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Quantitative bounds on the discrete spectrum of non self-adjoint quantum magnetic Hamiltonians

Diomba Sambou

Introduction and an abstract result

Recently, a number of results on the spectral properties of the non selfadjoint perturbations of operators of mathematical physics were obtained. We quote the articles by Frank-Laptev-Lieb-Seiringer [START_REF] Frank | Lieb-Thirring inequalities for Schrödinger operators with complex-valued potentials[END_REF], Borichev-Golinskii-Kupin [START_REF] Borichev | A Blaschke-type condition and its application to complex Jacobi matrices[END_REF], Demuth-Katriel-Hansmann [START_REF] Demuth | On the discrete spectrum of nonseladjoint operators[END_REF], Hansmann [START_REF] Hansmann | Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators[END_REF], Golinskii-Kupin [START_REF] Golinskii | On discrete spectrum of complex perturbations of finite band Schrödinger operators[END_REF], Pushnitskii-Raikov-Villegas-Blas [START_REF] Pushnitski | Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian[END_REF] turned to the study of the discrete spectrum of these perturbations. The purpose of this paper is to announce and to give a brief overview of new results in this direction. The main point is that the first part of this article describes a general construction that applies to a large class of operators containing magnetic Schrödinger, Pauli and Dirac operators of full rank with constant magnetic field, hence generalizing the methods of a recent paper by the author [START_REF] Sambou | Lieb-Thirring type inequalities for non self-adjoint perturbations of magnetic Schrödinger operators[END_REF].

Let H 0 be an unbounded self-adjoint operator defined on a dense subset of L 2 (R m ), m ≥ 1. Suppose that the spectrum σ(H 0 ) of the operator is given by an infinite sequence of (real) eigenvalues of infinite multiplicity, i.e.

(1.1)

σ(H 0 ) = σ ess (H 0 ) = ∞ j=0 Λ j , where Λ 0 ≥ 0, Λ j+1 > Λ j , |Λ j+1 -Λ j | ≤ δ, δ > 0 constant.
Concrete examples of operators satisfying these assumptions are Schrödinger operators acting on L 2 R 2d , C , d ≥ 1, and Pauli operators on L 2 R 2d , C 2 with constant magnetic field of strength b > 0, see Sections 3 and 4, respectively. We can also consider the case of Dirac operators of full rank see [START_REF] Melgaard | Rozenblum Eigenvalue asymptotics for weakly perturbed Dirac and Schröinger operators with constant magnetic fields of full rank[END_REF] . But, for simplicity, we focus on the two first examples.

On the domain of H 0 , we consider a (non self-adjoint) relatively compact perturbation V of H 0 , and the perturbed operator

(1.2) H = H 0 + V.
This means that dom(H 0 ) ⊂ dom(V ), and V (H 0λ) -1 is compact for λ ∈ ρ(H 0 ), the resolvent set of the operator H 0 . It is well known see e.g. [12, Chapter VI] that under this condition on V , there exists µ < 0 such that

(1.3) σ(H ) ⊂ λ ∈ C : Reλ ≥ µ .
Furthermore, we impose an additional restriction on V allowing us to control the numerical range

(1.4) N (H ) := H f, f : f ∈ dom (H ), ||f || L 2 (R m ) = 1
of the operator H . Namely,

(1.5) σ(H ) ⊂ N (H ) ⊂ λ ∈ C : Re λ ≥ µ 1
for some µ 1 < 0. For convenience, we put

(1.6) µ 0 = µ 1 -1.
Recall that a compact operator L defined on a separable Hilbert space belongs to the Schatten-von Neumann class S p , p ≥ 1, if L Sp = (Tr |L| p ) 1/p is finite. We also require that

V (H 0 -λ) -1 ∈ S p ,
for some p ≥ 1, which is a stronger condition just saying that the operator

V (H 0 -λ) -1 is compact.
Since V is a relatively compact perturbation with respect to the selfadjoint operator H 0 , then the Weyl criterion on the invariance of the essential spectrum implies that σ ess (H ) = σ ess (H 0 ) = ∪ ∞ j=0 {Λ j }. Still, the operator H can have a (complex) discrete spectrum σ disc (H ) accumulating to ∪ ∞ j=0 {Λ j }, see Gohberg-Goldberg-Kaashoek [6, Theorem 2.1, p. 373], and the coming theorem gives a necessary condition on its distribution. The conclusion of the theorem is written in the form of a relation which is often called a Lieb-Thirring type inequality, see Lieb-Thirring [START_REF] Lieb | Bound for the kinetic energy of fermions which proves the stability of matter[END_REF] for original work.

