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Abstract—Current spectrum analysis is a proven technique
for fault diagnosis in electrical machines. Current spectral
estimation is usually performed using classical techniques such as
periodogram (FFT) or its extensions. However, these techniques
have several drawbacks since their frequency resolution is limited
and additional post-processing algorithms are required to extract
a relevant fault detection criterion. Therefore, this paper proposes
a new parametric spectral estimator that fully exploits the
faults sensitive frequencies. The proposed technique is based
on the maximum likelihood estimator and offers high-resolution
capabilities. Based on this approach, a fault criterion is derived
for detecting several fault types.

The proposed faults detection technique is assessed using
simulations, issued from a coupled electromagnetic circuits
approach-based simulation tool. It is afterwards validated using
experiments on a 0.75-kW induction machine test bed for the
particular case of bearing faults.

Index Terms—Induction machine, faults detection, bearing
faults, stator current, parametric spectral estimation.

I. INTRODUCTION

Condition monitoring is of high concern in industrial ap-

plications since it minimizes the downtime and improves the

reliability, availability, safety and productivity of electrical

drives. For electrical motors and generators, fault detection

is usually performed by vibration monitoring, temperature

measurements, oil monitoring, flux monitoring or current

analysis. Among these various techniques, current analysis

has several advantages since it is a noninvasive technique that

avoids the use of extra sensors since the stator currents are

usually available and inexpensive to measure [1]–[4].

Many studies have shown that fault monitoring could be

performed by supervising the current spectrum. In particular, it

has been demonstrated that faults introduce additional spectral

components in the stator current around the supply frequency

[3], [4]. For a faulty machine, the frequency location of

these components is given by fk(Ω), where fk corresponds

to the kth component (k ∈ Z), and Ω is a set of parameters

that must be estimated in order to determine the induction

machine health condition. These frequencies are associated

with several mechanical and/or electrical faults such as air-gap

eccentricity, bearing failures or broken rotor bars. Traditional

current-based techniques for fault detection monitor the stator

current spectrum and, more precisely, the fault characteristic

frequencies [5]. In steady-state conditions, techniques based

on conventional power spectral density (PSD) estimators have

been employed. These techniques can be classified into two

categories: non-parametric and parametric methods.

Non-parametric methods include the periodogram, which is

usually implemented using Fast Fourier Transform (FFT), and

its extensions. The classical periodogram has been applied

for fault detection in [3], [4]. The main drawback of this

technique relies on its performance. The so-called Zoom-FFT

(ZFFT) technique [6], [7] has been introduced to improve the

frequency accuracy in a specified frequency range without

increasing the computational complexity. Nevertheless, the

periodogram and its extensions suffer from a low frequency

resolution, which is defined as the ability to distinguish two

closely spaced frequency components [8]. Parametric methods

can be employed to improve the frequency resolution. These

techniques are generally called high-resolution methods and

include two sub-classes: the linear prediction methods and

the subspace techniques. The linear prediction class contains

several algorithms like the Prony and Pisarenko methods. The

use of these methods for fault detection in electrical drives

has been investigated in [9] and [10]. The subspace class

includes the MUSIC and ESPRIT approaches. Applications for

induction machine faults diagnosis are available in [11]–[14].

However, these techniques are computationally demanding and

statistically suboptimal.

In this paper, we propose a parametric PSD estimator based

on the maximum likelihood estimator (MLE). The MLE is

asymptotically optimal PSD estimator [15]. In the case of

induction machine fault detection, we demonstrate that the

MLE is computationally efficient since it leads to a 2-D

optimization problem that is easy to implement. Besides, an

efficient implementation of the MLE requires the knowledge

of frequency components numbers which is a model order

estimation problem. In order to estimate the model order,

we propose to combine the MLE with an order-dependent

penalty term based on information criteria rules [16]. It must

be emphasized that the sidebands number (2×L) estimation

is of great interest since it contribute to inform us about the

fault existence. Moreover, if the order is not estimated (chosen)

correctly, the fault characteristic frequency may erroneously

be estimated at, for example, half or double of the true value.

