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Abstract—In this paper, we investigate in a unified way the
structural properties of solutions to inverse problems. These
solutions are regularized by the generic class of semi-norms
defined as a decomposable norm composed with a linear operator,
the so-called analysis type decomposable prior. This encompasses
several well-known analysis-type regularizations such as the
discrete total variation (in any dimension), analysis group-Lasso
or the nuclear norm. Our main results establish sufficient
conditions under which uniqueness and stability to a bounded
noise of the regularized solution are guaranteed. Along the way,
we also provide a strong sufficient uniqueness result that is of
independent interest and goes beyond the case of decomposable
norms.

I. INTRODUCTION

A. Problem statement

Suppose we observe

y = Φx0 + w, where ||w||2 6 ε ,

where Φ is a linear operator from R
N to R

M that may

have a non-trivial kernel. We want to robustly recover an

approximation of x0 by solving the optimization problem

x⋆ ∈ Argmin
x∈RN

1
2 ||y − Φx||22 + λR(x) , (1)

where

R(x) := ||L∗x||A ,

with L : R
P → R

N a linear operator, and || · ||A : R
P → R

+

is a decomposable norm in the sense of [1]. Decomposable

regularizers are intended to promote solutions conforming to

some notion of simplicity/low complexity that complies with

that of u0 = L∗x0. This motivates the following definition of

these norms. Throughout the paper, given a subspace V ⊂ R
P ,

we will use the shorthand notation LV = LPV , L∗
V = PV L∗,

and αV = PV α for any vector α ∈ R
P , where PV (resp.

PV ⊥ ) is the orthogonal projector on V (resp. on its orthogonal

complement V ⊥).

Definition 1. A norm || · ||A is decomposable at u ∈ R
P if:

(i) there is a subspace T ⊂ R
P and a vector e ∈ T such

that

∂|| · ||A(u) =
{

α ∈ R
P | αT = e and ||αT⊥ ||∗A 6 1

}

(ii) and for any z ∈ T⊥, ||z||A = supv∈T⊥,||v||∗
A

61〈v, z〉,
where || · ||∗A is the dual norm of || · ||A.

From this definition, it can be easily proved, using Fenchel

identity, that u ∈ T whenever || · ||A is decomposable at u.

Popular examples covered by decomposable regularizers are

the ℓ1-norm, the ℓ1-ℓ2 group sparsity norm, and the nuclear

norm [1].

B. Contributions and relation to prior work

In this paper, we give a strong sufficient condition under

which (1) admits a unique minimizer. From this, sufficient

uniqueness conditions are derived. Then we develop results

guaranteeing a stable approximation of x0 from the noisy

measurements y by solving (1), with an ℓ2-error that comes

within a factor of the noise level ε. This goes beyond [1] who

considered identifiability under a generalized irrepresentable

condition in the noiseless case with L = Id. ℓ2-stability for a

class of decomposable priors closely related to Definition 1, is

also studied in [8] for L = Id and general sufficiently smooth

data fidelity. Their stability results require however stronger

assumptions than ours (typically a restricted strong convexity

which becomes a type of restricted eigenvalue property for

linear regression with quadratic data fidelity). The authors

in [3] provide sharp estimates of the number of generic mea-

surements required for exact and ℓ2-stable recovery of models

from random partial information by solving a constrained form

of (1) regularized by atomic norms. This is however restricted

to the compressed sensing scenario. Our results generalize the

stability guarantee of [7] established when the decomposable

norm is ℓ1 and L∗ is the analysis operator of a frame. A

stability result for general sublinear functions R is given in [6].

The stability is however measured in terms of R, and ℓ2-

stability can only be obtained if R is coercive, i.e., L∗ is

injective.

At this stage, we would like to point out that although

we carry out our analysis on the penalized form (1), our

results remain valid for the data fidelity constrained version

but obviously with different constants in the bounds. We omit

these results for obvious space limitations.

II. UNIQUENESS

A. Main assumptions

We first note that traditional coercivity and convexity argu-

ments allow to show that the set of (global) minimizers of (1)

is a non-empty compact set if, and only if, ker(Φ)∩ker(L∗) =
{0}.