Theorem 1.1. Let H 0 be a self-adjoint operator with σ(H 0 ) = ∞ j=0 Λ j as above. Consider H = H 0 + V , and for some p > 1 assume that the V satisfies

(1.7) V (H 0 -µ 0 ) -1 p Sp ≤ K 0 , with K 0 > 0 constant. Then, we have (1.8) λ∈σ disc (H ) dist λ, ∪ ∞ j=0 {Λ j } p 1 + |λ| 2p ≤ C 0 K 0 ,
where C 0 = C(p, µ 0 , Λ 0 ) is a constant depending on p, µ 0 , and Λ 0 .

The proof of this theorem (see Section 2 for more details) is essentially based on a recent theorem of Hansmann [START_REF] Hansmann | Variation of discrete spectra for non-selfadjoint perturbations of selfadjoint operators[END_REF], and a technical distortion lemma for a conformal mapping coming from complex analysis, see Lemma 2.1.

Applications of this result to magnetic Schrödinger operators on L 2 R 2d , C and magnetic Pauli operators on L 2 R 2d , C 2 are given in Theorems 3.1 and 4.1, respectively. In Golinskii-Kupin [START_REF] Golinskii | On discrete spectrum of complex perturbations of finite band Schrödinger operators[END_REF], similar results are obtained for complex perturbations of finite band Schrödinger operators.

Bound (1.8) can be rewritten in a simpler manner for various subsets of σ disc (H ). For instance, let τ > 0 be fixed. Then, for λ satisfying |λ| ≥ τ , one has

1 1 + |λ| = 1 |λ| 1 1 + |λ| -1 ≥ 1 |λ| 1 1 + τ -1
, and

(1.9)

λ ∈ σ disc (H ) |λ| ≥ τ dist λ, ∪ ∞ j=0 {Λ j } p |λ| 2p ≤ C 1 1 + 1 τ 2p K 0 . Furthermore, if (λ k ) ⊂ σ disc (H ) converges to a point of σ ess (H ) = ∪ ∞ j=0 {Λ j }, one has (1.10) k dist λ k , ∪ ∞ j=0 {Λ j } p < ∞.
This means that, a priori, the accumulation of the eigenvalues from σ disc (H ) in a neighborhood of a fixed Λ j , j ∈ N, is a monotone function of p.

Similarly, we can also obtain information on diverging sequences of eigenvalues (λ k ) ⊂ σ disc (H ). For example, if for some τ > 0 the sequence

(λ k ) is such that dist λ k , ∪ ∞ j=0 {Λ j } ≥ τ, then one has (1.11) ∞ k=1 1 |λ k | 2p < ∞.
We shall progress as follows. We give the sketch of the proof of our main abstract result (Theorem 1.1) in Section 2. We apply it to magnetic 2d-Schrödinger and 2d-Pauli operators in Sections 3 and 4 respectively. In Section 5, we treat the case of magnetic (2d + 1)-Pauli operators with constant magnetic field. Here, the essential spectrum of the operator under consideration equals R + , which is rather different from the case of the essential spectrum coinciding with the (discrete) set of "Landau levels" ∪ ∞ j=0 {Λ j } (1.1). This requires the use of methods close to those from Sambou [START_REF] Sambou | Lieb-Thirring type inequalities for non self-adjoint perturbations of magnetic Schrödinger operators[END_REF].

