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Precession driven flows in non-axisymmetric
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We study the flow forced by precession in rigid non-axisymmetric ellipsoidal containers.
To do so, we revisit the inviscid and viscous analytical models which have been previously
developed for the spheroidal geometry by respectively Poincaré [Bull. Astron. 27, 321
(1910)] and Busse [J. Fluid Mech. 33, 739 (1968)], and, we report the first numerical
simulations of flows in such a geometry. In strong contrast with axisymmetric spheroids
where the forced flow is systematically stationary in the precessing frame, we show that
the forced flow is unsteady and periodic. Comparisons of the numerical simulations with
the proposed theoretical model show excellent agreement for both axisymmetric and non-
axisymmetric containers. Finally, since the studied configuration corresponds to a tidally
locked celestial body such as the Earth’s Moon, we use our model to investigate the
challenging but planetary relevant limit of very small Ekman numbers and the particular
case of our Moon.
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1. Introduction

1.1. General context

A rotating solid object is said to precess when its rotation axis itself rotates about a
secondary axis that is fixed in an inertial frame of reference. The case of a precessing fluid-
filled container has been studied for over one century because of its multiple applications.
These flows are indeed present in fluid-filled spinning tops (Stewartson 1959), gyroscopes,
(Gans 1984) or tanks of spacecrafts (Garg et al. 1986; Agrawal 1993), possibly affecting
the spacecraft stability (Bao & Pascal 1997). Precession driven flows are also present
in planetary fluid layers, such as the liquid core of the Earth (Greff-Lefftz & Legros
1999) or the Moon (Meyer & Wisdom 2011), where they possibly participate in the
dynamo mechanism generating their magnetic fields (Bullard 1949; Bondi & Lyttleton
1953; Malkus 1968). These flows may also have an astrophysical relevance, for instance
in neutron stars interiors where they can play a role in the observed precession of radio
pulsars (Glampedakis et al. 2009).
The first theoretical studies considered the case of an inviscid fluid in a spheroidal

container (Hough 1895; Sloudsky 1895; Poincaré 1910). Assuming a uniform vorticity,
they obtained a solution, the so-called Poincaré flow, given by the sum of a solid body
rotation and a potential flow. However, the Poincaré solution is modified by the apparition
of boundary layers, and some strong internal shear layers are also created in the bulk of
the flow (Stewartson & Roberts 1963; Busse 1968). These viscous effects have been taken
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into account as a correction to the inviscid flow in a spheroid, by considering carefully
the Ekman layer and its critical regions (Busse 1968; Zhang et al. 2010). Beyond this
correction approach, the complete viscous solution, including the fine description of all
the flow viscous layers, has recently been obtained in the particular case of a spherical
container with weak precession (Kida 2011).
When the precession forcing is large enough compared to viscous effects, instabilities

can occur and destabilize the Poincaré flow. First, the Ekman layers can be destabilized
(Lorenzani 2001) through standard Ekman layer instabilities (Lingwood 1997; Faller
1991). In this case, the instability remains localized near the boundaries. Second, the
whole Poincaré flow can be destabilized, leading to a volume turbulence: this is the
precessional instability (Malkus 1968). This small-scale intermittent flow confirm the
possible relevance of precession for energy dissipation or magnetic field generation, and
has thus motivated many studies. Early experimental attempts (Vanyo 1991; Vanyo et al.

1995) to confirm the theory of Busse (1968) did not give very good results (Pais & Le
Mouël 2001). Simulations have thus been performed in spherical containers (Tilgner 1999;
Tilgner & Busse 2001), spheres (Noir et al. 2001), and finally in spheroidal containers
(Lorenzani & Tilgner 2001, 2003), allowing a validation of the theory of Busse (1968).
Experimental confirmation of the theory has then been obtained in spheroids (Noir et al.
2003), a work followed by many experimental studies involving spheres (Goto et al. 2007;
Kida & Nakazawa 2010; Boisson et al. 2012), spherical containers (Triana et al. 2012),
but also cylinders (Meunier et al. 2008; Lagrange et al. 2008, 2011).
Finally, the dynamo capability of precession driven flows has then been demonstrated

in spheres (Tilgner 2005, 2007), spheroids (Wu & Roberts 2009) and cylinders (Nore
et al. 2011), allowing the possibility of a precession driven dynamo in the liquid core of
the Earth (Kerswell 1996) or the Moon (Dwyer et al. 2011).

1.2. Motivations

All the previously cited works have considered axisymmetric geometries. However, in
natural systems, both the planet rotation and the gravitational tides deform the celestial
body into a triaxial ellipsoid, where the so-called elliptical (or tidal) instability may
take place (Lacaze et al. 2004; Le Bars et al. 2010; Cébron et al. 2010a). Generally
speaking, the elliptical instability can be seen as the inherent local instability of elliptical
streamlines (Bayly 1986; Waleffe 1990; Le Dizès 2000), or as the parametric resonance
between two free inertial waves (resp. modes) of the rotating unbounded (resp. bounded)
fluid and an elliptical strain (of azimutal wavenumber m = 2). Similarly, it has been
suggested that the precession instability comes from the parametric resonance of two
inertial waves with the forcing related to the precession of azimutal wavenumber m = 1
in spheroids (Kerswell 1993; Wu & Roberts 2009) and in cylinders (Lagrange et al.

2008, 2011). However, the precession instability is also observed in spheres where there
is no m = 1 forcing from the container boundary. It has thus been suggested that the
precession instability may be related to another mechanism (Lorenzani & Tilgner 2001,
2003). Clearly, the precise origin of the precession instability is still under debate, and is
beyond the point of the present work. But since tides and precession are simultaneously
present in natural systems, it seems necessary to study their reciprocal influence, in
presence or not of instabilities.
The full problem is thus rather complex, involving non-axisymmetric geometries and

three different rotating frames: the precessing frame, with a period Tp ≈ 26 000 years
for the Earth, the frame of the tidal bulge, with a period around Td ≈ 27 days for the
Earth, and the container or ’mantle’ frame, with a period Ts = 23.9 hours for the Earth.
Working in a frame where the geometry is at rest is particularly suitable for theoretical
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and numerical studies, and this is only possible when two of the three problem timescales
are equal. The case Td = Tp where the container is fixed in the precessing frame has
already been considered (Cébron et al. 2010b), with triaxial ellipsoidal (deformable)
containers in order to study the interaction between the elliptical instability and the
precession. In this work, we rather focus on the case Td = Ts, which corresponds to rigid
precessing containers. This model is thus relevant for fluid layers of terrestrial planets
or moons locked in a synchronization state (i.e. Td = Ts) such as the liquid core of the
Moon.
The paper is organized as follows. In section 2, we define the problem and introduce the

theoretical inviscid and viscous models considered in this work. Using non-linear viscous
three-dimensional simulations, we then validate successfully in section 3 the proposed
theoretical viscous model. The results obtained are then discussed (section 4) and applied
to the liquid core of the Moon in the conclusion (section 5).