First, the model order and the PSD are estimated by using the

MLE combined with information theoretic criteria. Then, a

simple fault criterion is computed from the amplitude estimate

of the fault characteristic frequencies.



II. STATOR CURRENT SIGNAL MODEL

A. Faults Effect on Stator Current Spectrum

The induction machine is subjected to various failures that

affect mainly three components : the stator, the rotor and/or

the bearings. Recent paper dealing with induction machine

faults distribution [17] have shown that bearings (69%), stator

windings (21%), rotor (7%), and shaft/coupling (3%) are the

most failing components. Most of the recent researches on

induction machine faults detection has been directed toward

electrical monitoring with emphasis on stator current supervi-

sion. In particular, the current spectrum is analysed to extract

the frequency components introduced by the fault. A summary

of stator current induction machine faults related frequencies

are presented in Table 1.

Table 1. Induction machine faults signatures [3], [4].

Induction

machine state

Frequency

Signature
Parameters

Bearing

Damage
| fs ± k fo| k = 1,2,3, ...

Broken

Rotor Bars
fs

[
k( 1−s

p
)± s

]
k
p
= 1,5,7, ...

Air Gap

Eccentricity
fs

[
1± k

(
1−s

p

)]
k = 1,2,3, ...

Load

Oscillation
fs

[
1± k

(
1−s

p

)]
k = 1,2,3, ...

Where s is the per unit slip, fo corresponds to one of

the characteristic vibration frequencies which depends on the

bearing dimensions, and p is the number of pole pairs.

The frequencies given by Table 1 are used in the faulty

induction machine stator current model described in the

following section. When a fault occurs, the amplitude of

these frequencies increases and reveals abnormal operating

conditions.

B. Induction Machine Stator Current Signal Model

Based on the faults signature described on Table 1, the

stator-current samples x[n] can be expressed as

x[n] =
L

∑
k=−L

ak cos

(
2π fk(Ω)×

(
n

Fs

)
+φk

)
+b[n] (1)

The observation noise b[n] is assumed to be zero-mean

white Gaussian distributed with variance σ2 i.e. b[n] ∼
N (0,σ2). Symbols fk(Ω), ak and φk correspond to the

frequency, the amplitude and the phase of the kth frequency

component, respectively. Ω is a set of parameters to be

estimated in order to get the signal power spectral density.

Symbol Fs corresponds to the sampling rate.

The theoretical PSD of x[n] is given by Fig. 1 [8]. In

practice, the PSD is unknown, and must be estimated from

σ2
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Fig. 1. Theoretical PSD for L = 2 [8].

N samples. Using a matrix notation, x[n] (n = 0, · · · ,N − 1)

can be expressed as

x = A(Ω)v+b (2)

where:

− x = [x[0], · · · ,x[N −1]]T is a N × 1 column vector con-

taining the stator current samples,

− b = [b[0], · · · ,b[N −1]]T is a N × 1 column vector con-

taining the noise samples,

− v is a 2(2L+1)×1 column vector containing the ampli-

tudes and phases of the characteristic fault frequencies.

This vector is given by

v = [a−L cos(φ−L) . . .aL cos(φL),

−a−L sin(φ−L) . . .−aL sin(φL)]
T (3)

− A(Ω) is a N ×2(2L+1) matrix given by

A(Ω) = [z−L . . .zL,y−L . . .yL] (4)

where

zk =

[
1 cos

(
2π fk(Ω)×

1

Fs

)
. . .cos

(
2π fk(Ω)×

N −1

Fs

)]T

yk =

[
0 sin

(
2π fk(Ω)×

1

Fs

)
. . .sin

(
2π fk(Ω)×

N −1

Fs

)]T

(5)

We propose a parametric estimator that exploits the signal

model in (2). Hence, the computation of the current spectrum

from stator current samples x is treated as a statistical estima-

tion problem.

III. PARAMETRIC PSD ESTIMATION

In this section, we present a maximum likelihood estimator

for PSD estimation based on the signal model given by (2).

Then, the MLE is extended to take into account the estimation

of the model order. Finally, a fault detection criterion is

computed based on these estimates.



A. Proposed Estimator

The MLE is used in order to estimate v and Ω. Then a

penalty term is applied to the MLE cost function in order to

estimate the model order i.e. L.

