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QUANTITATIVE BOUNDS ON THE DISCRETE

SPECTRUM OF NON SELF-ADJOINT QUANTUM

MAGNETIC HAMILTONIANS

DIOMBA SAMBOU

Abstract. We establish Lieb-Thirring type inequalities on non self-
adjoint unbounded perturbed operators, by a potential that is relatively-
compact. Furthermore, we apply our results to quantum Hamiltonians of
Schrödinger and Pauli with constant magnetic field of strength b > 0. In
particular, we use these bounds to derive information on the distribution
of eigenvalues around the essential spectrum of these operators.

1. Introduction

In this present article, we consider two important cases of unbounded
self-adjoint operators acting on a separable Hilbert space X. First, let us
introduce some conventional definitions we will use in this paper. We denote
by Sp(X), p ∈ (0,+∞) the Schatten-von Neuman classes of compact linear

operators L on X for which the norm ‖L‖p := (Tr |L|p)1/p is finite. For an
operator H acting on X, its numerical range is defined by

(1.1) N(H ) :=
{

〈H f, f〉 : f ∈ dom(H ), ‖f‖X = 1
}

.

The discrete spectrum of H denoted by σdisc(H ) and its essential spectrum

denoted by σess(H ) are defined as in [32].

In the first part of this article, we consider unbounded self-adjoint oper-
ators H0 such that σess(H0) = σ(H0) = E is an infinite discrete set of the
form
(1.2)

E :=

∞
⋃

j=1

{

Λj

}

, Λ0 ≥ 0, Λj+1 > Λj , |Λj+1 − Λj| ≤ δ = constant ∀ j.

Concrete examples of operators satisfying (1.2) are Schrödinger operators
acting on L2

(

R
2d,C

)

, d ≥ 1, and Pauli operators on L2
(

R
2d,C2

)

with con-
stant magnetic field of strength b > 0, defined respectively by (3.1) and
(4.9). It is well known

(

see e.g [8]
)

that their spectrum consists respectively
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2 DIOMBA SAMBOU

to the Landau levels b(d+ 2j) and 2bdj, j ∈ N, and each Landau level is an
eigenvalue of infinite multiplicity.

On the domain of H0, we introduce the perturbed operator

(1.3) H = H0 + V,

where V is a relatively non self-adjoint compact perturbation with respect to
H0. This means that dom(V ) ⊃ dom(H0) and for λ ∈ ρ(H0) the resolvent set
of the operator H0, the Birman-Schwinger operator V (H0−λ)−1 is compact.
Under this assumption on V , it is well known

(

see e.g. [17, Chap. VI]
)

that
there exists µ1 < 0 such that

(1.4) σ(H) ⊂
{

λ ∈ C : Reλ ≥ µ1

}

.

In the sequel, we assume the same for its numerical range. That is

(1.5) σ(H) ⊂ N(H) ⊂
{

λ ∈ C : Reλ ≥ µ1

}

.

Let us fix the constant

(1.6) µ0 := µ1 − 1.

Throughout this study we assume that the weighted resolvent V (H0−µ0)
−1 ∈

Sp(H ) for any p > 0. This means that

(1.7) ‖V (H0 − µ0)
−1‖p < ∞.

In the second part of this paper, we focus on (2d + 1)-dimensional self-
adjoint Pauli operators with constant magnetic field, acting on L2

(

R
2d+1

)

:=

L2
(

R
2d+1,C2

)

, d ≥ 1, defined by

(1.8) P0 :=

(

H0 − bd 0
0 H0 + bd

)

=:

(

P1 0
0 P2

)

.

Here the constant b > 0 is the strength of the magnetic field and for the
cartesian coordinates x := (x1, y1, . . . , xd, yd, x) ∈ R

2d+1,

H0 :=
d

∑

j=1

{

(

Dxj
+

1

2
byj

)2

+

(

Dyj −
1

2
bxj

)2
}

+D2
x, Dν := −i

∂

∂ν

is the (2d + 1)-dimensional self-adjoint Schrödinger operator with constant
magnetic field originally defined on C∞

0

(

R
2d+1,C

)

. It is well known
(

see e.g

[8]
)

that the spectrum of the operator P0 is absolutely continuous, coincides
with [0,+∞) and has an infinite set of thresholds 2bdj, j ∈ N, which are
called the Landau levels of P0. We shall denote again this set of thresholds
by

(1.9) E =
{

Λj

}∞

j=1
, Λj = 2bdj.

On the domain of the operator P0, we introduce the perturbed operator

(1.10) P = P0 + V,
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where we identify the perturbation V with the multiplication operator by
the matrix-valued function

(1.11) V (x) :=
{

vℓk(x)
}

1≤ℓ,k≤2
.

