √ z|x 3 -x ′ 3 | /(2 √ z), Im √ z > 0.
5.1. Proof of Theorem 2.1.

Preliminary results

. Firstly, we need to split the operator T V z(k) of Lemma 4.2 with the help of (5.1). We get

T V z(k) = wp ⊗ R(k 2 )w * + M z(k) wp ⊗ R(k 2 )w * + 1 + M z(k) wR 1 z(k) Qw * . (5.3)
The operators M z(k) and R 1 z(k) Q are analytic near zero. Then, it is not difficult to see that the third term of the right hand side of (5.3) is holomorphic near zero, with values in S ∞ (L 2 (R 3 )). By (5.2), the integral kernel of N(k) := e -δ x 3 R(k 2 )e -δ x 3 is given by

(5.4) e -δ x 3 ie ik|x 3 -x ′ 3 | 2k e -δ x ′ 3 .
This together with (4.9) imply that the second term of the right hand side of (5.3) is analytic in a vicinity of zero, with values in S ∞ (L 2 (R 3 )).

Now let us focus on the first term wp ⊗ R(k 2 )w * . According to (5.4), we can write (5.5)

N(k) = 1 k a + b(k),
where a : L 2 (R) -→ L 2 (R) is the rank-one operator defined by 

(5.6) a(u) := i 2 u, e -δ • e -δ x
i e ik|x 3 -x ′ 3 | -1 2k e -δ x ′ 3 .
Thus,

(5.8) wp ⊗ R(k 2 )w * = i k × 1 2 w p ⊗ τ w * + w p ⊗ s(k) w * ,
where τ and s(k) are operators acting from e -δ x 3 L 2 (R) to e δ x 3 L 2 (R), with integral kernels respectively given by 1 and

(5.9)

1 -e ik|x 3 -x ′ 3 | 2ik .
We therefore have proved the following Proposition 5.1. Let k ∈ D(0, ǫ) * . Then,

(5.10) T V z(k) = i w(p ⊗ τ )w * 2k + B(k), where B(k) := w p ⊗ s(k) w * + M z(k) wp ⊗ R(k 2 )w * + 1 + M z(k) wR 1 z(k) Qw * , (5.11) is holomorphic in D(0, ǫ) := D(0, ǫ) * ∪ {0}, with values in S ∞ (L 2 (R 3 )).
Notice that w(p ⊗ τ )w * is a positive self-adjoint compact operator. Indeed, if we define e ± as the multiplication operators by the functions e ± : x 3 -→ e ±δ x 3 , it is easy to check that Here, c : L 2 (R) -→ C is defined by c(f ) := f, e -, so that c * : C -→ L 2 (R) is given by c * (λ) = λe -. Now, with the help of (5.12), we deduce that . Let Π 0 be the orthogonal projection onto Ker T (0). Since T ′ (0)Π 0 is compact, then, there exists a sequence (ν n ) n such that I -νT ′ (0)Π 0 is invertible for any ν ∈ R\{ν n , n ∈ N}. Note that we can take ν n = λ -1 n , where {λ n , n ∈ N} is the set of eigenvalues of the operator T ′ (0)Π 0 . Thus, (2.8) follows by arguing as in the proof of Theorem 2.1 (iii) above. Now let us proof (5.22). If the magnetic field is constant, then H 2 satisfies

H -1 2 ≥ H -1 2 p 0 = p 0 ⊗ -∂ 2 3 + 2b 0 -1 .
This together with the definition (2.2) of W H -1 2 imply that, if U(X ⊥ , x 3 ) = U ⊥ (X ⊥ ) U(x 3 ), then for any f ∈ L 2 R 2 (5.25)

W H -1 2 f, f ≥ K 1 U ⊥ p 0 U ⊥ f, f .
This means that we have the operator inequality

W H -1 2 ≥ K 1 U ⊥ p 0 U ⊥ .
Thus,

p 0 W H -1 2 p 0 ≥ K 1 p 0 U ⊥ p 0 * p 0 U ⊥ p 0 ,
which is exactly (5.22). This concludes the proof of Theorem 2.2.

3 and A 3 = 0 .

 30 Set ϕ 0 (X ⊥ ) := b 0 |X ⊥ | 2 /4 and ϕ := ϕ 0 + φ, so that we have ∆ϕ = b. Introduce the operators (1.5) a = a(b) := -2ie -ϕ ∂ ∂ z e ϕ and a * = a * (b) := -2ie ϕ ∂ ∂z e -ϕ , originally defined on C ∞ 0 (R 2 , C), where z := x 1 +ix 2 and z := x 1 -ix 2 . Define the operators (1.6) H 1 (b) := a * a and H 2 (b) := aa * .

  g. [15, proposition 4.1.4] . So we define N (Ω) := #Z(Ω). Assume that T (0) is self-adjoint. Introduce Ω ⋐ C \ {0} and the sector (3.4) C α (a, b) := {x + iy ∈ C : a ≤ x ≤ b, -αx ≤ y ≤ αx}, with a > 0 tending to 0 and b > 0. Let n(Λ) := Tr 1 Λ (T (0)) be the number of eigenvalues of the operator T (0) lying in the interval Λ ⊂ R * , and counted with their multiplicity. Denoted Π 0 the orthogonal projection onto Ker T (0). Lemma 3.2. [7, Corollary 3.4] Let T be as above and I -T ′ (0)Π 0 be invertible. Assume that Ω ⋐ C \ {0} is a bounded domain with smooth boundary ∂Ω which is transverse to the real axis at each point of ∂Ω ∩ R. (i) If Ω∩R = ∅, then N (sΩ) = 0 for s small enough. This implies that the characteristic values z ∈ Z(D) near 0 satisfy |Im z| = o(|z|).