2. Mathematical description of the problem

We consider an incompressible fluid of density ρ and kinematic viscosity ν enclosed in
a triaxial ellipsoid of principal axes (a, b, c). The cavity rotates along its principal axis of

length c, and precesses along the unit vector k̂p, as illustrated in figure 1a. We denote
by Ωm the instantaneous total vector of rotation of the cavity in the frame of inertia,
Ωo = Ωok̂ the rotation vector of the cavity in the precessing frame, and Ωp = Ωp k̂p the
precession vector in the frame of inertia, such that

Ωm = Ωo +Ωp (2.1)

2.1. Frames of reference

In figure 1, we represent the ellipsoidal cavity and the different vectors in the three
frames of reference of interest for the present study. In the frame of inertia (fig. 1a),

the precession vector is fixed, the cavity rotates around the time dependent vector k̂(t),

which describes a precessional motion around k̂p. In the frame of precession (fig. 1b),

both k̂ and k̂p are fixed and the cavity rotates around k̂ (the orientation of the principal
axis of the cavity varies in time). In the body frame attached to the cavity (figure 1c),

the orientation of the principal axes are fixed and the precession vector k̂p(t) exhibits a

retrograde motion around k̂.

2.2. Coordinate systems

We define two systems of coordinates (figure 2): (X̂m, Ŷ m, Ẑm), attached to the ellipsoid

and oriented along its principal axes (a, b, c), and (X̂p, Ŷ p, Ẑp) that is attached to the
precessing frame. In the rotating frame attached to the principal axes of the ellipsoid,
the unit vectors X̂p and Ŷ p rotate in a retrograde direction. We define the time origin

such that at t = 0, X̂p = X̂m, Ŷ p = Ŷ m. As shown on figure 2, Ẑp = Ẑm at all times.
If we consider an arbitrary vector A of coordinates (xp, yp, zp) in the coordinates

system attached to the precessing frame, its coordinates in the system (X̂m, Ŷ m, Ẑm)
are given by:

xm = xp · cos(Ωot) + yp · sin(Ωot)

ym = −xp · sin(Ωot) + yp · cos(Ωot) (2.2)

zm = zp
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c) Body frame of referenceb) Precession frame of reference

a) Inertial frame of reference
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Figure 1. Schematic representation of the precessing ellipsoidal cavity. a) As seen from the
frame of inertia, b) as seen from the frame of precession and c) as seen from the body frame

In the frame of reference attached to the moving body, the equation of the triaxial
ellipsoid boundary is given by:

x2

a2
+
y2

b2
+
z2

c2
= 1 (2.3)

In the present study, we will mostly consider two type of geometries, an axisymmetric
spheroid (a = b 6= c), to which we refer as a spheroid, and a biaxial ellipsoid (a 6= b = c)
to which we refer as the non axisymmetric ellipsoid. The true ellipsoidal geometry (a 6=
b 6= c) will be referred to as the triaxial ellipsoid but will only be considered to derive the
general inviscid equations, the fundamental dynamics due to a non axisymmetric equator
being already captured when (a 6= b = c). The reduced tensor of inertia expressed in the
coordinate system attached to the principal axes of the cavity reads

I =
4π

15





b2 + c2 0 0
0 a2 + c2 0
0 0 b2 + a2



 . (2.4)
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Zp

k̂
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Figure 2. The coordinate systems: (X̂m, Ŷ m, Ẑm) is attached to the body and oriented along

the principal axis (a,b,c) of the ellipsoid. In contrast, (X̂p, Ŷ p, Ẑp) is attached to the precessing
frame.

2.3. Fluid equations of motion

Without further assumptions, the fluid motion inside the precessing ellipsoid is governed
by the non-linear Navier-Stokes equation. Using Ω−1

o as a time scale and R = (abc)1/3

as a length scale, any velocity field u within the precessing ellipsoid is governed by the
following equations, expressed in the body frame:

∂u

∂t
+ 2(k̂ + Pok̂p)× u+ u · ∇u = −∇p− Po(k̂p × k̂)× r + E∆u, (2.5)

∇ · u = 0, (2.6)

where p is the reduced pressure which takes the centrifugal force into account, Po =
Ωp/Ωo is the so-called Poincaré number, and E = ν/(ΩoR

2) is the Ekman number which
represents the relative amplitude of the viscous and Coriolis forces.

If the fluid is viscous, the boundary condition is

u = 0, (2.7)

which reduces to

u · n = 0 (2.8)

for an inviscid fluid (E = 0), with n the unit vector normal to the boundary surface.

Finally, we introduce the Rossby number that combines the rate of precession Po and
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the angle of precession α, it is a measure of the amplitude of the forcing:

Ro = Po||k̂p × k̂|| = Po sinα (2.9)

In former studies, the angle of precession α was fixed and the Poincaré number was
varied, so does the Rossby number. In this study, we fix the Rossby number, Ro = 10−2,
to ensure that the flow remains stable in our simulations, even at the largest values of
Po. Consequently, the angle of precession varies as sinα = Ro/Po as we scan in Po. It
follows that there is a forbidden band −10−2 < Po < 10−2 for which no α can satisfy
(2.9). The same study could be carried out at fixed α by varying the Poincar number
the same conclusions would apply as long as no instability develop in the system. This
means that there would be a forbidden zone depending on the critical values of Po, which
we do not know. Note finally that to access the small Po region of the parameter space,
one could simply reduce accordingly Ro.

2.4. Inviscid flows of uniform vorticity in triaxial precessing ellipsoids

Following the precursory work of Hough (1895), Sloudsky (1895) and Poincaré (1910) we
assume the fluid to be inviscid and search for a solution of the velocity that is linear in
the spatial coordinates (x, y, z), i.e. a particular solution U of uniform vorticity

U = ω × r +∇ψ, (2.10)

where ω is the mean rotation component of the flow and ∇ψ is the gradient flow needed
to satisfy the non-penetration boundary condition. It is straightforward to show that
such a solution does not generate any viscous force in the interior, which is consistent
with our assumption.
Taking the curl of the Navier-Stokes equation (2.5) in the body frame, we obtain the

vorticity equation for the particular flow (2.10):

∂ω

∂t
=
(

ω + Po k̂p(t) + k̂

)

· ∇U − Po k̂p(t)× k̂, (2.11)

An important step to establish the general equation for the mean vorticity is to express
U , or equivalently ψ, as a function of (ω, a, b, c, x, y, z). This can be done by imposing
the non-penetration condition on the velocity together with the condition of incompress-
ibility, but this is rather lengthy. Instead, we propose to follow an approach similar to
the original work of Poincaré (1910).
First, we introduce a geometrical transformation that applies in the body frame where

the ellipsoid is fixed and that transforms the triaxial cavity (a, b, c) into a sphere with a
unit radius (fig. 3). Using a prime to denote quantities in the spherical domain and no
prime for quantities in the true ellipsoid, we have:

x→ x′ = x/a, y → y′ = y/b, z → z′ = z/c. (2.12)

The velocity is transformed following the same rules:

ux → u′x = ux/a, uy → u′y = uy/b, uz → u′z = uz/c. (2.13)

It is easy to show that the fluid in the spherical domain remains incompressible, of uniform
vorticity, and does not penetrate the boundary. Note however, that it does not satisfy the
”no slip” nor the ”stress free” boundary conditions. Therefore it can only be a solution
of the inviscid Euler equation (Tilgner 1998). We now make use of this transformation
and its reciprocal to easily obtain the analytical expression of the uniform vorticity flow
in the body frame of the true ellipsoid.
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x = ax′,

y = by′,

z = cz′.