Here we assume that V is a bounded non self-adjoint perturbation such that
for any x ∈ R

2d+1 and 1 ≤ ℓ, k ≤ 2,

(1.12) |vℓk(x)| ≤ CF (x)G(x),

where C > 0 is a constant, F and G are two positive functions satisfying
F ∈ Lp(R2d+1) for p ≥ 2, and G ∈

(

L2 ∩ L∞
)(

R
)

. Under this assumption
on V , for any λ ∈ ρ(P0) the resolvent set of the operator P0, we obtain (see
lemma 6.1) that

(1.13) ‖F (H0 − λ)−1G‖p < ∞.

Once again, this means that V is a relatively compact perturbation. Note
that since the potential V is bounded, then the numerical range of the op-
erator P satisfies

(1.14) σ(P) ⊆ N(P) ⊂
{

λ ∈ C : Reλ ≥ −2‖V ‖∞ and |Imλ| ≤ 2‖V ‖∞
}

.

Now for the transparence of the presentation, let us denote H0 for the op-
erators H0, P0, and H for the perturbed operators H, P defined respectively
by (1.3) and (1.10). Since V a relatively compact perturbation with respect
to the self-adjoint operator H0, then due to a version of the Weyl’s criterion
concerning the invariance of the essential spectrum [7, Corollary 2.3.3], we
have σess(H ) = σess(H0) so that σess(H) =

⋃∞
j=1

{

Λj

}

defined by (1.2),

and σess(P) = [0,+∞). However, the perturbation V may generate some
discrete spectrum σdisc(H ) of eigenvalues. It can accumulate on σess(H )
only. The aim of the present note is to investigate σdisc(H ) with additional
assumptions on the perturbation V . We shall use bounds (1.7) and (1.13)
to derive quantitative estimates on the discrete spectrum σdisc(H ) of the
operator H . In particular, these bounds give a priori information on the
distribution of eigenvalues in a vicinity of the Landau levels Λj , j ∈ N. A
similar recent work by Demuth, Hansmann and Katriel [6] treats the case
of σess(H ) = σess(H0) = [0,∞). They prove their main abstract result by
construct first a holomorphic function whose zeros coincide with the discrete
eigenvalues of H . Further they use complex analysis methods and a theo-
rem of Borichev, Golinskii and Kupin [3] to get information on these zeros.
Because of the discrete form of the essential spectrum of the operator H0,
and the existence of infinite thresholds in that of the operator P0, we use
different techniques to prove our results. That is, we reason similarly to [12]
and [32], using in particular a recent result by Hansmann [13] and a techni-
cal distortion lemma (see Lemma 5.1) which leads us to the application of
complex analysis methods. The details of proofs can be found in [32] where
the particular case of 2d and (2d + 1)- dimensional magnetic Schrödinger
operators, d ≥ 1 with bounded non self-adjoint potential V is study.



4 DIOMBA SAMBOU

We shall progress as follows. In section 2, we formulate our main results
(i.e. Theorem 2.1 and Theorem 2.2), and we discuss some of their immediate
corollaries on the discrete eigenvalues of the operators H . In section 3 and
section 4 we apply respectively Theorem 2.1 to Schrödinger operators on
L2

(

R
2d,C

)

, d ≥ 1, and Pauli operators on L2
(

R
2d,C2

)

with constant mag-
netic field of strength b > 0. In this way, we shall prove that the assumptions
appearing in Theorem 2.2 can be concretely satisfied in some cases. In sec-
tion 5, we give a sketch of proof of Theorem 2.1, and in section 6 a sketch
of proof of Theorem 2.2. Section 7 is devoted to the proof of bounds on
the discrete spectrum of 2d-dimensional Schrödinger operators. In section 8,
we prove same estimates on the discrete spectrum of 2d-dimensional Pauli
operators.

2. Statement of main results

2.1. An abstract result. We establish Lieb-Thirring type estimates on the
discrete eigenvalues of the operator H defined by (1.3). A sketch of proof of
the following theorem is given in section 3.

Theorem 2.1. Let H0 be a self-adjoint operator such that σ(H0) =
⋃∞

j=1

{

Λj

}

as in (1.2) and H = H0 + V . Assume that for some p > 0, the perturbation

V satisfies

(2.1) ‖V (H0 − µ0)
−1‖pp ≤ K0,

with K0 a constant and µ0 defined by (1.6), and that N(H) satisfies (1.5).
Then

(2.2)
∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=1{Λj}

)p

(

1 + |λ|
)2p ≤ C0K0,

where C0 = C(p, µ0,Λ0) is a constant depending on p, µ0, and Λ0.