The following assumptions will play a pivotal role in our

analysis.

Assumption (SCx) There exist η ∈ R
M and α ∈ ∂||·||A(L∗x)

such that the following so-called source (or range) condition

is verified:

Φ∗η = Lα ∈ ∂R(x) .

Assumption (INJT ) For a subspace T ⊂ R
P , Φ is injective

on ker(L∗
T⊥).

It is immediate to see that since ker(L∗) ⊆ ker(L∗
T⊥),

(INJT ) implies that the set of minimizers is indeed non-empty

and compact.

B. Strong Null Space Property

We shall now give a novel strong sufficient uniqueness con-

dition under which problem (1) admits exactly one minimizer.

Theorem 1. For a minimizer x⋆ of (1), let T and e be the

subspace and vector in Definition 1 associated to u⋆ = L∗x⋆,

and denote S = T⊥. x⋆ is the unique minimizer of (1) if

〈L∗
T h, e〉 < ||L∗

Sh||∗A, ∀h ∈ ker(Φ) \ {0} .

The above condition is a strong generalization of the Null

Space Property well known in ℓ1 regularization [4].

C. Sufficient uniqueness conditions

1) General case: A direct consequence of the above theo-

rem is the following corollary.

Corollary 1. For a minimizer x⋆ of (1), let T and e be the

subspace and vector in Definition 1 associated to u⋆ = L∗x⋆,

and denote S = T⊥. Assume that (SCx⋆ ) is verified with

||αS ||∗A < 1, and that (INJT ) holds. Then, x⋆ is the unique

minimizer of (1).

In fact, it turns out that the above two results are proved

without requiring some restrictive implications of Defini-

tion 1(ii) of decomposable norms, and are therefore valid for

a much larger class of regularizations. This can be clearly

checked in the arguments used in the proofs.

2) Separable case:

Definition 2. The decomposable norm || · ||A is separable on

the subspace T⊥ = S = V ⊕ W ⊂ R
P if for any u ∈ R

P ,

||uT⊥ ||A = ||uV ||A + ||uW ||A.

Separability as just defined is fulfilled for several decom-

posable norms such as the ℓ1 or ℓ1 − ℓp norms, 1 6 p < +∞.

The non-saturation condition on the dual certificate required

in Corollary 1 can be weakened to hold only on a subspace

V ⊂ S and the conclusions of the corollary remain valid, and

assuming a stronger restricted injectivity assumption. We have

the following corollary.

Corollary 2. Assume that || · ||A is also separable, with S =
V ⊕ W , such that (SCx⋆ ) is verified with ||αV ||∗A < 1, and

(INJV ) holds. Then, x⋆ is the unique minimizer of (1).

III. STABILITY TO NOISE

A. Main result

1) General case: We are now ready to state our main

stability results.

Theorem 2. Let T0 and e0 be the subspace and vector in

Definition 1 associated to u0 = L∗x0, and denote S0 = T0
⊥.

Assume that (SCx0
) is verified with ||αS0

||∗A < 1, and that

(INJT0
) holds. Then, choosing λ = cε, c > 0, the following

holds for any minimizer x⋆ of (1)

||x⋆ − x0||2 6 Cε ,

where C = C1 (2 + c||η||2)+C2
(1+c||η||2/2)2

c(1−||αS0
||∗
A)

, and C1 > 0 and

C2 > 0 are constants independent of η and α.

Remark 1 (Separable case). When the decomposable norm

is also separable (see Corollary 2), the stability result of

Theorem 2 remains true assuming that ||αV ||∗A < 1 for

V ⊂ S0. This however comes at the price of the stronger

restricted injectivity assumption (INJV ). To show this, the only

thing to modify is the statement and the proof of Lemma 2

which can be done easily using similar arguments to those in

the proof of Corollary 2.

2) Case of frames: Suppose that L∗ is the analysis operator

of a frame (ker(L∗) = {0}) with lower bound a > 0, let L̃ be

a dual frame. The following stability bound can be obtained

whose proof is omitted for space limitations.

