
HAL Id: hal-00926685
https://hal.science/hal-00926685v1

Submitted on 10 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sketch *-metric: Comparing Data Streams via Sketching
Emmanuelle Anceaume, Yann Busnel

To cite this version:
Emmanuelle Anceaume, Yann Busnel. Sketch *-metric: Comparing Data Streams via Sketching. 12th
IEEE International Symposium on Network Computing and Applications (IEEE NCA 2013), Aug
2013, Boston, United States. pp.11, �10.1109/NCA.2013.11�. �hal-00926685�

https://hal.science/hal-00926685v1
https://hal.archives-ouvertes.fr


Sketch⋆-metric: Comparing Data Streams via Sketching

Emmanuelle Anceaume

IRISA / CNRS

Rennes, France

Emmanuelle.Anceaume@irisa.fr

Yann Busnel

LINA / Université de Nantes
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Abstract—In this paper, we consider the problem of esti-
mating the distance between any two large data streams in
small-space constraint. This problem is of utmost importance
in data intensive monitoring applications where input streams
are generated rapidly. These streams need to be processed on
the fly and accurately to quickly determine any deviance from
nominal behavior. We present a new metric, the Sketch ⋆-metric,
which allows to define a distance between updatable summaries
(or sketches) of large data streams. An important feature of
the Sketch ⋆-metric is that, given a measure on the entire initial
data streams, the Sketch ⋆-metric preserves the axioms of the
latter measure on the sketch. Extensive experiments conducted
on both synthetic traces and real data sets allow us to validate
the robustness and accuracy of the Sketch ⋆-metric.

I. INTRODUCTION

The main objective of this paper is to propose a novel

metric that reflects the relationships between any two dis-

crete probability distributions in the context of massive data

streams. Specifically, this metric, designated as Sketch ⋆-

metric in the following, allows us to efficiently estimate a

broad class of distances measures between any two large

data streams by computing these distances only using com-

pact synopses or sketches of the streams. The Sketch ⋆-

metric is distribution-free and makes no assumption about

the underlying data volume. It is thus capable of comparing

any two data streams, identifying their correlation if any, and

more generally, it allows us to acquire a deep understanding

of the structure of the input streams. Formalization of this

metric is the first contribution of this paper.

The interest of estimating distances between any two data

streams is important in data intensive applications. Many

different domains are concerned by such analyses including

machine learning, data mining, databases, information re-

trieval, and network monitoring. In all these applications,

it is necessary to quickly and precisely process a huge

amount of data. For instance, in IP network management,

the analysis of input streams will allow us to rapidly detect

the presence of anomalies or intrusions when changes in the

communication patterns occur [20]. Actually, the problem of

detecting changes or outliers in a data stream is similar to the

problem of identifying patterns that do not conform to the

expected behavior, which has been an active area of research

for many decades. To accurately analyze streams of data, a

panel of information-theoretic measures and distances have

been proposed to answer the specificities of the analyses.

Among them, the most commonly used are the Kullback-

Leibler (KL) divergence [19], or more generically, the f -

divergences, introduced by Csiszar, Morimoto and Ali &

Silvey [1], [15], [22], the Jensen-Shannon divergence and

the Battacharyya distance [8]. Unfortunately, computing

information theoretic measures of distances in the data

stream model is challenging essentially because one needs

to process a huge amount of data sequentially, on the fly,

and by using very little storage with respect to the size of

the stream. In addition the analysis must be robust over time

to detect any sudden change in the observed streams (which

might be the manifestation of routers deny of service attack

or worm propagation). We tackle this issue by presenting

an approximation algorithm that constructs a sketch of

the stream from which the Sketch ⋆-metric is computed.

This algorithm is a one-pass algorithm. It uses very basic

computations, little storage space (i.e., O(t(log n+k logm))
where k and t are precision parameters, and m and n are

respectively the size of the input stream and the number of

items in the stream), and does not need any information on

the structure of the input stream. This constitutes the second

contribution of the paper.