Ux = aU ′

x

Uy = bU ′

y

Uz = cU ′

z

x′
= x/a,

y′
= y/b,

z′ = z/c.

U ′

x
= Ux/a

U ′

y
= Uy/b

U ′

z
= Uz/c

Xm
Ym

Zm

k̂

Xm
Ym
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k̂

‘
‘

‘

‘

Figure 3. Schematic representation of the geometrical stretch that transforms a triaxial
ellipsoid into a sphere of radius unity.

In the spherical domain, a flow of uniform vorticity simply takes the form of a solid
body rotation:

U
′ = ω

′ × r
′ = (ω′

yz
′ − ω′

zy
′, ω′

zx
′ − ω′

xz
′, ω′

xy
′ − ω′

yx
′). (2.14)

Substituting (2.12-2.13) into (2.14) leads to

U =
(

ω′

y

z

c
− ω′

z

y

b
, ω′

z

x

a
− ω′

x

z

c
, ω′

x

y

b
− ω′

y

x

a

)

. (2.15)

Since ω′ is a uniform vector field, the mean vorticity in the ellipsoid is

∇×U =

(

ω′

x

(
c

b
+
b

c

)

, ω′

y

(a

c
+
c

a

)

, ω′

z

(
b

a
+
a

b

))

= 2ω. (2.16)

From (2.15) and (2.16), we finally obtain the analytical form of uniform vorticity inviscid
flows in triaxial ellipsoids:

Ux = ωy
2a2

a2 + c2
z − ωz

2a2

a2 + b2
y,

Uy = ωz
2b2

a2 + b2
x− ωx

2b2

c2 + b2
z, (2.17)
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Uz = ωx
2c2

b2 + c2
y − ωy

2c2

a2 + c2
x.

Identifying the terms within (2.10), we obtain the expression for the potential field ψ:

ψ = ωx
c2 − b2

c2 + b2
yz + ωy

a2 − c2

a2 + c2
xz + ωz

b2 − a2

b2 + a2
xy. (2.18)

Anticipating the rest of the paper we introduce, Ω, the space averaged rotation vector
of the fluid in the precessing frame:

Ω = ω + k̂. (2.19)

Using the coordinate system attached to the principal axes of the ellipsoid, we obtain
from (2.2)

ωx = Ωx cos(t) + Ωy sin(t),

ωy = −Ωx sin(t) + Ωy cos(t), (2.20)

ωz = Ωz − 1.

Substituting the analytical expression of the velocity (2.17) in the vorticity equation
(2.11), we obtain the general form of the equations that govern the inviscid solution of
uniform vorticity in the body frame for a precessing triaxial ellipsoid:

∂ωx

∂t
= 2a2

[
1

a2 + c2
− 1

a2 + b2

]

ωzωy + Px sin(t)
2a2

a2 + b2
ωz

+(Pz + 1)
2a2

a2 + c2
ωy + Px sin(t), (2.21)

∂ωy

∂t
= 2b2

[
1

a2 + b2
− 1

b2 + c2

]

ωxωz + Px cos(t)
2b2

a2 + b2
ωz

− (Pz + 1)
2b2

b2 + c2
ωx + Px cos(t), (2.22)

∂ωz

∂t
= 2c2

[
1

b2 + c2
− 1

a2 + c2

]

ωxωy − Px cos(t)
2c2

a2 + c2
ωy

−Px sin(t)
2c2

b2 + c2
ωx, (2.23)

with Px = Po sinα = Ro and Pz = Po cosα = Po
√
Ro2 − Po2. These equations are

valid for any values of (a, b, c), Po and α. In a spheroidal cavity there exist an infinite
number of stationary solutions for the system (2.21-2.23) given by:

ω + k̂ = ξk̂p, (2.24)

where ξ can be any real number. Among this class of inviscid solutions, only the solution
ξ = −Po remains stationary when a 6= b, for all c.

2.5. Reintroducing the viscosity

Without viscous damping, the inviscid solutions depend on the initial conditions and are
somewhat of limited interest. Assuming the Ekman number to be small, we reintroduce
the viscosity through the viscous torque due to the friction in the Ekman boundary layer.
In appendix A, we extend the approach of Noir et al. (2003) for a spheroid to the case

of finite ellipticity. Without any loss of generality, the viscous equations (2.21-2.23) can
be written as

∂ωx

∂t
=

[
2a2

a2 + c2
− 2a2

a2 + b2

]

ωzωy + Px sin(t)
2a2

a2 + b2
ωz
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+ (Pz + 1)
2a2

a2 + c2
ωy + Px sin(t) + LΓν |x , (2.25)

∂ωy

∂t
=

[
2b2

a2 + b2
− 2b2

b2 + c2

]

ωxωz + Px cos(t)
2b2

a2 + b2
ωz

− (Pz + 1)
2b2

b2 + c2
ωx + Px cos(t) + LΓν |y , (2.26)

∂ωz

∂t
=

[
2c2

b2 + c2
− 2c2

a2 + c2

]

ωxωy − Px cos(t)
2c2

a2 + c2
ωy

−Px sin(t)
2c2

b2 + c2
ωx + LΓν |z . (2.27)

Using the linear asymptotic of spin-up and of the spin-over mode, we derive an analytical
expression of the viscous term in the limit of small Ekman number.

LΓν =
√
EΩ




λrso
Ω2





ΩxΩz

ΩyΩz

Ω2
z − Ω2



+
λiso
Ω





Ωy

−Ωx

0



+ λsup
Ω2 − Ωz

Ω2





Ωx

Ωy

Ωz







 ,(2.28)

where λrso and λiso represents the decay rate and viscous correction to the eigenfre-
quency of the spin-over mode, respectively. In the context of spheroids of finite ellipticity,
we use the asymptotic values derived by Zhang et al. (2004). λsup is an integrated value
of the spin-up decay rate and is derived from the asymptotic theory of Greenspan (1968).
We refer to this form of the viscous term as the generalized model in the rest of the paper

In the case of a non-axisymmetric container, no analytical solution for the inertial
modes exists. In the lack of a proper theory for the viscous damping of inertial modes
in a non axisymmetric container, we adopt the following reduced form for the viscous
torque

LΓν = λ
√
E





Ωx

Ωy

Ωz − 1



 . (2.29)

In appendix A.2, we show that, for an axisymmetric container, the viscous term (2.28)
is well approximated by the reduced form (2.29) in the range of parameters considered in
this study. Hence, λ can be interpreted as an approximation of the decay rate λrso of the
spin-over mode when the contribution from the terms proportional to λiso and λsup are
negligible. In the absence of model of the spin-over mode in a non-axisymmetric ellipsoid,
λ in our model remains an adjustable parameter and is determined so as to best fit the
numerical results in each geometry. Herein, we refer to the viscous set of equation using
(2.29) as the reduced model.