Proposition 1. Let T0 and e0 be the subspace and vector in

Definition 1 associated to u0 = L∗x0, and denote S0 = T0
⊥.

Assume that (SCx0
) is verified with ||αS0

||∗A < 1, and that Φ
is injective on Im(L̃T0

). Then, choosing λ = cε, c > 0, the

following holds for any minimizer x⋆ of (1)

||x⋆ − x0||2 6 C ′ε ,

where C ′ = C1 (2 + c||η||2) + C ′
2

(1+c||η||2/2)2

c(1−||αS0
||∗
A)

, and C1 > 0

and C ′
2 > 0 are constants independent of η and α.

Since ker(L∗
S0

) ⊆ Im(L̃T0
), the required restricted injectiv-

ity assumption is more stringent than (INJT0
). On the positive

side, the constant C ′
2 is in general better than C2. More

precisely, the constant CL, see the proof of Theorem 2, is

replaced with
√

a. Note also that coercivity of R in this case

allows to derive a bound similar to ours from the results in [6].

His restricted injectivity assumption is however different and

our constants are sharper.

B. Generalized irrepresentable condition

In the following corollary, we provide a stronger sufficient

stability condition that can be viewed as a generalization of

the irrepresentable condition introduced in [5] when R is the

ℓ1 norm. It allows to construct dual vectors η and α which

obey the source condition and are computable, which in turn

yield explicit constants in the bound.



Definition 3. Let T ⊂ R
P and e ∈ R

P , and denote S = T⊥.

Suppose that (INJT ) is verified. Define for any u ∈ ker(LS)
and z ∈ R

M such that Φ∗z ∈ Im(LS)

ICu,z(T, e) = ||Γe + uS + (LS)+Φ∗z||∗A
where

Γ = (LS)+(Φ∗ΦΞ − Id)LT0

Ξ : h 7→ Ξh = argmin
x∈ker(L∗

S
)

1
2 ||Φx||22 − 〈h, x〉 ,

and M+ is the Moore-Penrose pseudoinverse of M . Let ū, z̄
and u defined as

(ū, z̄) = argmin
u∈ker(LS),{z | Φ∗z∈Im(LS)}

ICu,z(T, e)

and u = argmin
u∈ker(LS)

ICu,0(T, e) .

Obviously, we have

ICū,z̄(T, e) 6 ICu,0(T, e) 6 IC0,0(T, e) .

The convex programs defining ICū,z̄(T, e) and ICu,0(T, e)
can be solved using primal-dual proximal splitting algorithms

whenever the proximity operator of || · ||A can be easily

computed [2]. The criterion ICu,0(T, e) specializes to the one

developed in [10] when || · ||A is the ℓ1 norm. IC0,0(T, e) is a

generalization of the coefficient involved in the irrepresentable

condition introduced in [5] when R is the ℓ1 norm, and to the

one in [1] for decomposable priors with L = Id.

Corollary 3. Assume that (INJT0
) is verified and

ICū,z̄(T0, e0) < 1. Then, taking η = ΦΞLT0
e0 + z̄,

one can construct α such that (SCx0
) is satisfied and

||αS0
||∗A < 1. Moreover, the conclusion of Theorem 2 remains

true substituting 1 − ICū,z̄(T0, e0) for 1 − ||αS0
||∗A.

IV. PROOFS

A. Proof of Theorem 1

A key observation is that by strong (hence strict) convexity

of x 7→ ||y−Φx||22, all minimizers of (1) share the same image

under Φ. Therefore any minimizer of (1) takes the form x⋆+h
where h ∈ ker(Φ). Furthermore, it can be shown by arguments

from convex analysis that any proper convex function R has

a unique minimizer x⋆ (if any) over a convex set C if its

directional derivative satisfies

R′(x⋆;x − x⋆) > 0, x ∈ C, x 6= x⋆ .

