
HAL Id: hal-00926741
https://hal.science/hal-00926741

Submitted on 14 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-stationary spectral estimation for wind turbine
induction generator faults detection

El Houssin El Bouchikhi, Vincent V. Choqueuse, Mohamed Benbouzid

To cite this version:
El Houssin El Bouchikhi, Vincent V. Choqueuse, Mohamed Benbouzid. Non-stationary spectral es-
timation for wind turbine induction generator faults detection. IECON 2013, Nov 2013, Vienne,
Austria. pp.7376 - 7381, �10.1109/IECON.2013.6700360�. �hal-00926741�

https://hal.science/hal-00926741
https://hal.archives-ouvertes.fr


Non-Stationary Spectral Estimation for Wind

Turbine Induction Generator Faults Detection

El Houssin El Bouchikhi 1, Vincent Choqueuse 1 and M.E.H. Benbouzid 1

1University of Brest, EA 4325 LBMS, Rue de Kergoat, CS 93837, 29238 Brest Cedex 03, France

Abstract—Development of large scale offshore wind and ma-
rine current turbine farms implies to minimize and predict
maintenance operations. In direct- or indirect-drive, fixed- or
variable-speed turbine generators, advanced signal processing
tools are required to detect and diagnose the generator faults
from vibration, acoustic, or generator current signals. The
induction generator is traditionally used for wind turbines power
generation. Even if induction machines are highly reliable, they
are subjected to many types of faults. The aim then, is to detect
them at an early stage in order to prevent breakdowns and
consequently ensure the continuity of power production. In this
context, this paper deals with wind turbines condition monitoring
using a fault detection technique based on the generator stator
current. The detection algorithm uses a recursive maximum
likelihood estimator to track the time-varying fault characteristic
frequency and the related energy. Furthermore, a decision-
making scheme and a related criterion are proposed.

The feasibility of the proposed approach has been demon-
strated using simulation data issued from coupled magnetic
circuits induction generator model driven by a wind turbine for
both electrical asymmetry and mechanical imbalance.

Index Terms—Wind turbines, induction machine, faults de-
tection, stator current, spectral estimation, maximum likelihood
estimator.

I. INTRODUCTION

Diagnosis and condition monitoring are effective means to

improve wind turbine reliability and performance and reduce

wind turbine operating and maintenance costs. They are one of

the huge issues that face the deployment of offshore systems

such as wind or marine current turbines [1]–[3]. In fact,

the availability and the reliability of these systems decrease

significantly when they are settled in the ocean [4].

Most existing technologies for wind turbine condition mon-

itoring require additional sensors and data acquisition devices

to be implemented [5]. The use of these sensors and devices

increases cost, size, and hardware wiring complexity of the

wind turbine condition monitoring system. Most of these

sensors are mounted on the surface or are buried in the body of

wind turbine components, which are difficult to access during

wind turbine operation. Therefore, it is desirable to develop a

non-intrusive, lower-cost, and more reliable technology to fully

exploit the benefits of condition monitoring for wind turbines.

In the last few years, many studies demonstrated the interest

of using the stator current to monitor induction generators

and therefore the associated wind turbine [6], [7]. In previous

works, wind turbine faults detection was performed using

advanced signal processing techniques such as demodulation

techniques [8], [9] and time-frequency techniques [10], [11].

Moreover, adaptive fault frequency tracking techniques have

been proposed for stator current based fault detection in wind

generators [12], [13]. However, these methods were adopted

without concerns about the signal nature (multi-component

signals, non-stationary signals, etc.) nor about their perfor-

mances. Many techniques have been proposed and, in some

practical situations, it is not easy to select the most appropriate

one. Moreover, These papers do not present a post-processing

algorithms allowing to extract a fault indicator from these

stator current time-frequency techniques. If good performances

are required, the easiness of results interpretation is also a key

feature for a future implementation in a real-time monitoring

system.

This paper presents a current-based technique for online

wind turbine condition monitoring. The proposed technique

uses only phase current signals measured from generator stator

terminals for the wind turbine condition monitoring. Since

these current measurements are used by existing wind turbine

control systems, no additional sensors or data acquisition de-

vices are required to implement the proposed technique. This

technique is able to effectively extract the wind turbine fault or

failure from current measurements using adaptive fault related

frequency estimation. Afterwards, recursive algorithm is used

in order to extract a fault severity indicator. Simulation results

prove that the proposed technique offers an effective mean to

achieve condition-based, nonintrusive, and smart maintenance

for wind turbines.