1) Estimate of v and Ω: The ML estimator of v, and Ω is

given by

{v̂,Ω̂}= argmax
v,Ω

log(p(x;v,Ω)) (6)

where p(x;v,Ω) is the probability density function (pdf) of x

which is given by

p(x;v,Ω) =
1

(2πσ2)
N
2

× exp

[
−

1

2σ2
(x−A(Ω)v)T (x−A(Ω)v)

]
(7)

where (.)T denotes the matrix transpose. The ML estimates of

Ω and v are obtained by maximizing the pdf with respect to the

unknown parameters. The maximization in (6) is equivalent to

the minimization of the following cost function [18]:

L (x;v,Ω) = (x−A(Ω)v)T (x−A(Ω)v) (8)

Differentiating L (x;v,Ω) with respect to v and setting the

derivative equal to 0 leads to the ML estimate of v denoted v̂.

v̂ = A†(Ω)x (9)

where A†(Ω) is the pseudo-inverse of A(Ω) i.e.

A†(Ω) =
(
AT (Ω)A(Ω)

)−1
AT (Ω) (10)

and where (.)−1 corresponds to the matrix inverse.

The ML estimate of Ω is obtained by minimizing L (x; v̂,Ω)
with respect to Ω. By replacing v by v̂ in (8), we obtain

{Ω̂}= argmax
Ω

J (Ω) (11)

where:

J (Ω) = xT A(Ω)A†(Ω)x (12)

2) Estimate of model order L: In order to extend the MLE

for model order estimation L̂, a penalty term based on MDL

principle is applied to the MLE cost function in (12). Hence,

the estimation of L can be performed by maximizing the

penalized ML estimate of Ω as follows

{Ω̂, L̂}= argmin
Ω,L

(−2log p(x, v̂, σ̂2,Ω,L)

+ c(g,N)) (13)

where c(g,N) is a penalty function which depends on the

number of free parameters g and the number of data samples

N. Under the assumption that the number of the components

is equal to 2L+1, g = 4L+5. The criterion information rule

used within this paper is the minimum description length (also

called the Bayesian Information Criterion Rule) [16] and is

given by

c(g,N) = g log(N) (14)

A straightforward computation leads to following cost func-

tion:

{Ω̂, L̂}= argmax
Ω,L

−
(
xT x−J (Ω)

)

× exp

(
c(g,N)

N

)
(15)

Finally, the PSD estimate of the stator current is composed

of two steps: a) the estimates of Ω, and L are obtained from

(15), and b) the vector v containing the amplitude and the

phase of the fault characteristic frequencies is estimated by

replacing Ω, and L with its estimates in (9).

About the implementation, the main difficulty relies on

the optimization problem in (15). As the maximum can not

be found analytically, numerical method should be used to

estimate Ω and L. In our context, the cost function is only

composed of three parameters ( fs, fc, and L), which implies

a maximization in a 3-D space. The search space is relatively

limited since the variation range of Ω and L are approx-

imately known. For these reasons, we propose to perform

the maximization of (15) with a simple grid-search algorithm

[18]. It should be noted that the maximization step could be

computationally demanding since it requires the construction

and the inversion of a large matrix for each vertex of the grid.

B. Fault Detection Criterion

In order to successfully perform fault detection, a fault

criterion is needed to measure the machine state. As the

information about the fault severity is carried out by ak

(k 6= 0), we propose to compute the sum of the squares of the

(normalized) amplitude of the fault characteristic frequencies.

This criterion is expressed mathematically as

C =
L

∑
k=−L,k 6=0

(
a2

k

a2
0

)
(16)

The proposed criterion in (16) depends on the amplitudes

ak (k = −L, · · · ,L). Once the PSD is estimated, ak can be

extracted from the vector v̂. This fault detection criterion is

an extension of the total harmonic distortion (THD) [19].

The fault detection algorithm is summed up in Fig. 2. This

algorithm can be implemented for real-time monitoring of an

induction machine. Compared to other PSD-based monitoring

technique (Periodogram, MUSIC, ESPRIT), the proposed ap-

proach is quite attractive since the vector v directly conveys

information about the characteristic frequencies.