Anticipating the rest of the paper, we introduce the reduced viscous equations in the
frame of precession for the particular class of ellipsoid (a 6= b = c). Substituting (2.2)
into the inviscid set of equations (2.25-2.27) with b = c, we obtain:

∂Ωx

∂t
= PzΩy + (1− χ)

[

cos(2t)

(
Pz + 2

2
Ωy −

1

2
ΩyΩz

)

+ sin(2t)

(

−Pz + 2

2
Ωx + PxΩz +

1

2
ΩxΩz − Px

)

+
Pz

2
Ωy +

1

2
ΩyΩz

]

+ λ
√
EΩx, (2.30)
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∂Ωy

∂t
= PxΩz − PzΩx + (1− χ)

[

cos(2t)

(
Pz + 2

2
Ωx − 1

2
ΩxΩz − PxΩz + Px

)

+ sin(2t)

(
Pz + 2

2
Ωy −

1

2
ΩyΩz

)

− Pz

2
Ωx − 1

2
ΩxΩz

]

+ λ
√
EΩy, (2.31)

∂Ωz

∂t
= −PxΩy + (1− χ)

[

cos(2t)

(
Px

2
Ωy +ΩxΩy

)

+ sin(2t)

(

−Px

2
Ωx +

1

2

(
Ω2

y − Ω2
x

)
)

+
Px

2
Ωy

]

+ λ
√
E(Ωz − 1), (2.32)

with the ratio χ of the two equatorial moments of inertia:

χ =
b2 + c2

a2 + b2
=

2b2

a2 + b2
. (2.33)

3. Comparison of the theoretical models with numerical simulations

To allow for an easy comparison with former studies we will focus our diagnostic on
two quantities, the rotation vector of the fluid viewed from the frame of precession,
(Ωx,Ωy,Ωz), and the amplitude of the differential angular velocity between the fluid and

the surrounding container, ‖Ω− k̂‖

3.1. Methods

The system of ordinary differential equations describing the time evolution of the uni-
form vorticity components of the flow, i.e. equations (2.25-2.27), is solved using the
Dormand-Prince method, the standard version of the Runge-Kutta algorithm imple-
mented in MATLAB. We have checked that the time evolution is not modified by the
use of other time-stepping solvers.
The system of partial differential equations of the initial viscous problem, i.e the equa-

tions of motion (2.5-2.6) completed by the boundary condition (2.7) at the ellipsoid
surface, is solved using a finite element method implemented in the commercial code
COMSOL Multiphysicsr. The mesh element type used for the fluid variables is the stan-
dard Lagrange element P1 − P2, which is linear for the pressure field and quadratic
for the velocity field. For time-stepping, we use the Implicit Differential-Algebraic solver
(IDA solver), based on variable-coefficient Backward Differencing Formulas or BDF (see
Hindmarsh et al. 2005, for details on the IDA solver). The integration method in IDA is
variable-order, the order ranging between 1 and 5. At each time step the system is solved
with the sparse direct linear solver PARDISO (www.pardiso-project.org). All computa-
tions have been performed on a single workstation.
Since we are concerned with the effect of topography in our system, we have chosen

to fix the Ekman number, E = 10−3, which allow us to use meshes with typically 30 000
degrees of freedom. Convergence tests in a spherical geometry have been performed to
ensure that our simulations with this resolution capture correctly the viscous effects due
the Ekman boundary layer. Figure 4 represents the norm of differential rotation between
the fluid and the container in a spherical geometry, ‖Ω− k̂‖. The red symbols represents
the numerical simulations, the red dashed line represents the asymptotic solution of Busse
(1968), the dashed blue line represents the generalized model (A 14- A 16) and the green
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Figure 4. Equatorial component of the fluid mean rotation as a function of the Poincaré
number in a spherical geometry. The numerical simulation are performed with E = 10−3 and
Ro = 10−2. The red symbols represents the simulations, the red dashed line represents the
asymptotic solution of Busse (1968), the blue dashed line represents the solution of generalized
model (A 14-A 16) and the dashed green line represents the reduced model (2.25-2.27) with a
derived value of λ = −2.62. The red vertical line symbolized the region of the parameter space
|Po| < 10−2 where no α can satisfy Ro = Po sin(α)

dashed line represents the reduced model. The best fit leads to λ = −2.62. We observe
a quantitative agreement between all the models and the numerical simulations. A close
look at the critical Po shows that the reduced model predicts a resonance at zero while
the generalised model and Busse’s theory predicts a resonance at Po ∼ −0.01. This
difference is consistent with the fact that the reduced model does not account for the
viscous correction of the eigenfrequency of the Poincar mode, which at these parameters
is of order 0.01.
In the present study we are concerned with the flow component of uniform vorticity.

In the simulations, the uniform vorticity is obtained by averaging the fluid vorticity at
each time step over a volume inside an ellipsoid:

x2

a2
+
y2

b2
+
z2

c2
= d2, (3.1)

with d = 1− 5
√
E to exclude the Ekman boundary layer (see also Cébron et al. 2010b).

3.2. The axisymmetric spheroid, a = b 6= c

In this particular geometry, the reduced model systematically leads to a flow steady in
the precessing frame.
Figure 5 represents the time evolution of the norm of the differential rotation, ‖Ω− k̂‖

from the three-dimensional (3D) non linear simulations (a = b = 1, c = 0.5, E = 10−3,
Ro = 10−2 and Po = −0.45). It shows that the uniform vorticity component becomes
stationary after a typical period of 60 rotations, which is comparable to the spin-up
time t ∝ E−1/2 ∼ 30. This result is generic to all of our simulations in an axisymmetric
spheroid. Hence, it validates the otherwise assumed stationarity of the uniform vorticity
solution in the asymptotic theory of Busse (1968) and Noir et al. (2003).

Figure 6 shows the differential rotation, ‖Ω− k̂‖ for a = b = 1 and c = 0.5/0.8/1.1/1.5
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Figure 5. Time evolution of the amplitude of the equatorial component of rotation of the fluid
in the frame of precession from the simulations. a = b = 1, c = 0.5, E = 10−3, Ro = 10−2 and
Po = −0.45.
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Figure 6. Amplitude of differential rotation, ‖Ω − k̂‖, as a function of the Poincaré number.
The symbols represent our numerical simulations simulations at E = 10−3 and Ro = 10−2, the
solid lines represents the reduced model with the inverted values of λ from table 1. Each value
of the polar axis c is represented by a different color as indicated. The red vertical line signifies
the region of the parameter space |Po| < 10−2 where no α can satisfy Ro = Po sin(α). The
red circles represent simulations with c=1.5 with a spatial resolution four times larger (135000
DoF).