Using the following estimate

(2.3)
1

1 + |λ|
=

1

|λ|

1

1 + |λ|−1
≥

1

|λ|

1

1 + τ−1
,

verified for any τ > 0 with |λ| ≥ τ , we obtain the following corollary.

Corollary 2.1. Under the assumptions and the notations are of Theorem

2.1, the following bound holds for any τ > 0,

(2.4)
∑

λ∈σdisc(H)
|λ| ≥ τ

dist
(

λ,∪∞
j=1{Λj}

)p

|λ|2p
≤ C1

(

1 +
1

τ

)2p

K0.
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For instance, Theorem 2.1 gives immediate corollaries on sequences (λk)
of isolated eigenvalues that converge to some λ∗ ∈ σess(H) =

⋃∞
j=1

{

Λj

}

.

Indeed, by estimate (2.2) we have

(2.5)
∑

k

dist
(

λk,∪
∞
j=1{Λj}

)p
< ∞.

This means a priori that the accumulation of eigenvalues of H near the Λj is
monotone with p. That is, the eigenvalues are getting less densely distributed
in a vicinity of the Λj with growing p.

By Theorem 2.1, we can also obtain information about sequences of eigen-
values (λk) that diverge. For example if for some η > 0 the sequence (λk)
satisfies for any k the lower bound

(2.6) dist
(

λk,∪
∞
j=1{Λj}

)

≥ η,

then estimate (2.4) implies that
∑∞

k=1
1

|λk|2p
< ∞. This means that |λk|

must converge to infinity sufficiently fast.

2.2. About the magnetic (2d+1)-dimensional Pauli operators, d ≥ 1.
We establish Lieb-Thirring type inequalities on the discrete eigenvalues of
the (2d+1)-dimensional Pauli operator P defined by (1.10). We give a sketch
of proof of the following theorem in section 6; [r] denotes the integer part of
r ∈ R.

Theorem 2.2. Let P = P0+V with V satisfying (1.11) and (1.12). Assume

that F ∈ Lp
(

R
2d+1

)

with p ≥ 2
[

d
2

]

+2, d ≥ 1 and G ∈
(

L2∩L∞
)(

R
)

. Define

(2.7) K := ‖F‖pLp

(

‖G‖L2 + ‖G‖L∞

)p(
1 + ‖V ‖∞

)d+ p

2
+ 3

2
+ε

.

for 0 < ε < 1. Then we have

(2.8)
∑

λ∈σdisc(P)

dist
(

λ, [0,+∞)
)

p

2
+1+ε

dist
(

λ,∪∞
j=1{Λj}

)(p
4
−1+ε)+

(1 + |λ|)γ
≤ C5K,

where Λj are the Landau levels defined by (1.9), γ > d + 3
2 and C5 =

C(p, b, d, ε) is a constant depending on p, b, d and ε.

Now since for any τ > 0 estimate (2.3) happens, then we get the following
corollary.

Corollary 2.2. Under the assumptions and the notations of Theorem 2.2,

the following bound holds for any τ > 0,
(2.9)

∑

λ∈σdisc(P)
|λ| ≥ τ

dist
(

λ, [0,+∞
)

p

2
+1+ε

dist
(

λ,∪∞
j=1{Λj}

)(p
4
−1+ε)+

|λ|γ
≤ C5

(

1 +
1

τ

)γ

K.
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Most of known results on the discrete spectrum of Pauli operators deal
with self-adjoint perturbations V and study its asymptotic behaviour near
the boundary points of its essential spectrum

(

see e.g. [15], [28]
)

. In this
work, we study non-self-adjoint perturbations and, as in [32, Theorem 2.1],
it can be verified that Theorem 2.1 above implies that a priori the discrete
eigenvalues of the perturbed operator P are getting less densely distributed
near the Landau levels than elsewhere near its essential spectrum.