IV. APPLICATION TO INDUCTION MACHINE

FAULTS DETECTION

The proposed approach has been implemented in Matlab-

Simulink R© on a HP ProBook PC at 2.2 Ghz with 2 Go

of RAM. Its performance is evaluated with simulated stator

currents for eccentricity and broken rotor bars faults and

experimental data for bearing failures.
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Fig. 2. Fault detection algorithm.

A. Simulation Results

An induction machine model for healthy and faulty ma-

chines has been developed based on the coupled magnetic

circuits theory [5], [20], [21]. In these simulations dynamic

eccentricities are introduced to emulate a bearing fault. Indeed,

a bearing fault will cause a mechanical vibration, essentially

equivalent to a dynamic eccentricity [22], [23]. In the carried-

out simulations, bearing faults are emulated by generating

rotating eccentricities at bearing characteristic fault frequency

fc which leads to periodical changes in the induction machine

inductances [23]. Moreover, broken rotor bars are emulated by

suppressing the corresponding broken rotor bar.

1) Eccentricity fault detection results: The algorithm

shown in Fig. 2 is used to extract a fault detection crite-

rion. The eccentricity fault characteristic frequency is used,

i.e. fk(Ω) = fs ± k fc where fc =
(

1−s
p

)
fs. The grid search

algorithm has been implemented using a fine search: fc ranges

from 0 Hz to 100 Hz with a step size of 0.01 Hz. Table

2 summarizes the simulation results. This table presents the

estimated fault frequency fc, the sidebands number L, and the

fault detection criterion C .

The analysis of Table 2 allows concluding that the proposed

approach permits to detect the eccentricity fault. Indeed in

presence of eccentricity faults, the fault criterion increases

significantly. Therefore, a simple threshold-based decision can

distinguish between the healthy and the faulty cases.

Table 2. Eccentricity fault simulation results.

State
L̂

(Hz)

f̂c

(Hz)

C

(×10−3)

Healthy 0 0 0

Static
1 24.46 1.1

eccentricity

Dynamic
1 48.87 5.3

eccentricity

Mixed
2 24.43

8eccentricity

2) Broken rotor bars fault detection results: Broken rotor

bar is one of the electrical faults that is difficult to detect

since the squirrel cage current can not be acquired. The broken

rotor bars characteristic frequency is used in the signal model

i.e. fk(Ω) = fk( fs,s) = fs

[
k
(

1−s
p

)
± s

]
. Computer simulations

have been performed for assessment of operating features of

the proposed fault detection scheme.

Table 3. Broken rotor bars simulation results.

State k̂/p
ŝ

(%)

C

(×10−3)

Healthy 0 0 0

1 broken bar 1,3,5 5.8 4.6

2 broken bars 1,3,5,7 6.2 24.4

3 broken bars 1,3,5,7 6.6 49.7

Table 3 gives simulation results for 1 to 3 broken rotor bars

for the proposed parametric estimation technique. The broken

bars are adjacent. The criterion has been evaluated for different

fault degrees. It can be noticed that the fault criterion varies

in proportion to the number of broken rotor bars. It is worthy

to notice that in the proposed approach case, the estimation of
k
p

leads to informations about faults presence. Furthermore, It

permits to enhance the sensitivity of the fault criterion.

B. Experimental Results

Bearing failure is one of the foremost causes of breakdowns

in rotating machinery, resulting in costly downtime [17]. One

of the key issues in bearing prognostics is to detect the defect

at its incipient stage and alert the operator before it develops

into catastrophic failure.

1) Test rig: A conventional 0.75 kW induction machine

drive test rig is used in order to test the proposed parametric

spectral estimation fault detection approach [1].

The test rig mechanical part (Fig. 3) is composed by a

synchronous and an induction machine. The induction machine

is fed by the synchronous generator in order to eliminate time

harmonics. Indeed, this will automatically eliminate supply

harmonics and therefore allow focusing only on bearing faults



effect on the stator current. The induction machine rated

parameters are given by Appendix A.