Precessing rigid ellipsoids 13

Table 1. Inverted viscous coefficient λ for an axisymmetric spheroid
c 0.5 0.8 1.1 1.5
λ -3.35 -2.57 -2.78 -2.97

as we scan in Poincaré numbers from −1 to +1. For each geometry, we perform a least
squares inversion using the reduced model to determine the value of λ that best fits the
numerical simulations. The results for each value of c are presented in table 1. We choose
to study each individual component in the precessing frame where the total vorticity
remains time independent. Figure 7 shows the individual components of Ω viewed from
the precessing frame.
We retrieve the classical result that the amplitude of the differential rotation, ‖Ω− k̂‖,

exhibits resonant like peaks for a critical value of the Poincaré number, Poc. Considering
each individual component (Figure 7), the peaks correspond to a maximum of Ωy and
a (usually abrupt) change of sign of Ωx. As we shall see later at lower Ekman number,
the term resonance may have a significance in the inviscid limit but for finite viscosity
we prefer to use the term transition and define Poc as Ωx(Poc) = 0, the transition
thus corresponding to the abrupt change of direction of the mean rotation axis of the
fluid. Physically, Poc is the Poincaré number for which the equatorial component of the
fluid rotation is exactly aligned with the gyroscopic forcing k̂p × k̂, leading to a pseudo-
resonance between the precessional forcing and the so-called Poincaré mode (see Noir
et al. (2003) for more details). As expected from the asymptotic and inviscid theory,
Poc < 0 for an oblate spheroid, a > c, and Poc > 0 for a prolate spheroid, a < c.
Figures 7 shows the components of Ω (viewed from the frame of precession). We com-

pare the three different models, Busse (1968), the generalized model and the reduced
model to the numerical simulations. Comparing the relative amplitude of the different
components, the differential motion is clearly dominated by the equatorial component,
which thus governs the evolution of ‖Ω − k̂‖ shown in figure 6. We observe a quanti-
tative agreement between the reduced model and the numerical results for Ωx and Ωy.
The small departure of Ωz from 1 is less accurately captured by the model, owing to its
weak influence on ‖Ω − k̂‖ from which we invert for the unique adjustable parameter
λ. Meanwhile, the generalized model, without any adjustable parameter, predicts cor-
rectly the resonance positions but tends to overestimate the amplitudes as c is increased.
One can however notice that the results of this predictive model are still acceptable for
c ∈ [0.5; 1.1]. In contrast, the usual Busse (1968) model does not predict correctly the
flow components’ evolution, or even the resonance locations, as soon as the spheroid
deformation becomes significant, which is expected given the domain of validity of this
model.

3.2.1. The non-axisymmetric spheroid, a 6= b = c = 1

Figure 8 represents the time evolution of the three components of the fluid rotation
vector in the frame of precession from the 3D non linear numerical simulations with a =
0.5, b = c = 1. Comparison with figure 5 shows clearly an important difference: in non-
axisymmetric ellipsoids, an unsteady and periodic flow can be forced by the precession
contrary to the flow forced in a spheroid which is steady. The inset shows moreover that
Ωx and Ωy oscillate in phase quadrature, with the same amplitude δ/2 and the same
period, which is half the container rotation period T0 (dimensionless value of T0 is 2π).
Figure 9 represents the same data set as in Figure 8 plotted in three dimensions to

illustrate the dynamics of the mean rotation vector. The fluid rotation vector performs
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c=0.5

c=1.5
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Ωz

Figure 7. From top to bottom: X,Y and Z components of the fluid rotation vector in the
frame of precession within an axisymmetric spheroid. We compare our simulations (symbols),
the theory of Busse (1968), represented by the dashed lines, our generalization of this model
(dot-dashed lines), and the proposed reduced model (solid lines) with the inverted values of λ
from table 1. Each value of the polar axis c is represented by a different color as indicated.
The red vertical line symbolized the region of the parameter space |Po| < 10−2 where no α can
satisfy Ro = Po sin(α).
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δ = 4.7× 10−3

δ = 4.7× 10−3

Figure 8. Time evolution of the three component of the fluid rotation vector in the frame
of precession Ωx(t), Ωy(t) from the numerical simulations for a = 0.5, b = c = 1, E = 10−3,
Ro = 10−2 and Po = −0.45.

Table 2. Inverted viscous coefficient λ for an non axisymmetric spheroid
a 0.5 1.1 1.5 2
λ −4.5± 0.02 −2.54± 0.02 −2.29 ± 0.02 −2.03± 0.02

a time periodic quasi circular motion (red dots) around its mean position (blue arrow).

The semi-aperture angle of the cone is given by
√

Ω2
x +Ω2

y.

We carry out a series of 3D numerical simulations for various geometries with a 6= b = c,
in each case we perform the least squares inversion to determine λ using only the time
averaged differential rotation, ‖ < Ω−k̂ > ‖ (Figure 10). As in the case of an axisymmet-
ric container, we observe peaks at critical values of the Poincaré number, identical in the
mean and oscillatory components. We note that the critical Po is retrograde for a > 1
and prograde for a < 1, which correlates with the results obtained in an axisymmetric
spheroid. Indeed, in any meridional cross section of the non axisymmetric cavity, the
trace of the boundary is an ellipse with a polar axis shorter than the mean equatorial
axis for a > 1, similarl to an oblate spheroid, and longer than the mean equatorial axis for
a < 1, similarl to a prolate spheroid. As the geometry tends toward the sphere (a = 1),
the amplitude of the peak of the oscillatory component vanishes, while the peak of the
time averaged component converges toward the solution for the sphere as illustrated in
Figure 10.
We observe a quantitative agreement between our reduced model and the numerical

simulations for both the mean and oscillatory components for all cases with a > b = c.
For a < b = c, the reduced model captures correctly the dynamics of the time average
equatorial rotation but exhibit significant discrepancy in the axial components.
Figure 11 shows the time averaged and oscillatory components, respectively, of Ω. The

steady part of the uniform vorticity behaves as in an axisymmetric container, its axial
component Ωz departs only marginally from the vorticity of the container, hence, the
differential motion between the fluid and the container is dominated by the equatorial
component. Even though we invert for the unique adjustable parameter using the steady
part only, we observe a very good agreement between the reduced model and the simu-



16 J. Noir and D. Cébron

Ωx

Ωy

Ωz
〈Ω〉

Ω(t)

k̂

Figure 9. Time evolution of the fluid rotation vector Ω viewed from the frame of precession
(Same set of parameters as in Figure 8). The blue arrow represents the mean rotation vector
〈Ω〉, the red arrow represents the instantaneous rotation vector at a particular time, the red
dots show the trace of the instantaneous rotation vector for 60 < t < 120 and the black arrow
shows the container rotation vector.

lations. All three components exhibit a maximum amplitude at the critical Poc derived
from the time average part. As suggested from the time evolution shown in Figure 8, the
two equatorial components have the same amplitude, the axial component is only five
times smaller. In addition, we note a significant discrepancy both on the peak location
and amplitude between the reduced model and the numerical simulations for a = 0.5,
similarly to the case of a prolate axisymmetric spheroid.