We adopt mathematical physics and spectral analysis notation and terminology from Reed-Simon [START_REF] Reed | Scattering Theory III, Methods of Modern Mathematical Physics[END_REF]. As for the classes of compact operators (i.e. Schatten-von Neumann ideals), we refer the reader to Simon [START_REF] Simon | Trace ideals and their applications[END_REF] and Gohberg-Goldberg-Krupnik [START_REF] Gohberg | Traces and Determinants of Linear Operators, Operator Theory[END_REF]. Constants are generic, i.e. changing from one relation to another. For a real x, [x] denotes its integer part.
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The abstract result: sketch of the proof

The following result of Hansmann see [9, Theorem 1] is the first crucial point of the proof. Let B 0 = B * 0 be a bounded self-adjoint operator acting on a separable Hilbert space, and B be a bounded operator satisfying B -B 0 ∈ S p , p > 1. Then, we have (2.1)

λ∈σ disc (B) dist λ, σ(B 0 ) p ≤ C B -B 0 p Sp ,
where the constant C is explicit and depends only on p. Note that we cannot apply (2.1) to the unbounded operators H 0 and H . To fix this, let us consider bounded the resolvents

(2.2) B 0 (µ 0 ) := (H 0 -µ 0 ) -1 and B(µ 0 ) := (H -µ 0 ) -1 ,
where µ 0 is the constant defined by (1.6). Furthermore,

(H -µ 0 ) -1 -(H 0 -µ 0 ) -1 = -(H -µ 0 ) -1 V (H 0 -µ) -1 ,
and we obtain

(2.3) B(µ 0 ) -B 0 (µ 0 ) p Sp ≤ (H -µ 0 ) -1 p V (H 0 -µ 0 ) -1 p
Sp , where ||.|| stays for the usual operator norm. By (1.5), we have

σ(H ) ⊂ N (H ) ⊂ λ ∈ C : Reλ ≥ µ 1 .
This implies that dist µ 0 , N (H ) ≥ 1, and using [2, Lemma 9.3.14] we get

(2.4) (H -µ 0 ) -1 ≤ 1 dist µ 0 , N (H ) ≤ 1.
Consequently, by (1.7), (2.3) and (2.4), we obtain

(2.5) B(µ 0 ) -B 0 (µ 0 )
p Sp ≤ K 0 , where K 0 is the constant defined in (1.7). Hence, we obtain (2.6)

z∈σ disc (B(µ 0 )) dist z, σ(B 0 (µ 0 )) p ≤ CK 0
by applying Hansmann's theorem (2.1) to the resolvents B(µ 0 ) and B 0 (µ 0 ).

Putting z = ϕ µ 0 (λ) = (λ -µ 0 ) -1 , we have (2.7) z ∈ σ disc B(µ 0 ) z ∈ σ B 0 (µ 0 ) ⇐⇒ λ ∈ σ disc (H ) λ ∈ σ(H 0 ) .
So, we come to a distortion lemma for the conformal map z = ϕ µ 0 (λ) = (λµ 0 ) -1 , which is the second important ingredient of the proof of the theorem.

Lemma 2.1. Let µ 0 be the constant defined by (1.6), and Λ j , j ∈ N, be the "Landau levels" defined by (1.1). Then, the following bound holds

(2.8) dist ϕ µ 0 (λ), ϕ µ 0 (∪ ∞ j=0 {Λ j }) ≥ C dist λ, ∪ ∞ j=0 {Λ j } 1 + |λ| 2 , λ ∈ C, where C = C(µ 0 , Λ 0 ) is a constant depending on µ 0 and Λ 0 .
The proof of the lemma goes as [25, Lemma 6.2] and is omitted. Now, combining the above lemma, estimates (2.6) and (2.7), we get

λ∈σ disc (H ) dist λ, ∪ ∞ j=0 {Λ j } p 1 + |λ| 2p ≤ C 0 K 0 ,
where C 0 = C(p, µ 0 , Λ 0 ) is a constant depending on p, µ 0 and Λ 0 . This concludes the proof of Theorem 1.1.

3.