Applying this to (1) with C = x⋆ +ker(Φ), and using the fact

that the directional derivative is the support function of the

subdifferential, we get that x⋆ is the unique minimizer of (1)

if, and only if, ∀ h ∈ ker(Φ) \ {0}
0 < R′(x⋆;h) = sup

v∈∂R(x⋆)

〈v, h〉

= sup
α∈∂||·||A(L∗x⋆)

〈α, L∗h〉

= 〈e, L∗
T h〉 + sup

||αS ||∗
A
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〈αS , L∗
Sh〉

= 〈e, L∗
T h〉 + ||L∗

Sh||A .

We conclude using symmetry of the norm and the fact that

ker(Φ) is a subspace.

B. Proof of Corollary 1

The source condition (SCx⋆ ) implies that ∀ h ∈ ker(Φ)\{0}
〈h, Lα〉 = 〈h, Φ∗η〉 = 〈Φh, η〉 = 0 .

Moreover

〈h, Lα〉 = 〈L∗h, α〉 =〈L∗
T h, e〉 + 〈L∗

Sh, αS〉 .

Thus, applying the dual-norm inequality we get

〈L∗
T h, e〉 6 ||L∗

Sh||A||αS ||∗A < ||L∗
Sh||A ,

where the last inequality is strict since L∗
Sh does not vanish

owing to (INJT ), and ||αS ||∗A < 1.

C. Proof of Corollary 2

We follow the same lines as the proof of Corollary 1 and

get

〈L∗h, α〉 = 〈L∗
T h, e〉 + 〈L∗

V h, αV 〉 + 〈L∗
W h, αW 〉 .

We therefore obtain

〈L∗
T h, e〉 6 ||L∗

V h||A||αV ||∗A + ||L∗
W h||A||αW ||∗A

< ||L∗
V h||A + ||L∗

W h||A = ||L∗
Sh||∗A ,

where we used that h /∈ ker(L∗
V ), ||αV ||∗A < 1, separability

and ||αW ||∗A 6 ||αV ||∗A + ||αW ||∗A = ||αS ||∗A 6 1.

D. Proof of Theorem 2

We first define the Bregman distance/divergence.

Definition 4. Let DR
s (x, x0) be the Bregman distance associ-

ated to R with respect to s ∈ ∂R(x0),

DR
s (x, x0) = R(x) − R(x0) − 〈s, x − x0〉 .

Define DA
α (u, u0) as the Bregman distance associated to || · ||A

with respect to α ∈ ∂|| · ||A(u0).

Observe that by convexity, the Bregman distance is non-

negative.

Preparatory lemmata We first need the following key

lemmata.

Lemma 1 (Prediction error and Bregman distance convergence

rates). Suppose that (SCx0
) is satisfied. Then, for any mini-

mizer x⋆ of (1), and with λ = cε for c > 0, we have

DR
Φ∗η(x⋆, x0) = DA

α (L∗x⋆, L∗x0) 6 ε
(1 + c||η||2/2)

2

c
,

||Φx⋆ − Φx0||2 6 ε(2 + c||η||2) .

The proof follows the same lines as that for

any sublinear regularizer, see e.g. [9], where we

additionally use the source condition (SCx0
) and

DR
Φ∗η(x, x0) = DR

Lα(x, x0) = DA
α (L∗x, L∗x0).

Now since || · ||A is a norm, it is coercive, and thus

∃ CA > 0 s.t. ∀x ∈ R
P , ||x||A > CA||x||2.



We get the following inequality.

Lemma 2 (From Bregman to ℓ2 bound). Suppose that (SCx0
)

holds with ||αS0
||∗A < 1. Then,

||L∗
S0

(x⋆ − x0)||2 6
DA

α (L∗x⋆, L∗x0)

CA (1 − ||αS0
||∗A)

,

Proof: Decomposability of || · ||A implies that ∃v ∈ S0

such that ||v||∗A 6 1 and ||L∗
S0

(x⋆−x0)||A = 〈L∗
S0

(x⋆−x0), v〉.
Moreover, v + e0 ∈ ∂|| · ||A(L∗x0). Thus

DA
α (L∗x⋆, L∗x0) > DA

α (L∗x⋆, L∗x0)

−DA
v+e0

(L∗x⋆, L∗x0)

= 〈v + e0 − α, L∗(x⋆ − x0)〉
= 〈v − αS0

, L∗
S0

(x⋆ − x0)〉
= ||L∗

S0
(x⋆ − x0)||A
−〈αS0

, L∗
S0

(x⋆ − x0)〉
> ||L∗

S0
(x⋆ − x0)||A(1 − ||αS0

||∗A)

> CA||L∗
S0

(x⋆ − x0)||2(1 − ||αS0
||∗A) .