4. Discussion

In appendix A.2, we show that the location of the Poc, within an axisymmetric con-
tainer, is determined primarily by the inviscid part of the equations, while the typical
amplitude is most constrained by the decay rate λrso. We also note that the viscous cor-
rection to the spin-over eigenfrequency accounts for a small shift of Poc but does not
modify the fundamental dynamics, even at the moderate Ekman numbers considered
here. Finally, the effect of the non vanishing axial differential rotation in the frame rotat-
ing with the fluid remains negligible in all of our simulation. The systematic mismatch of
the amplitude of the generalized model with our simulations is likely due to the moderate
Ekman numbers accessible in our numerical simulations. Meanwhile, the observed shift
in Poc in Figure 7 and Figure 11 shows the limitations of the one adjustable parameter
reduced model that only account for part of the dissipation mechanism.
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Figure 10. Amplitude of the mean differential rotation, ‖ < Ω − k̂ > ‖, as a function of the
Poincaré number. The symbols represent numerical simulations at E = 10−3 and Ro = 10−2, the
solid lines represent the inverted reduced model, the black-dashed line represents the solution
for the sphere from Busse (1968). Each geometry, characterized by a, is represented with a
different color as indicated. The red vertical line symbolized the region of the parameter space
|Po| < 10−2 where no α can satisfy Ro = Po sin(α).

The simulations presented here show that the flow of uniform vorticity in a non ax-
isymmetric ellipsoid is not purely stationary in the frame of precession as it would be
for a spheroidal cavity. This is supported by the governing equations (2.30-2.32) from
which one can anticipate that, if a stationary uniform vorticity component exists, it will
necessarily drive a time dependent perturbation for χ 6= 1, i.e. when the two equatorial
moments of inertia are not equal.
Our results suggest that the simple form of the viscous term (2.29) captures well the

fundamental dynamics of the uniform vorticity flow in a non axisymmetric precessing
ellipsoid. Taking advantage of the computational efficiency of this reduced model, we
perform a series of time integrations at lower Ekman numbers. Figure 12 shows the norm
of the mean and oscillatory components of the differential Ω − k̂ as a function of the
Poincaré number for decreasing Ekman numbers in the case a = 1.5, b = c = 1; we
assume the decay rate λ to be independent of the Ekman number and equal to the value
inverted in this geometry at E = 10−3 (see table 2). As the Ekman number is reduced,
both the stationary and the oscillatory part of the differential rotation tend toward an
asymptotic limit already captured at 10−7.
Let us define the mean longitude φ and the mean latitude θ of the fluid rotation axis

as follows:

cosφ =
〈Ωx〉

√

〈Ωx〉2 + 〈Ωy〉2
, (4.1)

tan θ =
〈Ωz〉

√

〈Ωx〉2 + 〈Ωy〉2
. (4.2)

(4.3)

Figure 13 shows the evolution of the longitude and latitude for decreasing Ekman num-
bers. As for the amplitude, we observe that the direction of the stationary component
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Figure 11. From top to bottom: X,Y,Z-component of rotation of the fluid in the frame of
precession. The left row shows the time averaged components, the right row shows the time
standard deviation of the components. We compare, for each geometry (i.e. a), our simulations
(symbols) and the reduced model (dashed lines) with the inverted values of λ from table 2.
The red vertical line is the region of the parameter space |Po| < 10−2 where no α can satisfy
Ro = Po sin(α).
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Figure 12. a) Upper panel: norm of the stationary component of the differential rotation ω as
function of the Ekman number. Lower panel: norm of the oscillatory component of the differential
rotation ω as function of the Ekman number. b) Norm of the stationary (upper) and oscillatory
(lower) part of the differential rotation for a fixed Po = −0.18 as a function of the Ekman
number. In all calculations we integrate in time the reduced model with a = 1.5, b = c = 1 and
λ = −2.3.
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Figure 13. a) Longitude of the stationary part of the rotation vector. b) Latitude of the
stationary part of the rotation vector. Color code: same as Figure 12.

of uniform vorticity tends toward an asymptotic value. We note that the asymptotic
longitude is either 0◦ or 180◦, which corresponds to a fluid mean rotation vector lying
in the plane (k̂, k̂p). Hence, similarly to the case of an axisymmetric spheroid, it is the
viscosity that forces the mean rotation vector to leave the plane containing the axis of
the container and the axis of precession. In that plane, at vanishing Ekman numbers,
the rotation vector evolves from high latitudes (Ω almost aligned with k̂), far from the
transition, to mid latitudes near the transition.
Our results suggest that at low enough Ekman number, the flow of uniform vorticity

driven by the precession of the container becomes independent of E, or as a matter of
fact, independent of the viscous term λ

√
E. Hence, outside of the transition region, the

asymptotic solution for vanishing viscosity can be found using any arbitrary order O(1)
value of the damping factor, providing that the Ekman number is small enough, typically
when E1/2 . (1− χ).

5. Conclusion

In the present study, we investigate the flow of uniform vorticity driven by precession in
a spheroid and a non axisymmetric ellipsoid. We report the first numerical simulations in
a non axisymmetric ellipsoid showing that, in contrast to a spheroid, the flow of uniform
vorticity viewed from the frame of precession is no longer stationary.
In addition, we develop a semi-analytical model by first deriving the inviscid equations

and then by reintroducing the viscosity. We propose a generalized model in the case of a
spheroid of arbitrary ellipticity following the torque approach introduced by Noir et al.
(2003) and using the linear asymptotic theory of the spin-over mode as a proxy. For
non axisymmetric ellipsoids an analoguous theory has yet to be established and the same
approach is not possible. Nevertheless, we introduce a reduced model with one adjustable
parameter that we compare successfully with 3D non-linear numerical simulation at a
fixed Ekman number, E = 10−3 (using the commercial software Comsol).
Despite its simplicity, the reduced model with one adjustable parameter allows us to

reproduce quantitatively the uniform vorticity flow obtained from numerical integrations
of the full Navier-Stokes equations both in a spheroid and a non axisymmetric ellipsoid.
Furthermore, the generalized model for a spheroid allow us to extend the classical asymp-
totic theory of Busse (1968); Noir et al. (2003) to finite ellipticity as it is usually the case
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Table 3. Dimensionless parameters for the Earth’s moon.