Finally, the robustness of our approach is validated with

a detailed experimentation study based on both synthetic

traces that range from stable streams to highly skewed ones,

and real data sets.

The paper is organized as follows. First, Section II reviews

the related work on classical generalized metrics. Section III

describes the data stream model. Section IV presents the nec-

essary background that makes the paper self-contained. Sec-

tion V formalizes the Sketch ⋆-metric. Section VI presents

the algorithm that approximates the Sketch ⋆-metric in one

pass and Section VII presents extensive experiments of our

algorithm. Finally, we conclude in Section VIII.

II. RELATED WORK

Work on data stream analysis mainly focuses on efficient

methods (data-structures and algorithms) to answer different

kind of queries over massive data streams. Mostly, these

methods consist in deriving statistic estimators over the data

stream, in creating summary representations of streams (to

build histograms, wavelets, and quantiles), and in comparing



data streams. Regarding the construction of estimators, a

seminal work is due to Alon et al. [2]. The authors have

proposed estimators of the frequency moments Fk of a

stream, which are important statistical tools that allow to

quantify specificities of a data stream. Subsequently, a lot of

attention has been paid to the strongly related notion of the

entropy of a stream, and all notions based on entropy [14].

These notions are essentially related to the quantification

of the amount of randomness of a stream (e.g, [5], [10],

[18], [21]). The construction of synopses or sketches of the

data stream have been proposed for different applications

(e.g, [11], [12]). Actually in [17], the authors propose a

characterization of the information divergences that are not

sketchable. They have proven that any distance that has not

“norm-like” properties is not sketchable.

Distance and divergence measures are key measures in

statistical inference and data processing problems [7]. There

exists two largely used broad classes of measures, namely

the f -divergences and the Bregman divergences that are

very important to quantify the amount of information that

separates two distributions. Our goal in this paper is to

formalize a metric that allows to efficiently and accurately

estimate a broad class of distances measures between any

two large data streams by computing these distances only

on compact synopses or sketches of streams.

III. DATA STREAM MODEL

We consider a system in which a node P receives a very

large data stream σ = a1, a2, . . . , am of data items that

arrive sequentially. In the following, we describe a single

instance of P , but clearly multiple instances of P may co-

exist in a system (e.g., in case P represents a router, or a base

station in a sensor network). Each data item ai of the stream

σ is drawn from the universe Ω = {1, 2, . . . , n} where n
should be very large. Data items can be repeated multiple

times in the stream. In the following, we suppose that the

length m of the stream is not known. Items in the stream

arrive regularly and quickly, and due to memory constraints,

need to be processed sequentially and in an online manner.

Therefore, node P can locally store only a small fraction

of the items and perform simple operations on them. The

algorithms we consider in this work are characterized by

the fact that they can approximate some function on σ with

a very limited amount of memory. We refer the reader to [23]

for a detailed description of data streaming models and

algorithms.

IV. INFORMATION DIVERGENCE OF DATA STREAMS

We first present notations and background that make this

paper self-contained.

A. Preliminaries

• A natural approach to study a data stream σ is to model

it as an empirical data distribution over the universe

Ω, given by (p1, p2, . . . , pn) with pi = xi/m, and

xi = |{j : aj = i}| representing the number of times

data item i appears in σ. Note that xi, the number of

times item i appears in a stream, is commonly called

the frequency of i. We have m =
∑

i∈Ω xi.

• 2-universal Hash Functions A collection H of hash

functions h : {1, . . . ,M} → {0, . . . ,M ′} is said to

be 2-universal if for every h ∈ H and for every two

different items i, j ∈ [M ], P{h(i) = h(j)} ≤ 1
M ′

,
which is exactly the probability of collision obtained if

the hash function assigned truly random values to any

i ∈ [M ], where notation [M ] means {1, . . . ,M}.

B. Metrics and divergences

1) Metric definitions: The classical definition of a metric

is based on a set of four axioms.

