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QUANTITATIVE BOUNDS ON THE DISCRETE

SPECTRUM OF NON SELF-ADJOINT QUANTUM

MAGNETIC HAMILTONIANS

DIOMBA SAMBOU

Abstract. We establish Lieb-Thirring type inequalities for non self-
adjoint relatively compact perturbations of certain operators of math-
ematical physics. We apply our results to quantum Hamiltonians of
Schrödinger and Pauli with constant magnetic field of strength b > 0.
In particular, we use these bounds to obtain some information on the
distribution of the eigenvalues of the perturbed operators in the neigh-
borhood of their essential spectrum.

1. Introduction and an abstract result

Recently, a number of results on the spectral properties of the non self-
adjoint perturbations of operators of mathematical physics were obtained.
We quote the articles by Frank-Laptev-Lieb-Seiringer [5], Borichev-Golinskii-
Kupin [1], Demuth-Katriel-Hansmann [3], Hansmann [9], Golinskii-Kupin
[8], Pushnitskii-Raikov-Villegas-Blas [18] turned to the study of the discrete
spectrum of these perturbations. The purpose of this paper is to announce
and to give a brief overview of new results in this direction. The main
point is that the first part of this article describes a general construction
that applies to a large class of operators containing magnetic Schrödinger,
Pauli and Dirac operators of full rank with constant magnetic field, hence
generalizing the methods of a recent paper by the author [25].

Let H0 be an unbounded self-adjoint operator defined on a dense subset
of L2(Rm), m ≥ 1. Suppose that the spectrum σ(H0) of the operator is
given by an infinite sequence of (real) eigenvalues of infinite multiplicity, i.e.

(1.1)

{

σ(H0) = σess(H0) =
⋃∞

j=0

{

Λj

}

,

where Λ0 ≥ 0, Λj+1 > Λj, |Λj+1 − Λj| ≤ δ, δ > 0 constant.

Concrete examples of operators satisfying these assumptions are Schrödinger
operators acting on L2

(

R
2d,C

)

, d ≥ 1, and Pauli operators on L2
(

R
2d,C2

)

with constant magnetic field of strength b > 0, see Sections 3 and 4, respec-
tively. We can also consider the case of Dirac operators of full rank

(

see

[15]
)

. But, for simplicity, we focus on the two first examples.
On the domain of H0, we consider a (non self-adjoint) relatively compact

perturbation V of H0, and the perturbed operator

(1.2) H = H0 + V.
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This means that dom(H0) ⊂ dom(V ), and V (H0 − λ)−1 is compact for
λ ∈ ρ(H0), the resolvent set of the operator H0. It is well known

(

see e.g.

[12, Chapter VI]
)

that under this condition on V , there exists µ < 0 such
that

(1.3) σ(H ) ⊂
{

λ ∈ C : Reλ ≥ µ
}

.

Furthermore, we impose an additional restriction on V allowing us to control
the numerical range

(1.4) N(H ) :=
{

〈H f, f〉 : f ∈ dom (H ), ||f ||L2(Rm) = 1
}

of the operator H . Namely,

(1.5) σ(H ) ⊂ N(H ) ⊂
{

λ ∈ C : Reλ ≥ µ1

}

for some µ1 < 0. For convenience, we put

(1.6) µ0 = µ1 − 1.

Recall that a compact operator L defined on a separable Hilbert space
belongs to the Schatten-von Neumann class Sp, p ≥ 1, if ‖L‖Sp = (Tr |L|p)1/p

is finite. We also require that

V (H0 − λ)−1 ∈ Sp,

for some p ≥ 1, which is a stronger condition just saying that the operator
V (H0 − λ)−1 is compact.

Since V is a relatively compact perturbation with respect to the self-
adjoint operator H0, then the Weyl criterion on the invariance of the es-
sential spectrum implies that σess(H ) = σess(H0) = ∪∞

j=0{Λj}. Still, the

operator H can have a (complex) discrete spectrum σdisc(H ) accumulat-
ing to ∪∞

j=0{Λj}, see Gohberg-Goldberg-Kaashoek [6, Theorem 2.1, p. 373],
and the coming theorem gives a necessary condition on its distribution. The
conclusion of the theorem is written in the form of a relation which is of-
ten called a Lieb-Thirring type inequality, see Lieb-Thirring [14] for original
work.