1− χ 2.5 × 10−5 Le Bars et al. (2011)
E ∼ 10−12 Le Bars et al. (2011)
Po −3.9× 10−3 Meyer & Wisdom (2011)
α 1.54 Meyer & Wisdom (2011)

in laboratory experiments. With our current limited number of geometrical configura-
tions (4 different values of a) it is not possible to ascertain the functional relationship
between the geometrical deformation and the damping factor.
Taking advantage of the computational efficiency of the reduced model compared to

the full simulations of Navier-Stokes equations, we investigate the uniform vorticity flow
in non axisymmetric ellipsoids as the Ekman number is decreased. We show that the
uniform vorticity converges toward an asymptotic solution independent of the Ekman
number and thus of the viscous term as a whole. At very low Ekman numbers, the time
averaged component of the fluid rotation axis lies in the plane formed by the precession
and container rotation vectors as in the case of a spheroid, meanwhile the time dependent
component tends toward a finite amplitude.
When looking at the dynamics in greater details we identify some limitations of our

reduced model: first, there is a small shift of the critical value of the Poincaré number
at which we observe a transition, and second the axial component of the fluid rotation
exhibits a simpler dynamics in our reduced model than in the numerical simulations.
Due to the limited range of Ekman numbers accessible in the numerical simulations,

we believe that an experimental survey is necessary to complement the results presented
in this study. With an experimental setup using water as a working fluid, a typical length
scale

√
abc ∼ 15 cm and rotating at Ω0 ∼ 240 rpm, the achievable Ekman number will

be of order 3 × 10−6. Aside from testing the validity of the reduced model, it would be
suitable to investigate the stability of the flow.
Two recent publications have investigated possible mechanisms to drive Earth’s Moon

early dynamo. One invokes a precession driven turbulence in the liquid core (Dwyer et al.
2011), whereas the other one proposes a meteoritic impact leading to a desynchronization
of the Moon (Le Bars et al. 2011). Considering our current tidally-locked Moon, the core-
mantle boundary (CMB) geometry is close to a non-axisymmetric ellipsoid rather than
a axisymmetric spheroid (typically, its shape can be approximated by the well known
relation (b − c)/(a − c) = 1/4 assuming hydrostatic state and homogeneous material).
We can thus compare our reduced model, assumed to be valid for our current Moon, and
the model of Busse (1968), which is valid at planetary settings but assumes a spheroidal
CMB. The parameters used for the simulation are given in table 3. The reduced model
for a non axisymmetric ellipsoid and the model of Busse (1968) for a spheroid agree
within 0.3% leading to a mean differential rotation amplitude of order 3% of the planet
rotation rate and a core spin vector normal to the ecliptic plane in agreement with a
former model by Goldreich (1967). Neither the viscous nor the pressure torques are large
enough to force the lunar core to precess with the mantle. Nevertheless, in contrast
with a spheroidal model, the reduced model predicts an unsteady component of uniform
vorticity of order 2.3× 10−6Ωo oscillating with a period of T ≈ 13.5 days. Although this
amplitude is small, one may question what could happen if in the frame of precession
there exists another source of gravitational perturbation at that frequency. Indeed, in
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that case, direct or parametric resonances may occur, leading to much larger amplitude
flows, subsequent instabilities, and thus to enhanced dissipation.
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Appendix A. The viscous torque for a precessing spheroid of

arbitrary ellipticity

A.1. The viscous torque

In the limit of small ellipticity, small Ekman number and small Po sinα, Busse (1968) and
Noir et al. (2003) have derived the viscous equations for the stationary flow of uniform
vorticity in a precessing axisymmetric spheroid. We herein refer to this model as Busse
1968, who was the first one to derive it in the limit of small ellipticity, small Ekman
number and small Po sin(α). In this appendix, we follow the same approach as Noir
et al. (2003) to derive a more general model for finite ellipticity.
To reintroduce the viscosity, we assume a small Ekman number such that, at leading

order, the uniform vorticity solution in the bulk remains essentially inviscid and the vis-
cous forces are important only in the Ekman boundary layer. The Navier-Stokes equation
for an arbitrary viscous flow u in the frame of precession leads to the following torque
balance in the precessing frame (within the spheroid volume V ):

Γt
︷ ︸︸ ︷∫

V

r × ∂u

∂t
dV +

Γnl
︷ ︸︸ ︷∫

V

r × (u · ∇u)dV +

Γi
︷ ︸︸ ︷

2

∫

V

r × (Ωp × u)dV =

Γp

︷ ︸︸ ︷

−
∫

V

r ×∇pdV +

Γv
︷ ︸︸ ︷

E

∫

V

r ×∇2
udV . (A 1)

The challenge is thus to obtain the viscous torque due to the Ekman layer.
As previously, we consider a uniform vorticity flow in a spheroid, which can be seen

as a quasi solid body rotation along an axis tilted from the container rotation axis. Note
that no further assumption is made on the stationarity in the frame of precession. For the
particular flow U = ω×r+∇φ, the integration of Γt, which is carried in the coordinates
system attached to the ellipsoidal container, leads to:

LΓt =
∂ω

∂t
, (A 2)

where L is the matrix:

L =
15

16π






b2+c2

b2c2 0 0

0 a2
+c2

a2c2 0

0 0 b2+a2

b2a2




 . (A 3)

The differential rotation between the fluid and the surrounding container in the frame
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can be decomposed into an axial and an equatorial component relative to the rotation
axis of the fluid:

δωz =

(

Ω− k̂

Ω2
·Ω
)

Ω, (A 4)

δωeq = Ω− k̂ − δωz. (A 5)

Without the viscous torque acting on the fluid, the equatorial component would tend to
grow a spin-over mode, while the axial component would result in a spin-up or spin-down
of the fluid. Thus, following the approach of Noir et al. (2003), the viscous torque can be
derived from the linear decay rate of Greenspan for the spin-over and spin-up:

LΓeq,z
ν =

∂(δωeq,z)

∂t

∣
∣
∣
∣
t=0

. (A 6)

Since the linear calculation is only valid in the frame rotating with the fluid, we introduce
a modified Ekman number Ef = E/Ω and a rescaled time tf = Ωt associated to this
frame of reference. According to Greenspan (1968), the time evolution of the spin-over
mode in the non-rotating frame can be written as (Noir et al. 2003):

δωeq(t) = exp
(

λrsoE
1/2
f tf

) [

δωeq(0) cos
(

λisoE
1/2
f tf

)

− Ω× δωeq(0) sin
(

λisoE
1/2
f tf

)

/Ω
]

. (A 7)

It follows:

LΓeq
ν = (EΩ)1/2




λrso
Ω2





ΩxΩz

ΩyΩz

Ω2
z − Ω2



+
λiso
Ω





Ωy

−Ωx

0







 . (A 8)

In contrast with Noir et al. (2003), who use the λrso, λ
i
so in the spherical approximation

of Greenspan (1968), we propose to use the analytical prediction of λrso, λ
i
so obtained

from Zhang et al. (2004) in an oblate spheroid (c < a) of arbitrary ellipticity. Although
the author does not claim that his derivation remains valid in a prolate spheroid (c > a),
we have checked that the formula reproduces the results of Greenspan (1968) and are
thus valid for prolate spheroids. It is important to note that the derivation of the spin-
over decay rate are valid only for an axisymmetric container. Then, if the tilt of the fluid
rotation axis and the ellipticity is not small enough, the viscous torque in the precessing
cavity can no longer be inferred from the axisymmetric spin-over mode asymptotic theory
introduced above.