3. Application of theorem 2.1 to the magnetic 2d-Schrödinger

operators, d ≥ 1

Let X⊥ := (x1, y1, . . . , xd, yd) ∈ R
2d, d ≥ 1 and b > 0 a constant. We

consider

(3.1) H0 :=

d
∑

j=1

{

(

Dxj
+

1

2
byj

)2

+

(

Dyj −
1

2
bxj

)2
}

,

the Schrödinger operators acting on L2
(

R
2d
)

:= L2
(

R
2d,C

)

with constant
magnetic field of strength b. The self-adjoint operator H0 is originally defined
on C∞

0

(

R
2d
)

, and then closed in L2
(

R
2d
)

. It is well known
(

see e.g. [8]
)

that
its spectrum consists of the increasing sequence of Landau levels

(3.2) Λj = b(d+ 2j), j ∈ N,

and the multiplicity of each eigenvalue Λj is infinite. As in (1.3), define the
perturbed operator

(3.3) H = H0 + V,

where we identify the non self-adjoint perturbation V with the multiplication
operator by the function V : R2d → C. As it was reported in [32], most of
known results on the discrete spectrum of Schrödinger operators deal with
self-adjoint perturbations V and study its asymptotic behaviour near the
boundary points of its essential spectrum. For V admitting power-like or
slower decay at infinity see [14, chap. 11-12], [23], [25], [26], [34], [35], and
for potentials V decaying at infinity exponentially fast or having a compact
support see [29]. For Landau Hamiltonians in exterior domains see [16], [21]
and [24].

According to condition (1.5), we first consider the class of non self-adjoint
electric potentials V satisfying

(3.4)
〈

Re (V )f, f
〉

≥ µ1‖f‖
2

and the following estimate

(3.5) |V (X⊥)| ≤ CF (X⊥), F ∈ Lp
(

R
2d
)

, p ≥ 2,

where C > 0 is a constant and F a positive function. Under these assump-
tions on V , we show that condition (1.7) according to (2.1) is in fact naturally
satisfied for any λ ∈ ρ(H0). Namely, Lemma 7.1 says that the p-Schatten
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norm of the weighted resolvent F (H0−λ)−1 satisfies some bound depending
on the Lp-norm of the function F . Hence we come to the following theorem;
a sketch of its proof is given in section 7.

Theorem 3.1. Let H = H0+V be the perturbed Schrödinger operator defined

by (3.3) with V satisfying conditions (3.4) and (3.5). Assume that F ∈
Lp

(

R
2d
)

, d ≥ 1 with p ≥ 2
[

d
2

]

+ 2. Then the following holds

(3.6)
∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=1{Λj}

)p

(

1 + |λ|
)2p ≤ C1‖F‖pLp ,

where Λj are the Landau levels defined by (3.2), and C1 = C(p, µ0, b, d) is a

constant depending on p, µ0 := µ1 − 1, b and d.

Since for any τ > 0 with |λ| ≥ τ estimate (2.3) holds, then we get the
following corollary.

Corollary 3.1. Under the assumptions and the notations of Theorem 3.1,

we have the following bound for any τ > 0

(3.7)
∑

λ∈σdisc(H)
|λ| ≥ τ

dist
(

λ,∪∞
j=1{Λj}

)p

|λ|2p
≤ C1

(

1 +
1

τ

)2p

‖F‖pLp .

By Theorem 3.1, a priori the isolated eigenvalues of H are distributed less
and less densely in a vicinity of the Landau levels with growing p.

Let us now consider the class of bounded non self-adjoint electric potentials
V . In this case, it can be easily checked that condition (3.4), then condition
(1.5) are satisfied with µ1 = −‖V ‖∞. More precisely we have

(3.8) σ(H) ⊂ N(H) ⊂
{

λ ∈ C : Reλ ≥ −‖V ‖∞ and |Imλ| ≤ ‖V ‖∞
}

.

So as in Theorem 3.1, we get the following result.

Theorem 3.2. [32, Theorem 2.2] Let H = H0+V be the perturbed Schrödinger

operator defined by (3.3) with V bounded and satisfying condition (3.5). As-

sume that F ∈ Lp
(

R
2d
)

, d ≥ 1 with p ≥ 2
[

d
2

]

+ 2. Then the following

holds

(3.9)
∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=1{Λj}

)p

(

1 + |λ|
)2p ≤ C2‖F‖pLp

(

1 + ‖V ‖∞
)2p

,

where Λj are the Landau levels defined by (3.2), and C2 = C(p, b, d) is a

constant depending on p, b and d.

In the spirit of Corollary 3.1, we get the following inequality.
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Corollary 3.2. [32, Corollary 2.2] Under the assumptions and the notations

of Theorem 3.2, we have the following bound for any τ > 0

(3.10)
∑

λ∈σdisc(H)
|λ| ≥ τ

dist
(

λ,∪∞
j=1{Λj}

)p

|λ|2p
≤ C2

(

1 +
1

τ

)2p

‖F‖pLp

(

1+ ‖V ‖∞
)2p

.