Theorem 1.1. Let H0 be a self-adjoint operator with σ(H0) =
⋃∞

j=0

{

Λj

}

as above. Consider H = H0 + V , and for some p > 1 assume that the V

satisfies

(1.7) ‖V (H0 − µ0)
−1‖pSp

≤ K0,

with K0 > 0 constant. Then, we have

(1.8)
∑

λ∈σdisc(H )

dist
(

λ,∪∞
j=0{Λj}

)p

(

1 + |λ|
)2p ≤ C0K0,

where C0 = C(p, µ0,Λ0) is a constant depending on p, µ0, and Λ0.

The proof of this theorem (see Section 2 for more details) is essentially
based on a recent theorem of Hansmann [9], and a technical distortion lemma
for a conformal mapping coming from complex analysis, see Lemma 2.1.

Applications of this result to magnetic Schrödinger operators on L2
(

R
2d,C

)

and magnetic Pauli operators on L2
(

R
2d,C2

)

are given in Theorems 3.1 and
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4.1, respectively. In Golinskii-Kupin [8], similar results are obtained for
complex perturbations of finite band Schrödinger operators.

Bound (1.8) can be rewritten in a simpler manner for various subsets of
σdisc(H ). For instance, let τ > 0 be fixed. Then, for λ satisfying |λ| ≥ τ ,
one has

1

1 + |λ|
=

1

|λ|

1

1 + |λ|−1
≥

1

|λ|

1

1 + τ−1
,

and

(1.9)
∑

λ∈σdisc(H )
|λ| ≥ τ

dist
(

λ,∪∞
j=0{Λj}

)p

|λ|2p
≤ C1

(

1 +
1

τ

)2p

K0.

Furthermore, if (λk) ⊂ σdisc(H ) converges to a point of σess(H ) =
∪∞
j=0{Λj}, one has

(1.10)
∑

k

dist
(

λk,∪
∞
j=0{Λj}

)p
< ∞.

This means that, a priori, the accumulation of the eigenvalues from σdisc(H )
in a neighborhood of a fixed Λj , j ∈ N, is a monotone function of p.

Similarly, we can also obtain information on diverging sequences of eigen-
values (λk) ⊂ σdisc(H ). For example, if for some τ > 0 the sequence (λk) is
such that

dist
(

λk,∪
∞
j=0{Λj}

)

≥ τ,

then one has

(1.11)
∞
∑

k=1

1

|λk|2p
< ∞.

We shall progress as follows. We give the sketch of the proof of our main
abstract result (Theorem 1.1) in Section 2. We apply it to magnetic 2d-
Schrödinger and 2d-Pauli operators in Sections 3 and 4 respectively. In
Section 5, we treat the case of magnetic (2d + 1)-Pauli operators with con-
stant magnetic field. Here, the essential spectrum of the operator under
consideration equals R+, which is rather different from the case of the essen-
tial spectrum coinciding with the (discrete) set of "Landau levels" ∪∞

j=0{Λj}

(1.1). This requires the use of methods close to those from Sambou [25].
We adopt mathematical physics and spectral analysis notation and ter-

minology from Reed-Simon [24]. As for the classes of compact operators
(i.e. Schatten-von Neumann ideals), we refer the reader to Simon [26] and
Gohberg-Goldberg-Krupnik [7]. Constants are generic, i.e. changing from
one relation to another. For a real x, [x] denotes its integer part.

Acknowledgements. This work is partially supported by the Chilean Pro-
gram Núcleo Milenio de Física Matemática RC120002.

2. The abstract result: sketch of the proof

The following result of Hansmann
(

see [9, Theorem 1]
)

is the first crucial
point of the proof. Let B0 = B∗

0 be a bounded self-adjoint operator acting on
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a separable Hilbert space, and B be a bounded operator satisfying B−B0 ∈
Sp, p > 1. Then, we have

(2.1)
∑

λ∈σdisc(B)

dist
(

λ, σ(B0)
)p

≤ C‖B −B0‖
p
Sp
,

where the constant C is explicit and depends only on p. Note that we
cannot apply (2.1) to the unbounded operators H0 and H . To fix this, let
us consider bounded the resolvents

(2.2) B0(µ0) := (H0 − µ0)
−1 and B(µ0) := (H − µ0)

−1,

where µ0 is the constant defined by (1.6). Furthermore,

(H − µ0)
−1 − (H0 − µ0)

−1 = −(H − µ0)
−1V (H0 − µ)−1,

and we obtain

(2.3)
∥

∥B(µ0)−B0(µ0)
∥

∥

p

Sp
≤

∥

∥(H − µ0)
−1

∥

∥

p∥
∥V (H0 − µ0)

−1
∥

∥

p

Sp
,

where ||.|| stays for the usual operator norm. By (1.5), we have

σ(H ) ⊂ N(H ) ⊂
{

λ ∈ C : Reλ ≥ µ1

}

.