Definition 1 (Metric) Given a set X , a metric is a function

d : X ×X → R such that, for any x, y, z ∈ X , we have:

Non-negativity: d(x, y) ≥ 0 (1)

Identity of indiscernibles: d(x, y) = 0⇔ x = y (2)

Symmetry: d(x, y) = d(y, x) (3)

Triangle inequality: d(x, y) ≤ d(x, z) + d(z, y) (4)

In the context of information divergence, usual distance

functions are not precisely metric. Indeed, most of diver-

gence functions do not verify the 4 axioms, but only a

subset of them. For instance, a pseudometric is a function

that verifies the axioms of a metric with the exception of the

identity of indiscernible, while a premetric is a pseudometric

that relax both the symmetry and the triangle inequality

axioms.

Two classes of generalized metrics, usually denoted as

divergences, that allow to measure the separation of distribu-

tions have been proposed, namely the class of f -divergences

and the class of Bregman divergences. Note that in the

following by abusing the notation, we denote “|Ω|-point

distribution” by “Ω-point distribution”.

2) f -divergence: The class of f -divergences provides

a set of relations that is used to measure the “distance”

between two distributions p and q. Mostly used in the context

of statistics and probability theory, a f -divergence Df is a

premetric that guarantees monotonicity and convexity.

Definition 2 (f -divergence) Let p and q be two Ω-point

distributions. Given a convex function f : (0,∞)→ R such

that f(1) = 0, the f -divergence of q from p is

Df (p||q) =
∑

i∈Ω

qif

(
pi
qi

)
,

where by convention 0f( 00 ) = 0, af( 0
a
) = a limu→0 f(u),

and 0f(a0 ) = a limu→∞ f(u)/u if these limits exist.



Property 3 (Monotonicity) Given κ an arbitrary transition

probability that respectively transforms two Ω-point distri-

butions p and q into pκ and qκ, we have:

Df (p||q) ≥ Df (pκ||qκ).

Property 4 (Convexity) Let p1, p2, q1 and q2 be four Ω-

point distributions. Given any λ ∈ [0, 1], we have:

Df (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

≤ λDf (p1||q1) + (1− λ)Df (p2||q2).

3) Bregman divergence: Initially proposed in [9], the

Bregman divergences are a generalization of the notion of

distance between points. This class of generalized metrics

always satisfies the non-negativity and identity of inde-

cernibles. However they do not always satisfy the triangle

inequality and their symmetry depends on the choice of the

differentiable convex function F . Specifically,

Definition 5 (Bregman divergence (BD)) Given a

continuously-differentiable and strictly convex function F
defined on a closed convex set C, the Bregman divergence

of p from q is

BF (p||q) = F (p)− F (q)− 〈∇F (q), (p− q)〉 .

where the operator 〈·, ·〉 denotes the inner product, and

∇F (q) is the gradient of F at q.

In the context of data stream, it is possible to reformulate

this definition as follows. Specifically,

Definition 6 (Decomposable BD)

Let p and q be any two Ω-point distributions. Given a strictly

convex function F : (0, 1]→ R, the Bregman divergence of

q from p is defined as

BF (p||q) =
∑

i∈Ω

(F (pi)− F (qi)− (pi − qi)F
′(qi)) .

The Bregman divergence verifies non-negativity and con-

vexity properties in its first argument, but not necessarily in

the second argument. Another interesting property is given

by thinking of the Bregman divergence as an operator of the

function F .

Property 7 (Linearity) Let F1 and F2 be any two strictly

convex and differentiable functions. Given any λ ∈ [0, 1], we

have that

BF1+λF2
(p||q) = BF1

(p||q) + λBF2
(p||q).

4) Classical metrics: Based on these definitions, we

present several commonly used metrics in Ω-point distribu-

tion context. These specific metrics are used in the evaluation

part presented in Section VII.

Kullback-Leibler divergence: The Kullback-Leibler

(KL) divergence [19], also called the relative entropy, is a

robust metric for measuring the statistical difference between

two data streams. The KL divergence owns the special

feature that it is both a f -divergence and a Bregman one

(with f(t) = F (t) = t log t).