II. ADAPTIVE TIME-FREQUENCY TECHNIQUE AS

MEDIUM FOR FAULT DETECTION IN WIND

GENERATOR

A. Wind Generator Stator Current Model

The induction machine stator current x[n] in presence of

mechanical and/or electrical faults can be expressed as follows

x[n] =
L

∑
k=−L

ak cos

(
2π fk(Ω(n))×

(
n

Fs

)
+φk

)
+b[n] (1)

where x[n] corresponds to the nth stator current sample, b[n]
corresponds to the noise and L is the number of sidebands

introduced by the fault. The parameters fk(Ω), ak and φk

correspond to the frequency, the amplitude and the phase of

the kth component , respectively. Symbol Fs corresponds to



the sampling frequency and Ω(n) is a set of parameters to

be estimated at each time n depending on the fault studied.

It worth to notice that the time and space harmonics are not

considered but it is possible to met the signal model in (1)

by filtering the original signal using a low-pass anti-aliasing

filter.

At time n=0,1,2,3... the observed stator current vector x(n)∈
R

m, defined as x(n) = [x(n)...x(n+M−1)]T , can be expressed

as

x(n) = A(Ω(n))v(n)+b(n) (2)

where:

− x(n) = [x[n], · · · ,x[n+M−1]]T is a M×1 column vector

containing the stator current samples,

− b(n)= [b[n], · · · ,b[n+M−1]]T is a M×1 column vector

containing the noise samples,

− v(n) is a 2(2L + 1)× 1 column vector containing the

amplitudes and phases of the characteristic fault frequen-

cies. This vector is given by

v(n) = [a−L cos(φ−L) . . .aL cos(φL),

−a−L sin(φ−L) . . .−aL sin(φL)]
T (3)

− A(Ω(n)) is a N ×2(2L+1) matrix given by

A(Ω(n)) = [z−L(n) . . .zL(n),y−L(n) . . .yL(n)] (4)

where:

zk(n) =




1

cos
(

2π fk(Ω(n))× 1
Fs

)

...

cos
(

2π fk(Ω(n))× M−1
Fs

)




yk(n) =




0

sin
(

2π fk(Ω(n))× 1
Fs

)

...

sin
(

2π fk(Ω(n))× M−1
Fs

)




− Ω(n) is a set of parameters to be estimated depending

on the fault.

− The symbol (.)T corresponds to the matrix transpose.

The problem is then to estimate the fundamental frequency,

the fault characteristic frequency, and their amplitudes for

fault characterization. The computation of the current spectrum

shown in Fig. 1 from stator current samples x(n) is treated as

a statistical estimation problem. The observation noise b(n)
is assumed to be zero-mean white Gaussian distributed with

variance σ2.

B. Fault Characteristic Frequency and Fault Detection Crite-

rion Estimation

In this section, we present a maximum likelihood (ML)

based fault characteristic frequency estimation. We consider
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Fig. 1. Theoretical PSD for L = 2 [14].

how to solve the optimization problem in a computationally

simple manner. Then, we explore a fault criterion estimation

for decision making.

1) Estimate of Ω(n) : The algorithm operates on a signal

sub-vectors at times n. Although the approach of splitting the

signal into sub-vectors is inherently suboptimal since it ignores

inter-vector dependencies, it is required in order to estimate

signal and noise covariance matrices. For multiple observation

vectors, the ML estimate of Ω(n) can be shown to be the

maximizer of the cost function [15]

J (Ω(n)) =−Tr{A(Ω(n))A†(Ω(n))R(n)} (5)

with A†(Ω(n)) is the pseudo-inverse of A(Ω(n)) i.e.

A†(Ω(n)) =
(
AT (Ω(n))A(Ω(n))

)−1
AT (Ω(n)) (6)

where, (.)−1 corresponds to the matrix inverse, and Tr(.)
denotes the matrix trace.

The covariance matrix R(n) of the observed signal is given

by

R(n) = E{x(n)xT (n)} (7)

The proposed methodology relies on this covariance matrix.

In practice, the covariance matrix is unknown and must be

replaced by its estimate, the sample covariance matrix, i.e.,

R̂(n) =
1

G

G−1

∑
n=0

x(n)xT (n) (8)

Since x[n] has length M and we have N observations of

x[n], we can thus construct G = N−M+1 different subvectors

{x[n]}G−1
n=0 . There is some inherent tradeoffs in choices of N

and M and thereby the number of the sub-vectors G [15].