Lemma 3 . 5 . [ 7 ,

 357 Corollary 3.11] Let the assumptions of Lemma 3.3 hold true. Suppose that n [r, 1] = Φ(r) 1 + o(1) , r ց 0, with Φ(r) = r -γ , or Φ(r) = | ln r| γ , or Φ(r) = ln | ln r| -1 | ln r|, for some γ > 0. Then (3.7) N C α (r, 1) = Φ(r) 1 + o(1) , r ց 0.

4. 2 .

 2 Reduction to a semi-effective problem. Consider z lying in the upper half-plane C + . Make the change of variables (4.4) z := z(k) = k 2 for k ∈ C + 1/2 := k ∈ C + : k 2 ∈ C + . Introduce the punctured disk (4.5) D(0, ǫ) * := k ∈ C : 0 < |k| < ǫ , ǫ < min δ, ζ , where the constants δ and ζ are respectively defined by (1.13) and (1.9). Proposition 4.1. [29, Proposition 4.1]

(4. 14 ) I - 1 +

 141 M(z) wR 1 (z)w * I + 1 + M(z) wR(z)w * = I,and the fact that the poles of R(z) coincide with those of R(z).

3 ,

 3 and b(k) is the Hilbert-Schmidt operator for k ∈ D(0, ǫ) * with integral kernel (5.7) e -δ x 3

( 5 .

 5 12) w(p ⊗ τ )w * = we + (p ⊗ c * c)e + w * = (p ⊗ c)e + w * * (p ⊗ c)e + w * .

(5. 15 ) 2 -

 152 Otherwise, according to Proposition 4.3, the study of the resonances z(k) = k 2 of H(b, νV ) near zero, is reduced to that of the characteristic values of the operatorI -T νV z(k) = I + ν 2 T (ik) ik .Here, taking into account Proposition 5.1, T (ik) := w(p⊗τ )w * ikB(k) so that T (0) = w(p⊗τ )w * 2

5. 1 . 2 .Further 2 ,

 122 Back to the proof of Theorem 2.1. Notations are those from Subsection 3.2. (i): its follows immediately from Lemma 3.2 with z = -ik/ν 2 . (ii): Theorem 2.1 (i) shows, in particular, for |k| small enough the resonances z(k) = k 2 are concentrated in the sector k ∈ D(0, ǫ) * : -ik/ν 2 ∈ C α (r, r 0 ) , for any α > 0. Hence, p 0 U ⊥ p 0 := n + r K 1 , p 0 U ⊥ p 0 * p 0 U ⊥ p 0 = φ(r) 1 + o(1) , r ց 0, where the function φ(r) is as in Lemma 3.5, then (5.24) n * [r, r 0 ] = φ(r) 1 + o(1) , r ց 0.

  definite sign, we obtained in[START_REF] Sambou | Résonances près de seuils d'opérateurs magnétiques de Pauli et de Dirac[END_REF] Theorem 2.2] an asymptotic expansion of the number of resonances near zero. Further, we showed that they are concentrated in some sector. For V of non-definite sign, we obtained in[START_REF] Sambou | Résonances près de seuils d'opérateurs magnétiques de Pauli et de Dirac[END_REF] Theorem 2.1] an upper bound of the number of resonances near zero without their localization.

  2/α dt.

3.2. Results on characteristic values by

. Let H be a separable Hilbert space. We denote S ∞ (H ) (resp. GL(H )) the set of compact (resp. invertible) linear operators acting in H .

Let D ⊆ C be a connected open set, Z ⊂ D be a discrete and closed subset, A : D\Z -→ GL(H ) be a finite meromorphic operator-valued function see e.g. [7, Definition 2.1] and Fredholm at each point of Z. The index of A, with respect to a positive oriented contour γ, is defined by

(3.2) 

  where for B ∈ L L 2 (R 3 ) , W (B) is the operator defined by (2.2). Then, by combining (5.13) with (5.14) we obtain

	(5.13)	n + r,	w(p ⊗ τ )w * 2	= n + r,	(p ⊗ c)e + w * we + (p ⊗ c * ) 2	, r > 0,
	where the quantity n + (r, •) is defined by (2.1). By the definition (4.11) of w, we have w * w = UH -1 2 U. This together with sp(H 2 ) ⊆ [ζ, +∞) imply that
	(5.14)		(p ⊗ c)e + w * we + (p ⊗ c * ) 2	= pW H -1 2	p ≤	pW (I)p ζ	,

n + r, w(p ⊗ τ )w * 2 = n + r, pW H -1 2 p ≤ n + r, pW (I)p ζ , r > 0.

This research is partially supported by the Chilean Program Núcleo Milenio de Física Matemática RC120002. I am grateful to J. F. Bony for suggesting me this study and the exploitation of the reduction (4.2).

if Res H(b, νV ) denotes the set of resonances of H(b, νV ), we have

(5.16)

On the other hand, we have (5.17)

This together with the inequality in (5.15) imply that

Then, Theorem 2.1 (ii) follows from (5.16) together with Lemma 3.4, (5.17) and the equality in (5.15).

(iii): if we have W (I) ≤ U ⊥ , with U ⊥ satisfying the assumptions of Lemma 3.1, then

where m ⊥ is the constant defined by (1.13). Similarly to the inequality in (5.15), we can show that

Note that due to (5.18),

(5.20)

Then, Theorem 2.1 (iii) follows from (5.16) together with Lemma 3.3, (

.

5.2.

Proof of Theorem 2.2. To obtain (2.8), it suffices to prove that if the function U satisfies U(X ⊥ , x 3 ) = U ⊥ (X ⊥ ) U(x 3 ), then the following operator inequality holds:

(5.22)