Examples: perturbations of magnetic 2d-Schrödinger operators, d ≥ 1

Set X ⊥ := (x 1 , y 1 , . . . , x d , y d ) ∈ R 2d , d ≥ 1, and let b > 0 be a constant. We consider (3.1)

H 0 := d j=1 D x j + 1 2 by j 2 + D y j - 1 2 bx j 2 ,
the Schrödinger operator acting on L 2 R 2d := L 2 R 2d , C with constant magnetic field of strength b > 0. The self-adjoint operator H 0 is originally defined on C ∞ 0 R 2d , and then closed in L 2 R 2d . It is well known see e.g. [START_REF] Dimassi | Spectral asymptotics for quantum Hamiltonians in strong magnetic fields[END_REF] that its spectrum consists of the increasing sequence of Landau levels

(3.2) Λ j = b(d + 2j), j ∈ N,
and the multiplicity of each eigenvalue Λ j is infinite. As in (1.2), define the perturbed operator

(3.3) H = H 0 + V,
where we identify the non self-adjoint perturbation V with the multiplication operator by the function V : R 2d → C. Most of known results on the discrete spectrum of Schrödinger operators deal with self-adjoint perturbations V , and study its asymptotic behaviour at the edges of its essential spectrum. For V admitting power-like or slower decay at infinity, see for instance the papers [START_REF] Ya | Microlocal Analysis and Precise Spectral Asymptotics[END_REF], [START_REF] Pushnitski | Asymptotic Density of Eigenvalue Clusters for the Perturbed Landau Hamiltonian[END_REF][START_REF] Raikov | Eigenvalue asymptotics for the Schrödinger operator with homogeneous magnetic potential and decreasing electric potential. I. Behaviour near the essential spectrum tips[END_REF][START_REF] Raikov | Border-line eigenvalue asymptotics for the Schrödinger operator with electromagnetic potential[END_REF][START_REF] Sobolev | Asymptotic behavior of the energy levels of a quantum particle in a homogeneous magnetic field, perturbed by a decreasing electric field. I[END_REF][START_REF] Tamura | Asymptotic distribution of eigenvalues for Schrödinger operators with homogeneous magnetic fields[END_REF], and for potentials V decaying at infinity exponentially fast or having a compact support see [START_REF] Raikov | Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials[END_REF]. For Landau Hamiltonians in exterior domains, see [START_REF] Kachmar | Remark on magnetic Schroedinger operators in exterior domains[END_REF][START_REF] Persson | Eigenvalue asymptotics for the even-dimensional exterior Landau-Neumann Hamiltonian[END_REF][START_REF] Pushnitski | Eigenvalue Clusters of the Landau Hamiltonian in the Exterior of a Compact Domain[END_REF]. We shall first consider the class of non self-adjoint electric potentials V satisfying

(3.4) (Re (V )f, f ) ≥ µ 1 f 2
for some µ 1 < 0, and the following estimate

(3.5) |V (X ⊥ )| ≤ CF (X ⊥ ), F ∈ L p R 2d , p ≥ 2,
where C > 0 is a constant and F is a positive function. The definition of the numerical range (1.4) implies that 

σ(H) ⊂ N (H) ⊂ {λ ∈ C : Re λ ≥ µ 1 }.
∈ C \ ∪ ∞ j=0 {Λ j }. Assume that F ∈ L p R 2d , d ≥ 1, with p ≥ 2 d 2 + 2.
Then, there exists a constant C = C(p, b, d) such that 

(3.6) F (H 0 -λ) -1 p Sp ≤ C(1 + |λ|) d F p L p dist λ, ∪ ∞ j=0 {Λ j } p . Theorem 
λ∈σ disc (H) dist λ, ∪ ∞ j=0 {Λ j } p 1 + |λ| 2p ≤ C 1 F p L p ,
where the constant C 1 = C(p, µ 0 , b, d) depends on p, µ 0 := µ 1 -1, b and d.

Notice that if the electric potential V is bounded, then µ 0 can be eliminated in the constant C 1 = C(p, µ 0 , b, d). The price we pay is the additional factor 1 + V ∞ 2p in the RHS of (3.7), see [START_REF] Sambou | Lieb-Thirring type inequalities for non self-adjoint perturbations of magnetic Schrödinger operators[END_REF]Theorem 2.2].