Finally, Ω(n) can be estimated from this cost function as

{Ω̂(n)}= argmax
Ω

J (Ω(n)) (9)

This estimator is capable of handling non-stationary signals

since the covariance matrix is estimated in recursive manner by

dividing the signal into time segments and then, the covariance



matrix is estimated with 50% overlap between stator current

segments x[n].
2) Estimation of L: The fault diagnosis comprise two steps;

the fault detection and the fault isolation. The estimation of L

allows to distinguish the faulty machine from the healthy one.

In this paper, we propose an approach based on the Minimum

Description Length (MDL) principle [16] for L estimation in

order to enhance fault detection and afterwards accuracy while

estimating the fault severity.

{Ω̂(n), L̂(n)}= argmax
Ω,L

−Tr{
(
IM −A(Ω(n))A†(Ω(n))

)

R(n)}× exp

(
c(g,M)

M

)
(10)

with c(g,M) = g log(M) is the criterion information rule, and

g = 4L+5 is the number of free parameters. Furthermore, IM

is the identity matrix of size M.

3) Fault detection criterion: The ML estimate of v(n)
denoted v̂(n) is given by [15]

v̂ = A†(Ω̂(n))x (11)

Since the information about the fault severity is carried out

by ak (k 6= 0), we propose to compute the sum of the squares

of the (normalized) amplitude of the fault characteristic fre-

quencies. This criterion is mathematically expressed as

C (n) =
L

∑
k=−L,k 6=0

(
a2

k

a2
0

)
(12)

Using the structure of v(n) in (3), it can be shown that

C (n) can be obtained directly from v(n) without computing

ak. Indeed, the fault criterion in (12) can be expressed under

the following matrix form:

C (n) =
vT (n)v(n)

vT (n)Mv(n)
−1 (13)

where M is a (4L+2)× (4L+2) matrix which is given by
[

EL+1,L+1 0

0 EL+1,L+1

]
(14)

and where Eu,v is the (2L+ 1)× (2L+ 1) elementary matrix

which is 1 in the uth row and vth column and is zero elsewhere.

In practice, one should note that v(n) is unknown and must

be replaced by its estimate v̂(n) in (13) to compute C (n).
The fault detection approach is summed up in Algorithm 1.

C. Numerical Example

Synthetic signals x(n) were simulated by using the signal

model described in Fig. 1. We consider the case where the

fault characteristic frequency is given by fk = fs +k fc (k ∈ Z)

and where fs = 50Hz, fc = 10Hz, L = 1, and SNR = 50 dB.

The set Ω = { fs(n), fc(n),L(n)} constitutes the parameters to

be estimated. The cost function in (5) is shown in Fig. 2 for

a time segment of a signal x(n) described by the model given

Algorithm 1 Non stationary estimation-based failure severity

criteria.

Require: N -stator current data samples x[n].

1: Estimate the sample covariance matrix using (8).

2: Compute the MLE exact cost function in (10),

3: Optimization procedure in order to find Ω̂(n) and L̂(n),

if L̂(n) = 0 then

f ault = 0

C (n) = 0

else

f ault = 1

Estimate v̂(n) with (11)

Compute fault detection criterion C (n) using (13)

end if

4: Return Ω̂, L̂, f ault, v̂, and C .
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Fig. 2. Cost function at time n for fc and fs estimation (case where
fault exists and L(n) = 1).

by (1). It can be seen that it allows to determine the supply

frequency as well as the fault characteristic frequency.

For incipient fault detection performance, we propose to

apply the proposed approach on signal with no fault until 2s,

then a fault occur with time-varying related fault frequency

( fc = 10Hz until 4s Hz, then fc = 15Hz), sidebands number

and severity increasing. The simulation results are shown in

Fig. 4 for the estimation of L, fc, and fs. Figure 3 displays the

time-frequency representation using the spectrogram and the

proposed methodology as well as the proposed fault detection

criterion.

It can be concluded that the proposed method allows track-

ing the fault related frequency and the number of sidebands.

In contrary to the spectrogram, the proposed approach is more

accurate since it allows to detect 4 sidebands around the supply

frequency for 4 < t < 6. This adaptive fault detection method

will be used in the following for wind turbine induction

generator fault detection using simulated stator current.
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Fig. 3. Time-frequency representation and proposed fault criterion variation.
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Fig. 4. Fundamental frequency, fault related frequency and sidebands
number estimation.