It is convenient to mention that the assumptions of theorem 3.1 are typi-
cally satisfied by the class of potentials V : R2d → C such that

(3.11) |V (X⊥)| ≤ C 〈X⊥〉
−m, m > 0, pm > 2d, p ≥ 2,

where C > 0 is a constant and 〈y〉 :=
(

1 + |y|2
)1/2

, y ∈ R
n, n ≥ 1. Some

examples showing the sharpness of our results in the two-dimensional case
are discussed In [32, subsection 2.2].

4. Application of Theorem 2.1 to the magnetic 2d-dimensional

Pauli operators, d ≥ 1

To simplify, we consider the two-dimensional Pauli operator H = H0 + V

acting in L2(R2) := L2(R2,C2) and describing a quantum non-relativistic
spin-12 particle subject to a magnetic field of strength b and a electric poten-
tial V . The general case can be treated in a same manner (see Remark 4.1
below). The self-adjoint unperturbed Pauli operator H0 given by

(4.1) H0 :=

(

(−i∇− A)2 − b 0
0 (−i∇− A)2 + b

)

=:

(

H1 0
0 H2

)

,

is defined originally on C∞
0 (R2) and then closed in L2(R2). Here A =

(A1, A2) : R
2 → R

2 is the magnetic potential, and

(4.2) b(X⊥) :=
∂A2

∂x
−

∂A1

∂y
, X⊥ = (x, y) ∈ R

2

is the magnetic field. We focus on the case where b > 0 is a constant. In
this situation, the spectrum σ(H0) of the Pauli operator H0

(

see e.g [8]
)

is
given by

(4.3) σ(H0) =

∞
⋃

j=1

{

Λj

}

, Λj = 2bj.

Now consider the matrix-valued electric potential

(4.4) V (X⊥) :=
{

vℓk(X⊥)
}

1≤ℓ,k≤2
, X⊥ = (x, y) ∈ R

2,

and introduce the perturbed operator

(4.5) H = H0 + V,

where we identify the potential V with the multiplication operator by the
matrix-valued function V . As in the case of Schrödingers operators, most
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of known results on the discrete spectrum of Pauli operators deal with self-
adjoint perturbations V

(

see e.g. [27]
)

. According to condition (1.5) and as
in (3.4), we first consider the class of non self-adjoint electric potentials V

satisfying

(4.6)
〈

Re (V )f, f
〉

≥ µ1‖f‖
2,

and the following estimate

(4.7) |vℓk(x)| ≤ CF (x), 1 ≤ ℓ, k ≤ 2, F ∈ Lp
(

R
2d
)

, p ≥ 2,

where C > 0 is a constant and F a positive function. Note that if the po-
tential V is diagonal, i.e. v12 = v21 = 0, then assumption (4.6) is satisfied
trivially if inf

(

Re (v11),Re (v22)
)

≥ µ1. In the case where V is non-diagonal,

if inf l,k
(

Re (vℓk)
)

≥ ω0 for some ω0 < 0, then it can be checked that assump-
tion (4.6) holds with µ1 = 2ω0. Under these assumptions on the potential V ,
relation (1.7) according to (2.1) is in fact naturally satisfied for any λ ∈ ρ(H0)
(see Lemma 8.1). More precisely, we obtain that the p-Schatten norm of the
weighted resolvent F (H0 − λ)−1 is bounded by the Lp-norm of the function
F up to a constant depending on λ. The sketch of the proof of the following
theorem will be given in section 8.

Theorem 4.1. Let H = H0 + V be the perturbed Pauli operator defined by

(4.5) with V satisfying conditions (4.6) and (4.7). Assume that F ∈ Lp
(

R
2
)

with p ≥ 2. Then the following holds

(4.8)
∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=1{Λj}

)p

(

1 + |λ|
)2p ≤ C3‖F‖pLp ,

where Λj are the Landau levels defined by (4.3), and C3 = C(p, µ0, b, d) is a

constant depending on p, µ0 := µ1 − 1, b and d.

Remark 4.1. Theorem 4.1 remains valid if we replace the two-dimensional

Pauli operator H0 by the general 2d-Pauli operators acting on L2
(

R
2d,C2

)

,

d ≥ 1, defined by

(4.9) H0 :=

(

H0,⊥ − bd 0
0 H0,⊥ + bd

)

=:

(

H
−
0,⊥ 0

0 H
+
0,⊥

)

,

where

H0,⊥ :=

d
∑

j=1

{

(

Dxj
+

1

2
byj

)2

+

(

Dyj −
1

2
bxj

)2
}

is the 2d-Schrödinger operators defined by (3.1). In this case the condition

on p for the function F ∈ Lp
(

R
2d
)

is p ≥ 2
[

d
2

]

+2 and the Landau levels are

given by 2bdj, j ∈ N.