Proof of the main result

||x⋆ − x0||2 6 ||Pker(L∗
S0

)(x
⋆ − x0)||2

+||PIm(L∗
S0

)(x
⋆ − x0)||2

6 CΦ
−1||ΦPker(L∗

S0
)(x

⋆ − x0)||2
+||PIm(L∗

S0
)(x

⋆ − x0)||2
6 CΦ

−1||Φ(x⋆ − x0)||2
+(1 + CΦ

−1||Φ||2,2)||PIm(L∗
S0

)(x
⋆ − x0)||2 ,

where we used assumption (INJT0
), i.e.,

∃ CΦ > 0 s.t. ||Φx||2 > CΦ||x||2, ∀x ∈ ker(L∗
S0

) .

Since L∗
S0

is injective on the orthogonal of its kernel, there

exists CL > 0 such that

||x⋆ − x0||2 6 CΦ
−1||Φ(x⋆ − x0)||2

+
||Φ||2,2+CΦ

CLCΦ

||L∗
S0
PIm(L∗

S0
)(x

⋆ − x0)||2 .

Noticing that

||L∗
S0

(x⋆ − x0)||2 = ||L∗
S0
PIm(L∗

S0
)(x

⋆ − x0)||2,

we apply Lemma 2 to get

||x⋆ − x0||2 6 CΦ
−1||Φ(x⋆ − x0)||2

+
||Φ||2,2+CΦ

CLCΦ(1−||αS0
||∗
A)

DA
α (L∗x⋆, L∗x0) .

Using Lemma 1 yields the desired result.

E. Proof of Corollary 3

Take α = e0 + Γe0 + ūS0
+ (LS0

)+Φ∗z̄. First, αT0
= e0

since e0 ∈ T0 and Im(Γ) ⊆ Im((LS0
)+) = Im(L∗

S0
). Then

||αS0
||∗A = ICū,z̄(T0, e0) < 1, whence we get that α ∈ ∂|| ·

||A(L∗x0).
Now, we observe by definition of Ξ that Pker(L∗

S0
)(Φ

∗ΦΞ−
Id)LT0

= 0, which implies that Im((Φ∗ΦΞ − Id)LT0
)) ⊆

Im(LS0
). In turn, LS0

Γ = LS0
(LS0

)+ ((Φ∗ΦΞ − Id)LT0
) =

PIm(LS0
) ((Φ∗ΦΞ − Id)LT0

) = (Φ∗ΦΞ − Id)LT0
. This, to-

gether with the fact that ū ∈ ker(LS0
) and Φ∗z̄ ∈ Im(LS0

)
yields

LS0
α = (Φ∗ΦΞ − Id)LT0

e0 + Φ∗z̄

= Φ∗η − LT0
α ⇐⇒ Φ∗η = Lα ,

which implies that Φ∗η = Lα ∈ ∂R(x0). We have just shown

that the vectors α and η as given above satisfy the source

condition (SCx0
) and the dual non-saturation condition. We

conclude by applying Theorem 2 using (INJT0
).

V. CONCLUSION

We provided a unified analysis of the structural properties of

regularized solutions to linear inverse problems through a class

of semi-norms formed by composing decomposable norms

with a linear operator. We provided conditions that guarantee

uniqueness, and also those ensuring stability to bounded noise.

The stability bound was achieved without requiring (even

partial) recovery of T0 and e0. Recovery of T0 and e0 for

analysis-type decomposable priors and beyond is currently

under investigation. Another perspective concerns whether the

ℓ2 bound on x⋆ − x0 can be extended to cover more general

low complexity-inducing regularizers beyond decomposable

norms.
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