III. APPLICATION TO WIND TURBINE FAULTS

DETECTION

The proposed approach performance is evaluated using

simulated stator currents issued from a Matlab-Simulink R©-

based simulation tool of healthy and faulty induction machine

[17]. In this context, a 4 kW induction generator is used and is

driven by a wind turbine. The proposed technique is evaluated

for rotor imbalance and broken rotor bar faults detection.

A. Induction Generator Modelling Briefly

For most faults, the harmonic contents of the stator cur-

rent can be calculated satisfactory using linear models of

the machine such as the coupled magnetic circuit method.

This approach is based on the analytical equations of the

induction machine. All parameters are calculated from the

actual geometry and winding layout of the machines rather

than from transformed or equivalent variables. This analysis

is based on some assumptions: infinite iron permeability,

non conductive magnetic circuit, no inter-bars currents and

negligible saturation. The detailed description of this model

can be found in [17]–[19].

The simulation has been performed using 2 pair poles,

a 4 kW /50 Hz, 230/400.induction machine. The induction

machine model was operated as generator driven by a wind

turbine. The model was operated for 10s and the fault appears

at 5s. The simulation results; the mechanical speed, the elec-

tromagnetic torque, and the stator current are given by Fig. 5

for one broken rotor bar.

In this paper, we investigate the performance of the pro-

posed fault detection strategy for mechanical imbalance fault

as it concerns approximately 80% of the mechanical faults

[20], [21] and the broken rotor bars as it is one of the electrical

asymmetries that is difficult to detect since the squirrel cage

currents are not directly accessible.

B. Simulation Results

1) Electrical asymmetry detection: Computer simulations

have been performed to assess the operating features of the

proposed fault detection scheme for 0, 1, 2, and 3 broken

rotor bars. The simulations have been done for adjacent and

non-adjacent broken rotor bars.

It can be seen from Fig. 6 that the proposed methodology

provides a reliable way to track the fault related frequency

based on the stator current. Moreover, it allows to track the

fault severity which gives to the operator an idea about the

health state of the induction generator and the associated

turbine. This shows the potential of the proposed approach to

detect incipient electrical asymmetry faults on a wind turbine

generator.

2) Mechanical imbalance fault detection: The mechanical

imbalance fault was simulated by considering static, dynamic,

and mixed eccentricity. In fact, the non-uniformity between

the stator and the rotor leads to air gap eccentricity. In this

simulations, 5% eccentricity fault is considered until 5s, then

the severity increases to 10% air gap eccentricity. Figures 7,

8 and 9, give the simulation results for static, dynamic and

mixed eccentricities detection using the proposed algorithm.

These results demonstrate the effectiveness of the proposed

approach for electrical fault detection in induction machine

operated as generator. Even if wind turbulence influence
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Fig. 5. Faulty induction generator-based wind turbine simulation signals.
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(b) Fault detection criterion tracking.

Fig. 6. Fault severity tracking using the proposed approach; 1, 2, and
3 bars has been broken consecutively.

(amplitude modulation seen in the time domain) tends to hide

the fault influence on the stator current especially for incipient

fault, the proposed approach demonstrated good performance

and allows to measure the fault severity. As compared to

other time-frequency techniques [10], the proposed approach

is developed to meet the requirement of fault detection which

are the fault characteristic frequency tracking and fault severity

measurement.

IV. CONCLUSION

To improve wind turbines (WT) availability and reduce

operating and maintenance costs, this paper has proposed a

new WT condition monitoring technique. From the achieved

simulation results, it can be concluded that the proposed
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(b) Fault detection criterion tracking.

Fig. 7. Fault severity tracking using the proposed approach; static
eccentricity.

method is able to detect both electrical and mechanical

faults using stator current processing. In fact, the maximum

likelihood-based fault related frequency tracking provides a

feasible condition monitoring approach applicable to WTs

generators operating at either fixed or variable speed.

Further investigations should be performed in order to

validate the approach proposed on power signals issued from

induction generators and from real WTs operating under

mechanical and electrical faults. Furthermore, it is mandatory

to establish the feasibility of the approach on variable-speed

WT (based on DFIG and PMSG) under closed-loop control.
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(b) Fault detection criterion tracking.

Fig. 8. Fault severity tracking using the proposed approach; dynamic
eccentricity.
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Fig. 9. Fault severity tracking using the proposed approach; mixed
eccentricity.
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