This implies that dist
(

µ0, N(H )
)

≥ 1, and using [2, Lemma 9.3.14] we get

(2.4)
∥

∥(H − µ0)
−1

∥

∥ ≤
1

dist
(

µ0, N(H )
) ≤ 1.

Consequently, by (1.7), (2.3) and (2.4), we obtain

(2.5)
∥

∥B(µ0)−B0(µ0)
∥

∥

p

Sp
≤ K0,

where K0 is the constant defined in (1.7). Hence, we obtain

(2.6)
∑

z∈σdisc(B(µ0))

dist
(

z, σ(B0(µ0))
)p

≤ CK0

by applying Hansmann’s theorem (2.1) to the resolvents B(µ0) and B0(µ0).
Putting z = ϕµ0

(λ) = (λ− µ0)
−1, we have

(2.7)

z ∈ σdisc

(

B(µ0)
)

(

z ∈ σ
(

B0(µ0)
)

)

⇐⇒ λ ∈ σdisc(H )
(

λ ∈ σ(H0)
)

.

So, we come to a distortion lemma for the conformal map z = ϕµ0
(λ) =

(λ − µ0)
−1, which is the second important ingredient of the proof of the

theorem.

Lemma 2.1. Let µ0 be the constant defined by (1.6), and Λj , j ∈ N, be the

"Landau levels" defined by (1.1). Then, the following bound holds

(2.8) dist
(

ϕµ0
(λ), ϕµ0

(∪∞
j=0{Λj})

)

≥
C dist

(

λ,∪∞
j=0{Λj}

)

(

1 + |λ|
)2 , λ ∈ C,

where C = C(µ0,Λ0) is a constant depending on µ0 and Λ0.

The proof of the lemma goes as [25, Lemma 6.2] and is omitted. Now,
combining the above lemma, estimates (2.6) and (2.7), we get

∑

λ∈σdisc(H )

dist
(

λ,∪∞
j=0{Λj}

)p

(

1 + |λ|
)2p ≤ C0K0,
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where C0 = C(p, µ0,Λ0) is a constant depending on p, µ0 and Λ0. This
concludes the proof of Theorem 1.1. �

3. Examples: perturbations of magnetic 2d-Schrödinger

operators, d ≥ 1

Set X⊥ := (x1, y1, . . . , xd, yd) ∈ R
2d, d ≥ 1, and let b > 0 be a constant.

We consider

(3.1) H0 :=

d
∑

j=1

{

(

Dxj
+

1

2
byj

)2

+

(

Dyj −
1

2
bxj

)2
}

,

the Schrödinger operator acting on L2
(

R2d
)

:= L2
(

R2d,C
)

with constant
magnetic field of strength b > 0. The self-adjoint operator H0 is originally
defined on C∞

0

(

R
2d
)

, and then closed in L2
(

R
2d
)

. It is well known
(

see e.g.

[4]
)

that its spectrum consists of the increasing sequence of Landau levels

(3.2) Λj = b(d+ 2j), j ∈ N,

and the multiplicity of each eigenvalue Λj is infinite. As in (1.2), define the
perturbed operator

(3.3) H = H0 + V,

where we identify the non self-adjoint perturbation V with the multiplication
operator by the function V : R2d → C. Most of known results on the discrete
spectrum of Schrödinger operators deal with self-adjoint perturbations V ,
and study its asymptotic behaviour at the edges of its essential spectrum.
For V admitting power-like or slower decay at infinity, see for instance the
papers [10, Chap. 11-12], [18, 20, 21, 27, 28], and for potentials V decaying at
infinity exponentially fast or having a compact support see [23]. For Landau
Hamiltonians in exterior domains, see [11, 16, 19].

We shall first consider the class of non self-adjoint electric potentials V

satisfying

(3.4) (Re (V )f, f) ≥ µ1‖f‖
2

for some µ1 < 0, and the following estimate

(3.5) |V (X⊥)| ≤ CF (X⊥), F ∈ Lp
(

R
2d
)

, p ≥ 2,

where C > 0 is a constant and F is a positive function. The definition of
the numerical range (1.4) implies that

σ(H) ⊂ N(H) ⊂ {λ ∈ C : Reλ ≥ µ1}.