It goes without saying that we can derive relations similar to (1.9)-(1.11) in the present situation.

It seems appropriate to mention that the assumptions of Theorem 3.1 are typically satisfied by the potentials V : R 2d → C such that

(3.8) |V (X ⊥ )| ≤ C X ⊥ -m , m > 0, pm > 2d, p ≥ 2,
where C > 0 is a constant and y := 1 + |y| To simplify, we consider the two-dimensional Pauli operator acting in L 2 (R 2 ) := L 2 (R 2 , C 2 ) and describing a quantum non-relativistic 1 2 -spinparticle subject to a magnetic field of strength b and electric potential V . The general case can be treated in a same manner (see the discussion after Theorem 4.1). The self-adjoint unperturbed Pauli operator H 0 given by (4.1)

H 0 := (-i∇ -A) 2 -b 0 0 (-i∇ -A) 2 + b =: H 1 0 0 H 2 ,
is defined originally on C ∞ 0 (R 2 ) and then closed in L 2 (R 2 ). Here, A = (A 1 , A 2 ) : R 2 → R 2 is a magnetic potential generating the magnetic field

(4.2) b(X ⊥ ) := ∂A 2 ∂x - ∂A 1 ∂y , X ⊥ = (x, y) ∈ R 2 .
We focus on the case where b(X ⊥ ) = b > 0 is a constant. In this situation, the spectrum σ(H 0 ) of the Pauli operator H 0 see e.g [START_REF] Dimassi | Spectral asymptotics for quantum Hamiltonians in strong magnetic fields[END_REF] is given by

(4.3) σ(H 0 ) = ∞ j=0 Λ j , Λ j = 2bj.
Now consider the matrix-valued electric potential

(4.4) V (X ⊥ ) := v ℓk (X ⊥ ) 1≤ℓ,k≤2 , X ⊥ = (x, y) ∈ R 2 ,
and introduce the perturbed operator (4.5)

H = H 0 + V,
where we identify the potential V with the multiplication operator by the matrix-valued function V . As in the case of magnetic Schrödinger operators, most of known results on the discrete spectrum of Pauli operators deal with self-adjoint perturbations V see e.g. [START_REF] Raikov | Spectral asymptotics for the perturbed 2D Pauli Operator with oscillating magnetic Fields. I. Non-zero mean value of the magnetic field, Markov Process[END_REF] . Let us consider the class of non self-adjoint electric potentials V satisfying

(4.6) (Re (V )f, f ) ≥ µ 1 f 2 ,
and the following estimate

(4.7) |v ℓk (X ⊥ )| ≤ CF (X ⊥ ), 1 ≤ ℓ, k ≤ 2, F ∈ L p R 2d , p ≥ 2,
where C > 0 is a constant and F a positive function. Note that if the potential V is diagonal, i.e. v 12 = v 21 = 0, then assumption (4.6) is satisfied trivially if Re (v 11 ) ≥ µ 1 and Re (v 22 ) ≥ µ 1 . In the case where V is non-diagonal with Re (v ℓk ) ≥ ω 0 for some ω 0 < 0, it can be verified that assumption (4.6) holds with µ 1 = -2|ω 0 |. Furthermore, we have the following lemma giving a quantitative bound on the norm ||V (H 0λ) -1 || Sp in terms of the L p -norm of F . Its proof goes along the same lines as the proof of [25, Lemma 6.1].

Lemma 4.1. Let d = 1, Λ j , j ∈ N, be the Landau levels defined by (4.3), and consider

λ ∈ C \ ∪ ∞ j=0 {Λ j }. Assume that F ∈ L p R 2 with p ≥ 2. Then, there exists a constant C = C(p, b, d) such that (4.8) F (H 0 -λ) -1 p Sp ≤ C(1 + |λ|) d F p L p dist λ, ∪ ∞ j=0 {Λ j } p .
Setting H 0 = H 0 , H = H, m = 2d = 2 and recalling Theorem 1.1 readily yields the following result. Theorem 4.1. Let H = H 0 + V be the perturbed Pauli operator defined by (4.5) with V satisfying (4.6) and (4.7). Assume that F ∈ L p R 2 with p ≥ 2. Then, the following bound holds true (4.9)

λ∈σ disc (H) dist λ, ∪ ∞ j=0 {Λ j } p 1 + |λ| 2p ≤ C 3 F p L p ,
where the constant C 3 = C(p, µ 0 , b, d) depends on p, µ 0 := µ 1 -1, b and d.

