Stable Recovery with Analysis Decomposable Priors

Jalal M. Fadili
GREYC
CNRS-ENSICAEN-Univ. Caen
Caen. France

Gabriel Peyré and Samuel Vaiter CEREMADE CNRS-Univ. Paris Dauphine Paris, France Charles-Alban Deledalle IMB CNRS-Univ. Bordeaux 1 Bordeaux, France Joseph Salmon LTCI CNRS-Télécom PariTech Paris, France

Abstract—In this paper, we investigate in a unified way the structural properties of solutions to inverse problems regularized by the generic class of semi-norms defined as a decomposable norm composed with a linear operator, the so-called analysis decomposable prior. This encompasses several well-known analysis-type regularizations such as the discrete total variation, analysis group-Lasso or the nuclear norm. Our main results establish sufficient conditions under which uniqueness and stability to a bounded noise of the regularized solution are guaranteed.

I. INTRODUCTION

Problem statement Suppose we observe

$$y = \Phi x_0 + w$$
, where $||w|| \leqslant \varepsilon$,

where Φ is a linear operator from \mathbb{R}^N to \mathbb{R}^M that may have a non-trivial kernel. We want to robustly recover an approximation of x_0 by solving the optimization problem

$$x^* \in \underset{x \in \mathbb{R}^N}{\operatorname{Argmin}} \ \frac{1}{2} \|y - \Phi x\|^2 + \lambda R(x) \ , \ \text{where} \ R(x) := \|L^* x\|_{\mathcal{A}} \ , \quad (1)$$

with $L: \mathbb{R}^P \to \mathbb{R}^N$ a linear operator, and $\|\cdot\|_{\mathcal{A}}: \mathbb{R}^P \to \mathbb{R}^+$ is a decomposable norm in the sense of [1]. Decomposable regularizers are intended to promote solutions conforming to some notion of simplicity/low complexity that complies with that of L^*x_0 . This motivates the following definition of these norms.

Definition 1. A norm $\|\cdot\|_{\mathcal{A}}$ is decomposable at $\beta \in \mathbb{R}^P$ if there is a subspace $T \subseteq \mathbb{R}^P$ and a vector $e \in T$ such that

$$\partial\|\cdot\|_{\mathcal{A}}(\beta) = \left\{u \in \mathbb{R}^P \ : \ \mathcal{P}_T(u) = e \quad \text{and} \quad \|\mathcal{P}_{T^\perp}(u)\|_{\mathcal{A}}^* \leqslant 1\right\}$$

and for any $z \in T^{\perp}$, $\|z\|_{\mathcal{A}} = \sup_{v \in T^{\perp}, \|v\|_{\mathcal{A}}^* \leq 1} \langle v, z \rangle$, where $\|\cdot\|_{\mathcal{A}}^*$ is the dual norm of $\|\cdot\|_{\mathcal{A}}$, \mathcal{P}_T (resp. $\mathcal{P}_{T^{\perp}}$) is the orthogonal projector on T (resp. on its orthogonal complement T^{\perp}).

Popular examples covered by decomposable regularizers are the ℓ_1 -norm, the ℓ_1 - ℓ_2 group sparsity norm, and the nuclear norm.

Contributions and relation to prior work In this paper, we give sufficient conditions under which (1) admits a unique minimizer. Then we develop results guaranteeing that a stable approximation of x_0 can be obtained from the noisy measurements y by solving (1), with an ℓ_2 -error that comes within a factor of the noise level ε . This goes beyond [1] which considered identifiability in the noiseless case, with $L=\mathrm{Id}$ and Φ a Gaussian matrix. ℓ_2 -stability is also studied in [4] for $L=\mathrm{Id}$ under stronger sufficient assumptions than ours. Our results generalize the stability guarantee of [3] established when the decomposable norm is ℓ_1 and ℓ_2 is a frame. A general stability result for sublinear ℓ_2 is given in [2]. The stability is however measured in terms of ℓ_2 , and ℓ_2 -stability can only be obtained if ℓ_2 is coercive, ℓ_2 , ℓ_3 is injective.

II. UNIQUENESS

We first note that traditional coercivity and convexity arguments allow to show that the set of (global) minimizers of (1) is a non-empty compact set if and only if $\ker(\Phi) \cap \ker(L^*) = \{0\}$.