Given p and q two Ω-point distributions, the Kullback-

Leibler divergence is defined as

DKL(p||q) =
∑

i∈Ω

pi log
pi
qi
. (5)

Jensen-Shannon divergence: The Jensen-Shannon di-

vergence (JS) is a symmetrized version of the Kullback-

Leibler divergence. Also known as information radius (IRad)

or total divergence to the average, it is defined as

DJS(p||q) =
1

2
DKL(p||ℓ) +

1

2
DKL(q||ℓ), (6)

where ℓ = 1
2 (p + q). Note that the square root of this

divergence is a metric.

Bhattacharyya distance: The Bhattacharyya distance is

derived from his proposed measure of similarity between

two multinomial distributions, also known as the Bhat-

tacharya coefficient (BC) [8]. It is a semimetric as it does

not verify the triangle inequality. It is defined as

DB(p||q) = − log(BC(p, q)) where BC(p, q) =
∑

i∈Ω

√
piqi.

V. SKETCH ⋆-METRIC

We now present a method to sketch two input data streams

σ1 and σ2, and to compute any generalized metric φ between

these sketches such that this computation preserves all the

properties of φ computed on σ1 and σ2.

Definition 8 (Sketch ⋆-metric) Let p and q be any two Ω-

point distributions. Given a precision parameter k, and any

generalized metric φ on the set of all Ω-point distributions,

there exists a Sketch ⋆-metric φ̂k defined as follows

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ),

with ∀a ∈ ρ, p̂ρ(a) =
∑

i∈a pi and where Pk(Ω) is

the set of all partitions of Ω into exactly k nonempty and

mutually exclusive cells.

Remark 9 Note that for k > n, it does not exist a partition

of Ω into k nonempty parts. By convention, we consider that

φ̂k(p||q) = φ(p||q) in this specific context.

In this section, we focus on the preservation of axioms and

properties of a generalized metric φ by the corresponding

Sketch ⋆-metric φ̂k.



A. Axioms preserving

Theorem 10 Given any generalized metric φ then, for any

k ∈ N, the corresponding Sketch ⋆-metric φ̂k preserves all

the axioms of φ.

Proof: The proof is directly derived from Lemmata 16–

19 in the companion paper [6]. The first three ones say

that using sets operations and sum we get that (i) from

non-negative numbers it is impossible to generate negative

numbers, (ii) 0 always remains 0, and (iii) it is impossible

to generate asymmetry. Finally, the triangle inequality is

preserved as there exists ρ ∈ Pk(Ω) a k-cell partition such

that φ(p̂ρ||q̂ρ) = maxρ∈Pk(Ω) φ(p̂ρ||q̂ρ). Due to space con-

straints, the interested readers are invited to look through [6]

for detailed proofs of these four technical lemmata.

B. Properties preserving

Theorem 11 Given a f -divergence φ then, for any k ∈ N,

the corresponding Sketch ⋆-metric φ̂k is also a f -divergence.

Proof: From Theorem 10, φ̂k preserves the axioms of

the generalized metric. Thus, φ̂k and φ are in the same

equivalence class. Moreover, from Lemma 13, φ̂k verifies the

monotonicity property. Thus, as the f -divergence is the only

class of decomposable information monotonic divergences

(cf. [15]), φ̂k is also a f -divergence.

Theorem 12 Given a Bregman divergence φ then, for any

k ∈ N, the corresponding Sketch ⋆-metric φ̂k is also a

Bregman divergence.