As above, we have
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Corollary 4.1. Under the assumptions and the notations of Theorem 4.1,

we have the following bound for any τ > 0

(4.10)
∑

λ∈σdisc(H)
|λ| ≥ τ

dist
(

λ,∪∞
j=1{Λj}

)p

|λ|2p
≤ C3

(

1 +
1

τ

)2p

‖F‖pLp .

According to (2.5), by Theorem 4.1, a priori the isolated eigenvalues of H
are less densely distributed in a vicinity of the Landau levels with growing
values of p.

Let us now consider the class of bounded non self-adjoint electric potentials
V . In this case condition (4.6), then condition (1.5) are satisfied with µ1 =
−2‖V ‖∞. More exactly we have

(4.11) σ(H) ⊂ N(H) ⊂
{

λ ∈ C : Reλ ≥ −2‖V ‖∞ and |Imλ| ≤ 2‖V ‖∞
}

.

So we get the following theorem.

Theorem 4.2. Let H = H0 + V be the perturbed Pauli operator defined by

(4.5) with V bounded and satisfying (4.7). Assume that F ∈ Lp
(

R
2
)

with

p ≥ 2. Then the following holds

(4.12)
∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=1{Λj}

)p

(

1 + |λ|
)2p ≤ C4‖F‖pLp

(

1 + ‖V ‖∞
)2p

,

where Λj are the Landau levels defined by (4.3), and C4 = C(p, b, d) is a

constant depending on p, b and d.

Remark 4.2. Remark 4.1 remains valid for Theorem 4.2.

Using the lower bound (2.3), we get the following corollary.

Corollary 4.2. Under the assumptions and the notations of Theorem 4.2,

we have the following bound for any τ > 0

(4.13)
∑

λ∈σdisc(H)
|λ| ≥ τ

dist
(

λ,∪∞
j=1{Λj}

)p

|λ|2p
≤ C4

(

1 +
1

τ

)2p

‖F‖pLp

(

1+ ‖V ‖∞
)2p

.

5. Sketch of proof of the abstract result

Constants are generic, i.e. changing from a relation to another. The fol-
lowing result of Hansmann [13, theorem 1] is the first crucial tool of the
proof. Let B0 = B∗

0 be a bounded self-adjoint operator acting on a Hilbert
space, B a bounded operator satisfying B −B0 ∈ Sp, p > 1. Then

(5.1)
∑

λ∈σd(B)

dist
(

λ, σ(B0)
)p

≤ C‖B −B0‖
p
p,
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where the constant C is explicit and depends only on p. Note that we can
not apply (5.1) to the unbounded operators H0 and H. To fix this, let us
consider the bounded resolvents

(5.2) B0(µ0) := (H0 − µ0)
−1 and B(µ0) := (H − µ0)

−1,

where µ0 is the constant defined by (1.6). Furthermore,

(H − µ0)
−1 − (H0 − µ0)

−1 = −(H − µ0)
−1V (H0 − µ)−1,

we obtain

(5.3)
∥

∥B(µ0)−B0(µ0)
∥

∥

p

p
≤

∥

∥(H − µ0)
−1

∥

∥

p∥
∥V (H0 − µ0)

−1
∥

∥

p

p
,

Since (1.5) implies that dist
(

µ0, N(H)
)

≥ 1, then using [5, Lemma 9.3.14]
we get

(5.4)
∥

∥(H − µ0)
−1

∥

∥ ≤
1

dist
(

µ0, N(H)
) ≤ 1.

So by assumption (2.1) together with (5.3) and (5.4), we obtain finally

(5.5)
∥

∥B(µ0)−B0(µ0)
∥

∥

p

p
≤ K0,

where K0 is the constant defined in (2.1). Thus we see

(5.6)
∑

z∈σd(B(µ0))

dist
(

z, σ(B0(µ0))
)p

≤ CK0

by applying (5.1) to the resolvents B(µ0) and B0(µ0). Putting z = ϕµ0
(λ) =

(λ− µ0)
−1, we have by the Spectral Mapping theorem

(5.7) z ∈ σd

(

B(µ0)
)

(

z ∈ σ
(

B0(µ0)
)

)

⇐⇒ λ ∈ σd(H)
(

λ ∈ σ(H0)
)

.

Hence we come to a distortion lemma for the conformal map z = ϕµ0
(λ) =

(λ− µ0)
−1, which is the second important tool of the proof of the theorem.

