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Abstract—In this paper, we investigate in a unified way the structural

properties of solutions to inverse problems regularized by the generic class

of semi-norms defined as a decomposable norm composed with a linear

operator, the so-called analysis decomposable prior. This encompasses

several well-known analysis-type regularizations such as the discrete total

variation, analysis group-Lasso or the nuclear norm. Our main results

establish sufficient conditions under which uniqueness and stability to a

bounded noise of the regularized solution are guaranteed.

I. INTRODUCTION

Problem statement Suppose we observe

y = Φx0 + w, where ||w|| 6 ε ,

where Φ is a linear operator from R
N to R

M that may have a non-

trivial kernel. We want to robustly recover an approximation of x0

by solving the optimization problem

x
⋆ ∈ Argmin

x∈RN

1
2
||y − Φx||2 + λR(x) , where R(x) := ||L∗

x||A , (1)

with L : R
P → R

N a linear operator, and || · ||A : R
P → R

+ is a

decomposable norm in the sense of [1]. Decomposable regularizers

are intended to promote solutions conforming to some notion of

simplicity/low complexity that complies with that of L∗x0. This

motivates the following definition of these norms.

Definition 1. A norm || · ||A is decomposable at β ∈ R
P if there is

a subspace T ⊆ R
P and a vector e ∈ T such that

∂|| · ||A(β) =
n

u ∈ R
P : PT (u) = e and ||PT⊥(u)||∗A 6 1

o

and for any z ∈ T⊥, ||z||A = supv∈T⊥,||v||∗
A

61〈v, z〉, where || · ||∗A is

the dual norm of || · ||A, PT (resp. PT⊥ ) is the orthogonal projector

on T (resp. on its orthogonal complement T⊥).

Popular examples covered by decomposable regularizers are the

ℓ1-norm, the ℓ1-ℓ2 group sparsity norm, and the nuclear norm.

Contributions and relation to prior work In this paper, we give

sufficient conditions under which (1) admits a unique minimizer.

Then we develop results guaranteeing that a stable approximation of

x0 can be obtained from the noisy measurements y by solving (1),

with an ℓ2-error that comes within a factor of the noise level ε. This

goes beyond [1] which considered identifiability in the noiseless case,

with L = Id and Φ a Gaussian matrix. ℓ2-stability is also studied in

[4] for L = Id under stronger sufficient assumptions than ours. Our

results generalize the stability guarantee of [3] established when the

decomposable norm is ℓ1 and L is a frame. A general stability result

for sublinear R is given in [2]. The stability is however measured in

terms of R, and ℓ2-stability can only be obtained if R is coercive,

i.e., L∗ is injective.

II. UNIQUENESS

We first note that traditional coercivity and convexity arguments

allow to show that the set of (global) minimizers of (1) is a non-empty

compact set if and only if ker(Φ) ∩ ker(L∗) = {0}.

We shall now give a sufficient condition under which problem (1)

admits exactly one minimizer. The following assumptions will play

a pivotal role in our analysis throughout the paper.

Assumption (SCx) There exist η ∈ R
M and α ∈ ∂|| · ||A(L∗x) such

that the following so-called source condition is verified:

Φ∗
η = Lα ∈ ∂R(x) .

Assumption (INJT ) Let T be the subspace in Definition 1 associated

to L∗x. Φ is injective on ker(PT⊥L∗).

It is immediate to see that since ker(L∗) ⊆ ker(PT⊥L∗), (INJT )

implies that the set of minimizers is indeed non-empty and compact.

Theorem 1. For a minimizer x⋆ of (1), let T⋆ and e⋆ be the subspace

and vector in Definition 1 associated to L∗x⋆. Assume that (SCx⋆ )

is verified with ||PT⋆
⊥(α)||∗A < 1, and that (INJT⋆

) holds. Then, x⋆

is the unique minimizer of (1).

III. STABILITY TO NOISE

We are now ready to state our main stability result.

Theorem 2. Let T and e be the subspace and vector in Defi-

nition 1 associated to L∗x0. Assume that (SCx0
) is verified with

||PT⊥(α)||∗A < 1, and that (INJT ) holds. Then, for λ = cε

||x⋆ − x0|| 6 Cε ,

where C = C1 (2 + c||η||) + C2
(1+c||η||/2)2

c(1−||P
T⊥ (α))||∗

A

, and C1 > 0 and

C2 < 0 are constants independent of η and α.

In the following corollary, we provide a stronger sufficient sta-

bility condition. It will allow to construct good dual vectors η and

α that are computable, which in turn yield explicit constants in

the bound. For this, suppose that (INJT ) is verified, and define

IC(T, e) = minu∈ker(LP
T⊥ ) ||Γ

[T⊥]e + PT⊥u||∗A with Γ[T⊥] =

(LPT⊥)+(Φ∗ΦA[T⊥]−Id)LPT and A[T⊥] = U (U∗Φ∗ΦU)−1
U∗,

and U is a matrix whose columns form a basis of ker(PT⊥L∗). Note

that IC(T, e) can be computed by solving a convex program. It also

specializes to the criterion developed in [5] for the case of the ℓ1
analysis prior.

Corollary 1. Assume that IC(T, e) < 1. Then, taking η =

ΦA[T⊥]LPT e, there exists α such that (SCx0
) is satisfied. Moreover,

the bound of Theorem 2 holds true substituting 1 − IC(T, e) for

1 − ||PT⊥(α)||∗A.
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