Proof: From Theorem 10, φ̂k preserves the axioms of

the generalized metric. Thus, φ̂k and φ are in the same

equivalence class. Moreover, the Bregman divergence is

characterized by the property of transitivity (cf. [16]) defined

as follows. Given p, q and r three Ω-point distributions such

that q = Π(L|r) and p ∈ L, with Π is a selection rule

according to the definition of Csiszár in [16] and L is a

subset of the Ω-point distributions, we have the Generalized

Pythagorean Theorem:

φ(p||q) + φ(q||r) = φ(p||r).
Moreover the authors in [4] show that the set Sn

of all discrete probability distributions over n elements

({x1, . . . , xn}) is a Riemannian manifold, and it owns

another different dually flat affine structure. They also

show that these dual structures give rise to the generalized

Pythagorean theorem. This is verified for the coordinates in

Sn and for the dual coordinates [4]. Combining these results

with the projection theorem [16], [4], we obtain that

φ̂k(p||r) = max
ρ∈Pk(n)

φ(p̂ρ||r̂ρ)

= max
ρ∈Pk(n)

(φ(p̂ρ||q̂ρ) + φ(q̂ρ||r̂ρ))

= max
ρ∈Pk(n)

φ(p̂ρ||q̂ρ) + max
ρ∈Pk(n)

φ(q̂ρ||r̂ρ)

= φ̂k(p||q) + φ̂k(q||r)

Finally, by the characterization of Bregman divergence

through transitivity [16], and reinforced with Lemma 15

statement, φ̂k is also a Bregman divergence.

In the following, we show that the Sketch ⋆-metric pre-

serves the properties of divergences.

Lemma 13 (Monotonicity) Given any generalized metric φ
verifying the Monotonicity property then, for any k ∈ N, the

corresponding Sketch ⋆-metric φ̂k preserves the Monotonic-

ity property.

Proof: Let p and q be any two Ω-point distributions.

Given c < n, consider a partition µ ∈ Pc(Ω). As φ is

monotonic, we have φ(p||q) ≥ φ(p̂µ||q̂µ) [3]. We split the

proof into two cases:

Case (1). Suppose that c ≥ k. Computing φ̂k(p̂µ||q̂µ)
amounts in considering only the k-cell partitions ρ ∈ Pk(Ω)
that verify

∀b ∈ µ, ∃a ∈ ρ : b ⊆ a.

These partitions form a subset of Pk(Ω). The maximal value

of φ(p̂ρ||q̂ρ) over this subset cannot be greater than the

maximal value over the whole Pk(Ω). Thus we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ) ≥ φ̂k(p̂µ||q̂µ).

Case (2). Suppose now that c < k. By definition, we have

φ̂k(p̂µ||q̂µ) = φ(p̂µ||q̂µ). Consider ρ′ ∈ Pk(Ω) such that

∀a ∈ ρ′, ∃b ∈ µ, a ⊆ b. It then exists a transition probability

that respectively transforms p̂ρ′ and q̂ρ′ into p̂µ and q̂µ. As

φ is monotonic, we have

φ̂k(p||q) = max
ρ∈Pk(Ω)

φ(p̂ρ||q̂ρ)

≥ φ(p̂ρ′ ||q̂ρ′)

≥ φ(p̂µ||q̂µ) = φ̂k(p̂µ||q̂µ).

Finally for any value of c, φ̂k guarantees the monotonicity

property. This concludes the proof.

Lemma 14 (Convexity) Given any generalized metric φ
verifying the Convexity property then, for any k ∈ N, the

corresponding Sketch ⋆-metric φ̂k preserves the Convexity

property.

Proof: Let p1, p2, q1 and q2 be any four Ω-point

distributions. Given any λ ∈ [0, 1], we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)

Let ρ ∈ Pk(Ω) such that

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)

= max
ρ∈Pk(Ω)

φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)
.