Lemma 5.1. Let µ0 be the constant defined by (1.6) and Λj the Landau

levels defined by (1.2). Then the following bound holds

(5.8) dist
(

ϕµ0
(λ), ϕµ0

(∪∞
j=1{Λj})

)

≥
C dist

(

λ,∪∞
j=1{Λj}

)

(

1 + |λ|
)2 , λ ∈ C,

where C = C(µ0,Λ0) is a constant depending on µ0 and Λ0.

Proof. Follows as in the proof of Lemma 6.2 of [32]. �

Now let us turn back to the proof of Theorem 2.1. Combining Lemma
5.1, estimate (5.6) and the identity (5.7), we get

∑

λ∈σdisc(H)

dist
(

λ,∪∞
j=1{Λj}

)p

(

1 + |λ|
)2p ≤ C0‖F‖pLp ,

where C0 = C(p, µ0,Λ0) is a constant depending on p, µ0 and Λ0. This
concludes the proof of Theorem 2.1.
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•

Λ0

• • • •

E

×

µ0+Λ0
2

•

µ0

λ 7−→ ϕµ0
(λ) = z = 1

λ−µ0

J = [Λ0,+∞)

•
1

Λ0−µ0

••••

ϕµ0
(E)

•

0

ϕµ0
(J) =

[

0, 1
Λ0−µ0

]

Figure 5.1. Image of the complex plane by the con-

formal map ϕµ0
: ϕµ0

(

{

λ ∈ C : Reλ < µ0

}

)

=
{

z ∈

C : Rez < 0
}

; ϕµ0

(

the gray disk
)

=
{

z ∈ C : Rez ≥ 1
Λ0−µ0

}

;

ϕµ0

(

{

µ0 ≤ Reλ ≤ Λ0

}

)

=
{

z ∈ C : Rez ≥ 0
}

∩ outside the disk hatched;

ϕµ0

(

{

λ ∈ C : Reλ ≥ Λ0

}

)

= the disk hatched.

6. Sketch of proof of Theorem 2.2

Let P0 be the Pauli operator defined by (1.8) acting on L2
(

R
2d+1

)

=

L2
(

R
2d
)

⊗ L2
(

R
)

, d ≥ 1. In this section we give a sketch of proof of The-
orem 2.2 assuming that the matrix-valued electric potential V satisfies as-
sumptions (1.11) and (1.12).

6.1. Estimate of the weighted resolvents of P0 and P. Recall that the
spectrum of the Pauli operator P0 consists of Landau levels Λj defined by
(1.9), j ∈ N. Let Pℓ, ℓ = 1, 2 be the Schrödinger operators defined in (1.8).
Obviously for any λ in the resolvent set of P0 we have

(6.1) (P0 − λ)−1 =

(

(P1 − λ)−1 0
0 (P2 − λ)−1

)

.

Denote by pj the orthogonal projection onto ker
(

H
−
0,⊥ −Λj

)

, where H
∓
0 are

the Schrödinger operators defined by (4.9). Then we have

(P1 − λ)−1 =
∑

j∈N

pj ⊗
(

D2
x + Λj − λ

)−1
,

(P2 − λ)−1 =
∑

j∈N∗

pj−1 ⊗
(

D2
x + Λj − λ

)−1
.

(6.2)
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Consequently we obtain the following lemma which can be proved as in [32,
Lemma 3.1].

Lemma 6.1. Let d ≥ 1 and λ ∈ C \ [0,+∞). Assume that F ∈ Lp
(

R
2d+1

)

with p ≥ 2
[

d
2

]

+ 2 and G ∈
(

L2 ∩ L∞
)(

R
)

. Then there exists a constant

C = C(p, b, d) such that

(6.3)
∥

∥F (P0 − λ)−1G
∥

∥

p

p
≤

C(1 + |λ|)d+
1

2K1

dist
(

λ, [0,+∞)
)

p

2 dist
(

λ,∪∞
j=1{Λj}

)
p

4

,

where Λj are the Landau levels defined by (1.9) and

(6.4) K1 := ‖F‖pLp

(

‖G‖L2 + ‖G‖L∞

)p
.

Now let λ0 be such that

(6.5) min
(

|Imλ0|,dist
(

λ0, N(P)
)

)

≥ 1 + ‖V ‖∞,

where P is the perturbed operator defined by (1.10). We have the following
lemma which can be proved as in [32, Lemma 3.2].

Lemma 6.2. Assume that λ0 satisfies condition (6.5). Under the assump-

tions of Lemma 6.1, there exists a constant C = C(p) such that

(6.6)
∥

∥F (P− λ0)
−1G

∥

∥

p

p
≤ C(1 + |λ0|)

d+ 1

2K2,

where the constant K2 is defined by

(6.7) K2 := ‖F‖pLp‖G‖pL∞ .