The axial differential rotation can be treated similarly. Without the viscous torque the
axial differential rotation would tend to spin-up or spin-down the fluid. From Greenspan
(1968), the time evolution of an axial differential rotation can be written as

δωz(s, t) = δωz(0)
(
1− exp(λ∗sup(s)Ef tf )

)
, (A 9)

with a coefficient λ∗sup(s) which changes with the cylindrical radius s. An explicit ana-
lytical expression of λ∗sup(s) is given by Greenspan & Howard (1963) for axisymmetric
containers, which can be written in the case of a spheroid as:

λ∗sup(s) = − [1− s2(1− c2)]1/4

c (1− r2)3/4
. (A 10)
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Hence, the axial viscous torque can be estimated as:

LΓz
ν = λ

√
Esup

(

1− Ωz

Ω2

)




Ωx

Ωy

Ωz



 , (A 11)

with

λsup =

∫

λ∗sup(s) ds = −
√

π3/2

cΓ(3/4)2
F
(
[−1/4, 1/2], [3/4], 1− c2

)
, (A 12)

where Γ is simply the gamma function and F(n, d, z) is the usual generalized hyper-
geometric function, also known as the Barnes extended hypergeometric function (see
respectively chap. 6 and 15 of Abramowitz & Stegun 1972). Note that when the tilt of
the fluid mean rotation axis with the one of the mantle becomes large, i.e. when the
container is no longer axisymmetric from the fluid point of view, we do not expect this
derivation of the torque to apply either.
Finally, taking into account both the spin-up and spin-over contributions, it yields

LΓν =
√
EΩ




λrso
Ω2





ΩxΩz

ΩyΩz

Ω2
z − Ω2



+
λiso
Ω





Ωy

−Ωx

0



+ λsup
Ω2 − Ωz

Ω2





Ωx

Ωy

Ωz







 .(A 13)

Substituting (2.2) into the equations (2.25-2.27) with a = b, we obtain the viscous
equations in the frame of precession:

∂Ωx

∂t
= PzΩy − (1− γ) [PzΩy +ΩyΩz] + LΓν · êx, (A 14)

∂Ωy

∂t
= PxΩz − PzΩx + (1− γ) [PzΩx +ΩxΩz] + LΓν · êy, (A 15)

∂Ωz

∂t
= −PxΩy − (1− γ)PxΩy + LΓν · êz, (A 16)

where γ = (2a2)/(a2 + c2) represents the ration of the polar to equatorial moment of
inertia.
Taking (A 14)×Ωx+ (A 15)×Ωy+ (A16)×Ωz yields,

(Ω− k̂) ·Ω =
(1− γ)PxΩyΩz

λsup
√
E

. (A 17)

Then, in the limit (1 − γ)Px/
√
E ≪ 1, we recover the so called no spin-up condition

introduced by Noir et al. (2003), also equivalent to the solvability condition of Busse
(1968). This condition, also used by Cébron et al. (2010b), is thus not valid in general
for a spheroid of arbitrary ellipticity.

A.2. Comparison between the different models in an axisymmetric spheroid.

Substituting (2.2) into the equations (2.25-2.27) with a = b, we obtain the viscous equa-
tions in the frame of precession. We thus have three different models for the axisymmetric
spheroid: the asymptotic analysis of Busse (1968), our generalized model and our reduced
model. The fundamental differences between all three models are twofold. First the model
of Busse (1968); Noir et al. (2003) uses an approximate form of the inviscid part of the
equations, valid only for small departure from the sphere (1 − γ ≪ 1) and for small
Po ≪ 1, while the generalized and reduced models uses an exact derivation for the in-
viscid part. Second all three models are based on a different derivation of the viscous
torque: Busse (1968); Noir et al. (2003) are based on the asymptotic values of λi,rso of
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Figure 14. a) Amplitude of the viscous terms in the generalized model associated with λr, λi

and λsup (A 8-A11). The color scheme stands for the different polar flattening as indicated, the
solid line represents the contribution from the λr-term, the dashed line represents the contribu-
tion from the λi

so-term and the dot-dashed line represents the contribution from the λsup-term. b)
Comparison of the equatorial component of rotation between the generalized model (dot-dashed
lines) and the reduced model (solid lines). In both models we use, a = b = 1, c = 0.5/0.8/1.1/1.5,
E = 10−3, Ro = 10−2 and the values of λr, λi of Zhang et al. (2004). The red vertical line sym-
bolized the region of the parameter space |Po| < 10−2 where no α can satisfy Ro = Po sin(α).

the sphere and on the no spin-up condition, the generalized model uses the asymptotic
values of λi,rso for an oblate spheroid of arbitrary ellipticity from Zhang et al. (2004) and
does not impose the no spin-up condition, and finally the reduced model neglects the
terms proportional to λiso and λsup and we thus have to close by fitting the best value of
λrso.
Figure 14(a) shows the contribution of the different terms of the viscous torque in the

generalized model (A 8-A 11). We observe that throughout the entire range of Po and
for all geometries, the terms proportional to λsup (due to the axial differential rotation)
remains two to three orders of magnitude smaller than the term proportional to λrso
and can therefore be neglected. The contribution from the term proportional to λiso
remains four to twenty times smaller than the term proportional to λrso. Although not
negligible, this term is expected to have a limited effect on the dynamics of the uniform
vorticity flow. In most of our simulations, the generalized model reduces thus to the
reduced model. This is illustrated in Figure 14(b) which compares, for the axisymmetric
spheroids considered in this study, the generalized and reduced models with the same
value of λrso. We observe a small shift in the peaks location which reflects the absence of
the correction in λiso in the reduced model. In agreement with Figure 14(a), this shift is
larger for c = 0.5, where both the λrso and λiso contributions are of the same order.
We now compare the generalized model and reduced models with λ = λrso = −3.03

(Zhang et al. 2004) to the asymptotic solution of Busse (1968); Noir et al. (2003) using
both the asymptotic value λ = λrso = −2.62 (Greenspan 1968) and the asymptotic
value λ = λrso = −3.03 (Zhang et al. 2004) (Figure 15). In addition, we represent the
Poc for the classical inviscid of Poincaré obtained by substituting LΓν = 0 in (A 14-
A 16) and assuming a stationary solution. It illustrates that the location of the peak is
determined primarily by the inviscid form of the equations, that are exact in our model
and approximated for small Po and small ellipticity in Busse (1968); Noir et al. (2003).
Meanwhile, as seen from our reduced model, the variation in λiso contributes to a small
detuning of the peak but the amplitude is mostly determined by the decay rate λrso.



26 J. Noir and D. Cébron
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Figure 15. Norm of the differential rotation for a = b = 1, c = 0.5, E = 10−3, Ro = 10−2 The
solid lines represents the reduced models, the dashed line represents the asymptotic theory of
Busse (1968); Noir et al. (2003) and the dot-dashed line represents the generalized model. The
color scheme stands for the different values of λr

so, i, from Greenspan (1968) (black) and from
Zhang et al. (2004) (red). The green dot-dashed line represents the critical Po predicted from a
purely inviscid model.

This validates the use of the reduced model in the case of an axisymmetric spheroid and
we are confident that the same general remarks apply to the case of a non axisymmetric
container.
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Poincaré, H 1910 Sur la précéssion des corps déformables. Bulletin Astronomique T. XXVIII,
1–36.

Sloudsky, T. 1895 De la rotation de la terre supposée fluide à son intérieur .
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