As above, if the electric potential V is bounded, then µ 0 can be eliminated in C 3 = C(p, µ 0 , b, d) with the additional factor 1 + V ∞ 2p to pay in counterpart in the RHS of (4.9). Notice that Theorem 4.1 remains valid if we replace the two-dimensional Pauli operator H 0 by the general 2d-Pauli operators acting on L 2 R 2d , C 2 , d ≥ 1, defined by (4.10)

H 0 := H 0,⊥ -bd 0 0 H 0,⊥ + bd =: H - 0,⊥ 0 0 H + 0,⊥ . 
Here,

H 0,⊥ := d j=1 D x j + 1 2 by j 2 + D y j - 1 2 bx j 2
is the 2d-Schrödinger operator defined by (3.1). In this case, the set of Landau levels is given by ∪ ∞ j=0 {Λ j } with Λ j = 2bdj, and we require that

F ∈ L p R 2d with p ≥ 2 d 2 + 2.
Of course, the counterparts of relations (1.9)-(1.11) apply as well to magnetic Pauli operators under consideration.

5. On Lieb-Thirring type inequalities for magnetic (2d + 1)-Pauli operators, d ≥ 1

In this section, we focus on (2d + 1)-dimensional self-adjoint Pauli operators with constant magnetic field, acting on L 2 R 2d+1 := L 2 R 2d+1 , C 2 , d ≥ 1, defined by (5.1)

P 0 := H 0 -bd 0 0 H 0 + bd =: P 1 0 0 P 2 .
Here, as usual the constant b > 0 is the strength of the magnetic field. And, for the cartesian coordinates x := (x 1 , y 1 , . . . , x d , y d , x) ∈ R 2d+1 ,

H 0 := d j=1 D x j + 1 2 by j 2 + D y j - 1 2 bx j 2 + D 2 x , D ν := -i ∂ ∂ν ,
is the (2d + 1)-self-adjoint Schrödinger operator with constant magnetic field originally defined on C ∞ 0 R 2d+1 , C . It is well known see e.g [START_REF] Dimassi | Spectral asymptotics for quantum Hamiltonians in strong magnetic fields[END_REF] that the spectrum of the operator P 0 is absolutely continuous, coincides with [0, +∞) and has an infinite set of Landau levels (5.2)

Λ j = 2bdj, j ∈ N.
We introduce the perturbed operator on the domain of the operator P 0 (5.3)

P = P 0 + V,
where we identify the perturbation V with the multiplication operator by the matrix-valued function

(5.4) V (x) := v ℓk (x) 1≤ℓ,k≤2 .
We assume that V is a bounded non self-adjoint perturbation such that for any x ∈ R 2d+1 and 1 ≤ ℓ, k ≤ 2,

(5.5)

|v ℓk (x)| ≤ CF (x)G(x),
where C > 0 is a constant, F and G are two positive functions satisfying

F ∈ L p ∩ L ∞ (R 2d+1 ) for p ≥ 2, and G ∈ L 2 ∩ L ∞ R .
Under this assumption on V , we obtain (see Lemma 5.1) that for any λ ∈ ρ(P 0 ),

(5.6)

F (P 0 -λ) -1 G Sp < ∞.
Once again, this implies that V is a relatively compact perturbation. The first ingredient of the proof is the following lemma obtained by methods similar to [START_REF] Sambou | Lieb-Thirring type inequalities for non self-adjoint perturbations of magnetic Schrödinger operators[END_REF]Lemma 3