6.2. Proof of Theorem 2.2. Follows as in the proof of [32, Theorem 2.1]
with the help of Lemma 6.1 and Lemma 6.2. Since σess(P) = [0,+∞) with
an infinite set of thresholds Λj , we shall obtain two types of estimates. First,
we bound the sums depending on parts of σdisc(P) concentrated around a
Landau level Λj using the Schwarz-Christoffel formula

(

see e.g. [18, Theorem

1, p. 176]
)

, and second, we get global estimates summing up the previous
bounds with appropriate weights.

7. On the magnetic 2d-dimensional Schrödinger operators,

d ≥ 1

Let H0 be the Schrödinger operator defined by (3.1) acting on L2
(

R
2d,C

)

,
d ≥ 1. In this section we shall give a sketch of proof of Theorem 3.1. We
assume that the perturbation V satisfies conditions (3.4) and (3.5).
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7.1. Estimate of the weighted resolvent. We recall that the spectrum
of the Schrödinger operator H0 consists of Landau levels Λj defined by (3.2),
j ∈ N. Thus for any λ in the resolvent set of H0, we have

(7.1) (H0 − λ)−1 =
∑

j∈N

(Λj − λ)−1pj,

where pj is the orthogonal projection onto ker (H0 − Λj).

Lemma 7.1. [32, Lemma 6.1] Let Λj be the Landau levels defined by (3.2)

and λ ∈ C \ ∪∞
j=1{Λj}. Assume that F ∈ Lp

(

R
2d
)

, d ≥ 1 with p ≥ 2
[

d
2

]

+ 2.

Then there exists a constant C = C(p, b, d) such that

(7.2)
∥

∥F (H0 − λ)−1
∥

∥

p

p
≤

C(1 + |λ|)d‖F‖pLp

dist
(

λ,∪∞
j=1{Λj}

)p .

7.2. Proof of Theorem 3.1. It suffices to show that (2.1) happens with
K0 = C1 ‖F‖pLp , where C1 is the constant defined in (3.6). According to
assumption (3.4) on V , the choice of µ0 defined by (1.6) implies that

dist
(

µ0, E
)

≥ 1.

Otherwise, if V satisfies assumption (3.5), then there exists a bounded oper-
ator V such that for any X⊥ ∈ R

2d, V (X⊥) = VF (X⊥). Thus with the help
of Lemma 7.1, we conclude in particular that

∥

∥V (H0 − µ0)
−1

∥

∥

p

p
≤ C(p, µ0, b, d)‖F‖pLp .

Now, Theorem 3.1 follows immediately using Theorem 2.1.

8. On the magnetic 2d-dimensional Pauli operators, d ≥ 1

Let H0 be the Pauli operator defined by (4.1) acting on L2
(

R
2,C2

)

. In
this section we give a sketch of proof of Theorem 4.1 and Theorem 4.2.
We assume that the matrix-valued electric potential V satisfies assumptions
(4.4) and (4.7).

8.1. Estimate of the weighted resolvent. Recall that the spectrum of
the Pauli operator H0 consists of Landau levels Λj defined by (4.3), j ∈ N.
Let Hℓ, ℓ = 1, 2 be the Schrödinger operators defined in (4.1). Obviously
for any λ in the resolvent set of H0 we have

(8.1) (H0 − λ)−1 =

(

(H1 − λ)−1 0
0 (H2 − λ)−1

)

.

Denote by pj the orthogonal projection onto ker (H1 − Λj). Then

(8.2) (H1−λ)−1 =
∑

j∈N

(Λj−λ)−1pj and (H2−λ)−1 =
∑

j∈N∗

(Λj−λ)−1pj−1

So we obtain the following lemma which is the analogue of Lemma 7.1 in the
case of Pauli operator with d = 1.
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Lemma 8.1. Let Λj be the Landau levels defined by (4.3) and λ ∈ C \
∪∞
j=1{Λj}. Assume that F ∈ Lp

(

R
2
)

with p ≥ 2. Then there exists a constant

C = C(p, b, d) such that

(8.3)
∥

∥F (H0 − λ)−1
∥

∥

p

p
≤

C(1 + |λ|)d‖F‖pLp

dist
(

λ,∪∞
j=1{Λj}

)p .

8.2. Proof of Theorem 4.1. Follows as in the proof of Theorem 3.1.

8.3. Proof of Theorem 4.2. Follows as in the proof of Theorem 2.2 of [32]
with the help of Lemma 8.1.
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