Input: Two input streams σ1 and σ2; the distance φ, k
and t settings;

Output: The distance φ̂ between σ1 and σ2

1 Choose t functions h : [n]→ [k], each from a

2-universal hash function family;

2 Cσ1
[1...t][1...k]← 0, Cσ2

[1...t][1...k]← 0;

3 for aj ∈ σ1 do

4 v ← aj ;

5 for i = 1 to t do

6 Cσ1
[i][hi(v)]← Cσ1

[i][hi(v)] + 1;

7 for aj ∈ σ2 do

8 w ← aj ;

9 for i = 1 to t do

10 Cσ2
[i][hi(w)]← Cσ2

[i][hi(w)] + 1;

11 On query φ̂k(σ1||σ2) return

φ̂ = max1≤i≤tφ(Cσ1
[i][−],Cσ2

[i][−]);

Figure 1. Sketch ⋆-metric algorithm

As φ verifies the Convexity property, we have:

φ̂k (λp1 + (1− λ)p2||λq1 + (1− λ)q2)

= φ
(
λp̂1ρ + (1− λ)p̂2ρ||λq̂1ρ + (1− λ)q̂2ρ

)

≤ λφ(p̂1ρ||q̂1ρ) + (1− λ)φ(p̂2ρ||q̂2ρ)

≤ λ

(
max

ρ∈Pk(Ω)
φ(p̂1ρ||q̂1ρ)

)
+ (1− λ)

(
max

ρ∈Pk(Ω)
φ(p̂2ρ||q̂2ρ)

)

= λφ̂k(p1||q1) + (1− λ)φ̂k(p2||q2)

that concludes the proof.

Lemma 15 (Linearity) The Sketch ⋆-metric definition pre-

serves the Linearity property.

Proof: For space limitation reasons, proof is presented

in the companion paper [6].

To summarize, we have shown that the Sketch ⋆-metric

preserves all the axioms of a metric as well as the properties

of f -divergences and Bregman divergences. We now show

how to efficiently implement such a metric.

VI. APPROXIMATION ALGORITHM

In this section, we propose an algorithm that computes

the Sketch ⋆-metric in one pass on the stream. By definition

of the metric (cf. Definition 8), we need to generate all the

possible k-cell partitions. The number of these partitions fol-

lows the Stirling numbers of the second kind, which is equal

to S(n, k) = 1
k!

∑k
j=0(−1)k−j

(
k
j

)
jn, where n is the size of

the items universe. Therefore, S(n, k) grows exponentially

with n. As the generating function of S(n, k) is equivalent to

xn, it is unreasonable in term of space complexity. We show

in the following that generating t = ⌈log(1/δ)⌉ random k-

cell partitions, where δ is the probability of error of our

randomized algorithm, is sufficient to guarantee good overall

performance of our metric.

Our algorithm is inspired from the Count-Min Sketch

algorithm proposed by Cormode and Muthukrishnan [13].

Specifically, the Count-Min algorithm is an (ε, δ)-approxi-

mation algorithm that solves the frequency-estimation prob-

lem. For any items in the input stream σ, the algorithm

outputs an estimation f̂v of the frequency of item v such

that P{|f̂v − fv| > ε(m− fv)} < δ, where m represent the

size of the input stream and ε, δ > 0 are given as parameters

of the algorithm. The estimation is computed by maintaining

a two-dimensional array C of t× k counters, and by using

t 2-universal hash functions hi (1 ≤ i ≤ t), where k = 2/ε
and t = ⌈log(1/δ)⌉. Each time an item v is read from

the input stream, this causes one counter of each line to

be incremented, i.e., C[i][hi(v)] is incremented by one for

each i ∈ [1..t].
To compute the Sketch ⋆-metric of two streams σ1 and

σ2, two sketches σ̂1 and σ̂2 of these streams are constructed

according to the above description. Note that there is no

particular assumption on the length of both streams σ1 and

σ2. That is their respective length is finite but unknown. By

construction of the 2-universal hash functions hi (1 ≤ i ≤ t),
the ith line of Cσ1

and Cσ2
corresponds to the same partition

ρi of the Ω-point empirical distributions of both σ1 and σ2.

Thus when a query is issued to compute the given distance

φ between these two streams, the maximal value over all the

t partitions ρi of the distance φ between σ̂1ρi
and σ̂2ρi

is

returned, i.e., the distance φ applied to the ith lines of Cσ1

and Cσ2
for 1 ≤ i ≤ t. Figure 1 presents the pseudo-code

of our algorithm.