Theorem 3.1 is an immediate consequence of the following lemma and The-
orem 1.1 with H0 = H0, H = H and m = 2d.

Lemma 3.1. [25, Lemma 6.1] Let Λj , j ∈ N, be the Landau levels defined

by (3.2), and consider λ ∈ C \ ∪∞
j=0{Λj}. Assume that F ∈ Lp

(

R
2d
)

, d ≥ 1,

with p ≥ 2
[

d
2

]

+ 2. Then, there exists a constant C = C(p, b, d) such that

(3.6)
∥

∥F (H0 − λ)−1
∥

∥

p

Sp
≤

C(1 + |λ|)d‖F‖pLp

dist
(

λ,∪∞
j=0{Λj}

)p .
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Theorem 3.1. Let H = H0+V be the perturbed Schrödinger operator defined

by (3.3) with V satisfying conditions (3.4) and (3.5). Assume that F ∈
Lp

(

R
2d
)

, d ≥ 1, with p ≥ 2
[

d
2

]

+ 2. Then, we have

(3.7)
∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=0{Λj}

)p

(

1 + |λ|
)2p ≤ C1‖F‖pLp ,

where the constant C1 = C(p, µ0, b, d) depends on p, µ0 := µ1 − 1, b and d.

Notice that if the electric potential V is bounded, then µ0 can be elimi-
nated in the constant C1 = C(p, µ0, b, d). The price we pay is the additional

factor
(

1 + ‖V ‖∞
)2p

in the RHS of (3.7), see [25, Theorem 2.2].
It goes without saying that we can derive relations similar to (1.9)-(1.11)

in the present situation.
It seems appropriate to mention that the assumptions of Theorem 3.1 are

typically satisfied by the potentials V : R2d → C such that

(3.8) |V (X⊥)| ≤ C 〈X⊥〉
−m, m > 0, pm > 2d, p ≥ 2,

where C > 0 is a constant and 〈y〉 :=
(

1 + |y|2
)1/2

, y ∈ R
n, n ≥ 1. Certain

examples showing the sharpness of our results in the two-dimensional case
are discussed in [25, Subsection 2.2].

4. Examples: perturbations of magnetic 2d-Pauli operators,

d ≥ 1

To simplify, we consider the two-dimensional Pauli operator acting in
L2(R2) := L2(R2,C2) and describing a quantum non-relativistic 1

2 -spin-
particle subject to a magnetic field of strength b and electric potential V .
The general case can be treated in a same manner (see the discussion after
Theorem 4.1). The self-adjoint unperturbed Pauli operator H0 given by

(4.1) H0 :=

(

(−i∇− A)2 − b 0
0 (−i∇− A)2 + b

)

=:

(

H1 0
0 H2

)

,

is defined originally on C∞
0 (R2) and then closed in L2(R2). Here, A =

(A1, A2) : R
2 → R

2 is a magnetic potential generating the magnetic field

(4.2) b(X⊥) :=
∂A2

∂x
−

∂A1

∂y
, X⊥ = (x, y) ∈ R

2.

We focus on the case where b(X⊥) = b > 0 is a constant. In this situation,
the spectrum σ(H0) of the Pauli operator H0

(

see e.g [4]
)

is given by

(4.3) σ(H0) =

∞
⋃

j=0

{

Λj

}

, Λj = 2bj.

Now consider the matrix-valued electric potential

(4.4) V (X⊥) :=
{

vℓk(X⊥)
}

1≤ℓ,k≤2
, X⊥ = (x, y) ∈ R

2,

and introduce the perturbed operator

(4.5) H = H0 + V,

where we identify the potential V with the multiplication operator by the
matrix-valued function V . As in the case of magnetic Schrödinger operators,
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most of known results on the discrete spectrum of Pauli operators deal with
self-adjoint perturbations V

(

see e.g. [22]
)

. Let us consider the class of non
self-adjoint electric potentials V satisfying

(4.6) (Re (V )f, f) ≥ µ1‖f‖
2,

and the following estimate

(4.7) |vℓk(X⊥)| ≤ CF (X⊥), 1 ≤ ℓ, k ≤ 2, F ∈ Lp
(

R
2d
)

, p ≥ 2,

where C > 0 is a constant and F a positive function. Note that if the
potential V is diagonal, i.e. v12 = v21 = 0, then assumption (4.6) is sat-
isfied trivially if Re (v11) ≥ µ1 and Re (v22) ≥ µ1. In the case where V is
non-diagonal with Re (vℓk) ≥ ω0 for some ω0 < 0, it can be verified that as-
sumption (4.6) holds with µ1 = −2|ω0|. Furthermore, we have the following
lemma giving a quantitative bound on the norm ||V (H0 − λ)−1||Sp in terms
of the Lp-norm of F . Its proof goes along the same lines as the proof of [25,
Lemma 6.1].