The induction machine has two 6204.2 ZR type bearings

(single row and deep groove ball bearings) with the following

parameters: outside diameter is 47 mm, inside diameter is 20

mm, and pitch diameter D is 31.85 mm. A bearing has 8 balls

with an approximate diameter d of 12 mm and a contact angle

of 0◦. Bearing faults are obtained by simply drilling holes

in different parts [24]. In order to study the load influence,

the induction machine was operated with various load levels

ranging from 0 W to 400 W.

Tacho

Generator Induction motor Alternator

(a) Mechanical part.

Connectors to

the mechanical part Current transformers Load(bulbs)

(b) Electrical part.
Outlet to DAQ

card and PC

Fig. 3. Test rig.

The measured quantities for off-line bearing fault detection

were the line-currents. For all the experiments, the stator

fundamental frequency was equal to fs = 50 Hz. All the signals

were acquired at a 10 kHz sampling frequency by a data

acquisition card and processed using Matlab-simulink R©. As

the information relative to the bearing faults is mostly located

below 300 Hz, these signals were down-sampled at a 600 Hz

sampling rate.

2) Fault detection results: In presence of bearing faults,

it has been shown in [23], [25] that the fault characteristic

frequencies are given by: fk(Ω) = | fs ± k fc| (k ∈ Z). The

algorithm in Fig. 2 is again used to extract a fault detec-

tion criterion. Similarly to the simulation configuration, the

number L has been estimated in order to decide whether

the induction machine is operating with healthy bearings or

damaged ones. If L = 0 then the bearings are safe, otherwise

the bearing is damaged and criterion in (16) is computed in

1 2 3 4
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No Load
100W
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400W

Fig. 4. Proposed approach: values of the fault detection criterion C
for 1- Healthy case 2- Inner raceway fault 3- Cage fault 4- Ball fault.

order to measure the fault severity and then take decision.

Preliminary tests have shown that most of the characteristic

fault frequencies are greater than fs = 50 Hz (for example

fc = 66.6 Hz for ball defect) which means that most of the

frequency components related to fault are located at the right-

side of the supply frequency fs due to the absolute value

of the frequencies introduced by faults (Table 1). Therefore,

the proposed approach has been used to extract these right-

side components. This simplification is not equivalent to

minimization of time harmonics in power supply since these

frequencies are different from multiples of the fundamental

frequency fs = 50 Hz.

Experimental results are reported in Fig. 4 for the proposed

method. This figure displays the criterion C for healthy and

faulty machines with various load levels.

For the proposed fault detection approach, in the case of

healthy machine, the model order estimate L̂ is zero which

implies that the criterion is equal to 0. From this bar chart,

it could be observed that the proposed criterion significantly

increases for each faulty machine, regardless of the fault type

and load level. Therefore, a simple estimation of L gives

an indication of the existence of fault. To determine fault

severity, the proposed criterion computation is mandatory and

threshold-based fault detector must be defined.

This figure also shows that the criterion C decreases with

the load level. This could be explained by the fact that the

load tends to hide the faults effect on the stator current.

However, the fault severity criterion remains clearly higher

than in the case of healthy machine. These results confirm

the effectiveness of the proposed technique for bearing faults

detection.

V. CONCLUSION

This paper has proposed a statistical-based approach for

fault detection in induction machines. The proposed PSD



estimator has been computed using the maximum likelihood

estimation approach. As opposed to non-parametric PSD es-

timators, the proposed technique exploits the fault frequency

signatures in order to improve the performance of the fault

detection criterion. As a result, the proposed estimator has

better frequency-resolution and frequency-accuracy than other

techniques such as the periodogram.

The proposed approach was successfully tested on simu-

lations (eccentricity and broken rotor bars) and experimen-

tal tests with various bearing faults and load conditions.

Simulation and experimental results have corroborated the

efficiency of the proposed method, regardless of the fault type.

Furthermore, these results have suggested that the estimation

of L is very interesting since it allows to make a direct and

fast first idea about the machine operating state.

APPENDIX A

RATED DATA OF THE TESTED INDUCTION MACHINE

0.75 kW, 50 Hz, 220/380 V, 3.4/1.95 A, 2780 rpm, p =1
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