We shall now give a sufficient condition under which problem (1) admits exactly one minimizer. The following assumptions will play a pivotal role in our analysis throughout the paper.

Assumption (SC_x) There exist $\eta \in \mathbb{R}^M$ and $\alpha \in \partial \| \cdot \|_{\mathcal{A}}(L^*x)$ such that the following so-called source condition is verified:

$$\Phi^* \eta = L\alpha \in \partial R(x) .$$

Assumption (INJ_T) Let T be the subspace in Definition 1 associated to L^*x . Φ is injective on $\ker(\mathcal{P}_{T^{\perp}}L^*)$.

It is immediate to see that since $\ker(L^*) \subseteq \ker(\mathcal{P}_{T^{\perp}}L^*)$, (INJ_T) implies that the set of minimizers is indeed non-empty and compact.

Theorem 1. For a minimizer x^* of (1), let T_* and e_* be the subspace and vector in Definition 1 associated to L^*x^* . Assume that (SC_{x^*}) is verified with $\|\mathcal{P}_{T_*\perp}(\alpha)\|_{\mathcal{A}}^* < 1$, and that (INJ_{T_*}) holds. Then, x^* is the unique minimizer of (1).

III. STABILITY TO NOISE

We are now ready to state our main stability result.

Theorem 2. Let T and e be the subspace and vector in Definition I associated to L^*x_0 . Assume that (SC_{x_0}) is verified with $\|\mathcal{P}_{T^{\perp}}(\alpha)\|_{\mathcal{A}}^* < 1$, and that (INJ_T) holds. Then, for $\lambda = c\varepsilon$

$$||x^{\star} - x_0|| \leqslant C\varepsilon$$
,

where $C = C_1 (2 + c \|\eta\|) + C_2 \frac{(1+c\|\eta\|/2)^2}{c(1-\|\mathcal{P}_{T^{\perp}}(\alpha))\|_{\mathcal{A}}^*}$, and $C_1 > 0$ and $C_2 < 0$ are constants independent of η and α .

In the following corollary, we provide a stronger sufficient stability condition. It will allow to construct good dual vectors η and α that are computable, which in turn yield explicit constants in the bound. For this, suppose that (INJ_T) is verified, and define $\mathrm{IC}(T,e) = \min_{u \in \ker(L\mathcal{P}_{T^\perp})} \|\Gamma^{[T^\perp]}e + \mathcal{P}_{T^\perp}u\|_{\mathcal{A}}^*$ with $\Gamma^{[T^\perp]} = (L\mathcal{P}_{T^\perp})^+(\Phi^*\Phi A^{[T^\perp]} - \mathrm{Id})L\mathcal{P}_T$ and $A^{[T^\perp]} = U(U^*\Phi^*\Phi U)^{-1}U^*$, and U is a matrix whose columns form a basis of $\ker(\mathcal{P}_{T^\perp}L^*)$. Note that $\mathrm{IC}(T,e)$ can be computed by solving a convex program. It also specializes to the criterion developed in [5] for the case of the ℓ_1 analysis prior.

Corollary 1. Assume that IC(T,e) < 1. Then, taking $\eta = \Phi A^{[T^{\perp}]} L \mathcal{P}_T e$, there exists α such that (SC_{x_0}) is satisfied. Moreover, the bound of Theorem 2 holds true substituting 1 - IC(T,e) for $1 - \|\mathcal{P}_{T^{\perp}}(\alpha)\|_A^*$.

REFERENCES

- [1] E. J. Candès and B. Recht. Simple bounds for recovering low-complexity models. *Mathematical Programming*, pages 1–13, 2012.
- [2] M. Grasmair. Linear convergence rates for Tikhonov regularization with positively homogeneous functionals. *Inverse Problems*, 27:075014, 2011.
- [3] M. Haltmeier. Stable signal reconstruction via \(\ell^1\)-minimization in redundant, non-tight frames. IEEE Trans. on Sig. Proc., 2012. to appear.
- [4] S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework for high-dimensional analysis of m-estimators with decomposable regularizers. *Statistical Science*, 27(4):538–557, December 2012.
- [5] S. Vaiter, G. Peyré, C. Dossal, and M.J. Fadili. Robust sparse analysis regularization. To appear in IEEE Trans. Inf. Theo., 2011.