Lemma 4.1. Let d = 1, Λj , j ∈ N, be the Landau levels defined by (4.3),
and consider λ ∈ C\∪∞

j=0{Λj}. Assume that F ∈ Lp
(

R
2
)

with p ≥ 2. Then,

there exists a constant C = C(p, b, d) such that

(4.8)
∥

∥F (H0 − λ)−1
∥

∥

p

Sp
≤

C(1 + |λ|)d‖F‖pLp

dist
(

λ,∪∞
j=0{Λj}

)p .

Setting H0 = H0, H = H, m = 2d = 2 and recalling Theorem 1.1 readily
yields the following result.

Theorem 4.1. Let H = H0 + V be the perturbed Pauli operator defined by

(4.5) with V satisfying (4.6) and (4.7). Assume that F ∈ Lp
(

R
2
)

with p ≥ 2.
Then, the following bound holds true

(4.9)
∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=0{Λj}

)p

(

1 + |λ|
)2p ≤ C3‖F‖pLp ,

where the constant C3 = C(p, µ0, b, d) depends on p, µ0 := µ1 − 1, b and d.

As above, if the electric potential V is bounded, then µ0 can be eliminated

in C3 = C(p, µ0, b, d) with the additional factor
(

1 + ‖V ‖∞
)2p

to pay in
counterpart in the RHS of (4.9).

Notice that Theorem 4.1 remains valid if we replace the two-dimensional
Pauli operator H0 by the general 2d-Pauli operators acting on L2

(

R
2d,C2

)

,
d ≥ 1, defined by

(4.10) H0 :=

(

H0,⊥ − bd 0
0 H0,⊥ + bd

)

=:

(

H
−
0,⊥ 0

0 H
+
0,⊥

)

.

Here,

H0,⊥ :=

d
∑

j=1

{

(

Dxj
+

1

2
byj

)2

+

(

Dyj −
1

2
bxj

)2
}

is the 2d-Schrödinger operator defined by (3.1). In this case, the set of
Landau levels is given by ∪∞

j=0{Λj} with Λj = 2bdj, and we require that

F ∈ Lp
(

R
2d
)

with p ≥ 2
[

d
2

]

+ 2.
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Of course, the counterparts of relations (1.9)-(1.11) apply as well to mag-
netic Pauli operators under consideration.

5. On Lieb-Thirring type inequalities for magnetic

(2d+ 1)-Pauli operators, d ≥ 1

In this section, we focus on (2d + 1)-dimensional self-adjoint Pauli oper-
ators with constant magnetic field, acting on L2

(

R
2d+1

)

:= L2
(

R
2d+1,C2

)

,
d ≥ 1, defined by

(5.1) P0 :=

(

H0 − bd 0
0 H0 + bd

)

=:

(

P1 0
0 P2

)

.

Here, as usual the constant b > 0 is the strength of the magnetic field. And,
for the cartesian coordinates x := (x1, y1, . . . , xd, yd, x) ∈ R

2d+1,

H0 :=
d

∑

j=1

{

(

Dxj
+

1

2
byj

)2

+

(

Dyj −
1

2
bxj

)2
}

+D2
x, Dν := −i

∂

∂ν
,

is the (2d+1)-self-adjoint Schrödinger operator with constant magnetic field
originally defined on C∞

0

(

R
2d+1,C

)

. It is well known
(

see e.g [4]
)

that the
spectrum of the operator P0 is absolutely continuous, coincides with [0,+∞)
and has an infinite set of Landau levels

(5.2) Λj = 2bdj, j ∈ N.

We introduce the perturbed operator on the domain of the operator P0

(5.3) P = P0 + V,

where we identify the perturbation V with the multiplication operator by
the matrix-valued function

(5.4) V (x) :=
{

vℓk(x)
}

1≤ℓ,k≤2
.