.1]. Lemma 5.1. Let d ≥ 1 and consider λ ∈ C \ [0, +∞). Assume that F ∈ L p ∩ L ∞ (R 2d+1 ) with p ≥ 2 d 2 + 2 and G ∈ L 2 ∩ L ∞ R . Then, there exists a constant C = C(p, b, d) such that (5.7) F (P 0 -λ) -1 G p Sp ≤ C(1 + |λ|) d+ 1 2 K 1 dist λ, [0, +∞) p 2 dist λ, ∪ ∞ j=0 {Λ j } p 4
, where Λ j , j ∈ N, are the Landau levels defined by (5.2) and

(5.8)

K 1 := F p L p G L 2 + G L ∞ p .
Note that since the potential V is bounded, then the numerical range of the operator P satisfies (5.9) σ(P) ⊂ N

(P) ⊂ λ ∈ C : Reλ ≥ -2 V ∞ and |Imλ| ≤ 2 V ∞ .
The Lieb-Thirring type bound for the eigenvalues of the (2d + 1)-Pauli operator P is as follows. As usual, [x] denotes the integer part of x ∈ R, and x + := max(x, 0). Sketch of the proof of the theorem. The proof goes along the same lines as the proof of [25, Theorem 2.1] with the help of Lemma 5.1. Since σ ess (P) = [0, +∞) with an infinite set of thresholds Λ j , j ∈ N, we obtain two types of estimates.

First, we bound the sums depending on parts of σ disc (P) concentrated around a Landau level Λ j using the Schwarz-Christoffel formula see e. Now, choosing γ such that γ > d + 3 2 and using the fact that for any λ ∈ Π j we have 1 + j ≃ 1 + |λ|, we get the global bound (5.11).

Theorem 3 .

 3 1 is an immediate consequence of the following lemma and Theorem 1.1 with H 0 = H 0 , H = H and m = 2d. Lemma 3.1. [25, Lemma 6.1] Let Λ j , j ∈ N, be the Landau levels defined by (3.2), and consider λ

Theorem 5 . 1 .

 51 Let P = P 0 + V with V satisfying (5.4) and (5.5). Assume thatF ∈ L p ∩L ∞ (R 2d+1 ) with p ≥ 2 d 2 +2, d ≥ 1, and G ∈ L 2 ∩L ∞ R . Define (5.10) K := F p L p G L 2 + G L ∞ p 1 + V ∞ d+ p 2 + 3 2 +ε ,for 0 < ε < 1. Then, we have(5.11) λ ∈ σ disc (H) dist λ, [0, +∞) p 2 +1+ε dist λ, ∪ ∞ j=0 {Λ j } ( p 4 -1+ε) + (1 + |λ|) γ ≤ C 5 K,where Λ j , j ∈ N, are the Landau levels defined by (5.2), γ > d + 3 2 , and C 5 = C(p, b, d, ε) is a constant depending on p, b, d and ε.

1 ( 1 +

 11 g.[START_REF] Lavrentiev | Méthodes de la théorie des fonctions d'une variable complexe[END_REF] Theorem 1, p. 176] . Namely, if we consider a rectangleΠ j := λ ∈ C : |Λ j -Reλ| ≤ b and |Imλ| ≤ Const.around a Landau level Λ j , then we haveλ∈σ disc (H)∩Π j dist λ, [Λ 0 , +∞) p 2 +1+ε dist λ, ∪ ∞ j=1 {Λ j } ( p 4 -1+ε) + ≤ C(p, b, j, ε)K,with the asymptotic property C(p, b, j, ε) ∼ j→∞ j d+ 1 2 . Second, we get the global bound summing up the previous bounds with appropriate weights as follows:j j) γ λ∈σ disc (H)∩Π j dist λ, [Λ 0 , +∞) p 2 +1+ε dist λ, ∪ ∞ j=1 {Λ j } ( p 4 -1+ε) + ≤ j C(p, b, d, j, ε) (1 + j) γ K.

  3.1. Let H = H 0 +V be the perturbed Schrödinger operator defined by (3.3) with V satisfying conditions (3.4) and (3.5). Assume that F ∈ L p R 2d , d ≥ 1, with p ≥ 2 d

	2 + 2. Then, we have
	(3.7)