Lemma 16 Given parameters k and t, Algorithm 1 gives

an approximation of the Sketch ⋆-metric, using

O (t(log n+ k logm)) bits of space.

Proof: The matrices Cσi
, for any i ∈ {1, 2}, are

composed of t× k counters, which uses O (logm). On the

other hand, with a suitable choice of hash family, we can

store the hash functions above in O(t log n) space.

VII. PERFORMANCE EVALUATION

A. Settings of the experiments

We have implemented our Sketch ⋆-metric and have con-

ducted a series of experiments on different types of streams

and for different parameters settings. We have fed our

algorithm with both real-world data sets and synthetic traces.

Real data give a realistic representation of some existing

systems, while the latter ones allow to capture phenomenon

which may be difficult to obtain from real-world traces, and

thus allow to check the robustness of our metric. We have

varied all the significant parameters of our algorithm, that

is, the maximal number of distinct data items n in each

stream, the number of cells k of each generated partition,



Table I
STATISTICS OF THE FIVE REAL DATA TRACES.

Data trace # items (m) # distinct items (n) max. freq.

NASA (July) 1,891,715 81,983 17,572

NASA (August) 1,569,898 75,058 6,530

ClarkNet (August) 1,654,929 90,516 6,075

ClarkNet (September) 1,673,794 94,787 7,239

Saskatchewan 2,408,625 162,523 52,695

and the number of generated partitions t. Synthetic traces of

streams have been generated from 7 distributions showing

very different shapes, that is the Uniform distribution, the

Zipfian or power law one with parameter α = 1, 2, 4,

the Poisson distribution with parameter λ = N/2, the

Binomial and the Negative Binomial (or Pascal) ones. For

each parameters setting, we have conducted and averaged

100 trials of the same experiment, leading to a total of

more than 300, 000 experiments for the evaluation of our

metric. Real data have been downloaded from the repository

of Internet network traffic [24]. We have used five large

traces among the available ones. Two of them represent two

weeks logs of HTTP requests to the Internet service provider

ClarkNet WWW server – ClarkNet is a full Internet access

provider for the Metro Baltimore-Washington DC area – the

other two ones contain two months of HTTP requests to

the NASA Kennedy Space Center WWW server, and the

last one represents seven months of HTTP requests to the

WWW server of the University of Saskatchewan, Canada.

Table I presents some statistics of these data traces. Note

that all these benchmarks share a Zipfian behavior, with a

lower α for the University of Saskatchwan.

B. Main lessons drawn from the experiments

In this section, we evaluate the accuracy of the Sketch

⋆-metric by comparing φ̂k(p||q) with φk(p||q), for φ ∈
{Kullback-Leiber, Jensen-Shannon, Bhattacharyya}, and for

p and q generated from the 7 distributions and the 5 real data

sets. Distances computed from the sketches of the stream are

referred to as Sketch in the legend of the graphs, while the

ones computed from the full streams are mentioned as Ref.

Due to space constraints, only a subset of the results are

presented in the paper. The interested reader is invited to

read [6] for the complete evaluation.

Figure 2 shows the accuracy of our metric as a function

of the different input streams and the different generalized

metrics applied on these streams. The first noticeable remark

is that Sketch ⋆-metric behaves perfectly well when the two

compared streams follow the same distribution, whatever the

generalized metric φ used. This can be observed from both

synthetic traces (cf. Figure 2(a) with both p and q following

the Pascal distribution, and Figure 2(b) with both p and q
uniformly distributed), and real data sets (cf. Figures 2(c)

and 2(d) with the NASA (July and August) and ClarkNet

(August and September) traces).

This tendency is further observed when the distributions

of input streams are close to each other (e.g., Zipf–α = 2, 4

and Pascal distributions, or Uniform and Zipf–α = 1).