We assume that V is a bounded non self-adjoint perturbation such that for
any x ∈ R

2d+1 and 1 ≤ ℓ, k ≤ 2,

(5.5) |vℓk(x)| ≤ CF (x)G(x),

where C > 0 is a constant, F and G are two positive functions satisfying
F ∈

(

Lp ∩ L∞
)

(R2d+1) for p ≥ 2, and G ∈
(

L2 ∩ L∞
)(

R
)

. Under this
assumption on V , we obtain (see Lemma 5.1) that for any λ ∈ ρ(P0),

(5.6) ‖F (P0 − λ)−1G‖Sp < ∞.

Once again, this implies that V is a relatively compact perturbation.
The first ingredient of the proof is the following lemma obtained by meth-

ods similar to [25, Lemma 3.1].

Lemma 5.1. Let d ≥ 1 and consider λ ∈ C \ [0,+∞). Assume that F ∈
(

Lp ∩ L∞
)

(R2d+1) with p ≥ 2
[

d
2

]

+ 2 and G ∈
(

L2 ∩ L∞
)(

R
)

. Then, there

exists a constant C = C(p, b, d) such that

(5.7)
∥

∥F (P0 − λ)−1G
∥

∥

p

Sp
≤

C(1 + |λ|)d+
1

2K1

dist
(

λ, [0,+∞)
)

p

2 dist
(

λ,∪∞
j=0{Λj}

)
p

4

,
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where Λj, j ∈ N, are the Landau levels defined by (5.2) and

(5.8) K1 := ‖F‖pLp

(

‖G‖L2 + ‖G‖L∞

)p
.

Note that since the potential V is bounded, then the numerical range of
the operator P satisfies

(5.9) σ(P) ⊂ N(P) ⊂
{

λ ∈ C : Reλ ≥ −2‖V ‖∞ and |Imλ| ≤ 2‖V ‖∞
}

.

The Lieb-Thirring type bound for the eigenvalues of the (2d + 1)-Pauli
operator P is as follows.

Theorem 5.1. Let P = P0 + V with V satisfying (5.4) and (5.5). Assume

that F ∈
(

Lp∩L∞
)

(R2d+1) with p ≥ 2
[

d
2

]

+2, d ≥ 1, and G ∈
(

L2∩L∞
)(

R
)

.

Define

(5.10) K := ‖F‖pLp

(

‖G‖L2 + ‖G‖L∞

)p(
1 + ‖V ‖∞

)d+ p

2
+ 3

2
+ε

,

for 0 < ε < 1. Then, we have

(5.11)
∑

λ∈σdisc(H)

dist
(

λ, [0,+∞)
)

p

2
+1+ε

dist
(

λ,∪∞
j=0{Λj}

)(p
4
−1+ε)+

(1 + |λ|)γ
≤ C5K,

where Λj, j ∈ N, are the Landau levels defined by (5.2), γ > d + 3
2 , and

C5 = C(p, b, d, ε) is a constant depending on p, b, d and ε.

As usual, [x] denotes the integer part of x ∈ R, and x+ := max(x, 0).

Sketch of the proof of the theorem. The proof goes along the same lines as
the proof of [25, Theorem 2.1] with the help of Lemma 5.1. Since σess(P) =
[0,+∞) with an infinite set of thresholds Λj, j ∈ N, we obtain two types of
estimates.

First, we bound the sums depending on parts of σdisc(P) concentrated
around a Landau level Λj using the Schwarz-Christoffel formula

(

see e.g.

[13, Theorem 1, p. 176]
)

. Namely, if we consider a rectangle

Πj :=
{

λ ∈ C : |Λj − Reλ| ≤ b and |Imλ| ≤ Const.
}

around a Landau level Λj , then we have
∑

λ∈σdisc(H)∩Πj

dist
(

λ, [Λ0,+∞)
)

p

2
+1+ε

dist
(

λ,∪∞
j=1{Λj}

)(p
4
−1+ε)+ ≤ C(p, b, j, ε)K,

with the asymptotic property C(p, b, j, ε) ∼
j→∞

jd+
1

2 .

Second, we get the global bound summing up the previous bounds with
appropriate weights as follows:
∑

j

1

(1 + j)γ

∑

λ∈σdisc(H)∩Πj

dist
(

λ, [Λ0,+∞)
)

p

2
+1+ε

dist
(

λ,∪∞
j=1{Λj}

)(p
4
−1+ε)+

≤
∑

j

C(p, b, d, j, ε)

(1 + j)γ
K.

Now, choosing γ such that γ > d+ 3
2 and using the fact that for any λ ∈ Πj

we have 1 + j ≃ 1 + |λ|, we get the global bound (5.11). �
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