This makes the Sketch ⋆-metric a very good candidate as

a parametric method for making distribution parameters

inference. Another interesting result is shown when the two

input streams exhibit a totally different shape. Specifically,

let us consider Figures 2(a) and 2(b). Sketching the Uniform

distribution leads to k-cell partitions whose value is well

distributed, that is, for a given partition φ, all the k cell

values have with high probability the same value. Now,

when sketching the Pascal distribution, the repartition of

the data items in the cells of any given partitions is such

that a few number of data items (those with high frequency)

populate a very few number of cells. However, the values

of these cells is very large compared to the other cells,

which are populated by a large number of data items whose

frequency is small. Thus, the contribution of data items

exhibiting a small frequency and sharing the cells of highly

frequent items is biased compared to the contribution of

the other items. Thus although the input streams show a

totally different shape, the accuracy of φ̂k is only slightly

lowered in these scenarios which makes it a very powerful

tool to compare any two different data streams. The same

observation holds with real data sets. When the shapes

of the input streams are different (which is the case for

Saskatchewan with respect to the 4 other input streams), the

accuracy of the Sketch ⋆-metric decreases a little bit but in

a very small proportion. Notice that the scales on the y-axis

differ significantly in Figures 2(a)-2(b) and in Figures 2(c)-

2(d).

We have also observed in [6] the strong impact of the

non-symmetry of the Kullback-Leibler divergence on the

computation of the distance (computed on full streams or

on sketches) with a clear influence when the input streams

follow a Pascal and Zipf–α = 1 distributions.

Figure 3 summarizes the good properties of φ̂k by il-

lustrating how, for any generalized metric φ, and for any

variations in the shape of the two input distributions, φ̂k

remains close to φ. Recall that increasing values of the r
parameter of the Negative Binomial distribution makes the

shape of the distribution flatter, while maintaining the same

mean value.

Figure 4 presents the impact of the number of cells

per generated partition on the accuracy of the ⋆-metric

on both synthetic traces and real data. It clearly shows

that by increasing k the number of data items per cell in

the generated partition shrinks and thus the absolute error

on the computation of the distance decreases. The same

feature appears when the number n of distinct data items

in the stream increases. Indeed, when n increases (for a

given k), the number data items per cell augments and thus

the precision of our metric decreases. This gives rise to a

shift of the inflection point, as illustrated in Figure 4(b) as

data sets have almost twenty to forty times more distinct

data items than the synthetic ones. As aforementioned, the
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(b) Synthetic traces – Distribution p follows a Uniform distribution
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(c) Real datasets – The input stream p is the NASA (August) trace
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(d) Real datasets – The input stream p is the Saskatchewan trace

Figure 2. Comparison between the Sketch ⋆-metric and the φ metric as a function of the input stream q either generated from a distribution or real traces.
For synthetic traces, m = 200, 000 and n = 4, 000. Parameters of the count-min sketch data structure are k = 200 and t = 4. All the histograms share
the same legend, but for readability reasons, this legend is only indicated on histogram 2(a).
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Figure 3. Comparison between the Sketch ⋆-metric and the φ metric
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NB(r, n/(2r + n)), where distribution p follows a Uniform distribution
and q follows the Negative Binomial distribution NB(r, n/(2r + n)).

input streams exhibit very different shapes which explain the

strong impact of k. Note also that k has the same influence

on the Sketch ⋆-metric for all the generalized distances φ.

Finally, it is interesting to note that the number t of gener-

ated partitions has a slight influence on the accuracy of our

metric The reason comes from the use of 2-universal hash

functions, which guarantee for each of them and with high

probability that data items are uniformly distributed over

the cells of any partition. As a consequence, augmenting

the number of such hash functions has a weak influence on

the accuracy of the metric.

VIII. CONCLUSION AND OPEN ISSUES

In this paper, we have introduced a new metric, the Sketch

⋆-metric, that allows to compute any generalized metric

φ on the summaries of two large input streams. We have

presented a simple and efficient algorithm to sketch streams

and compute this metric, and we have shown that it behaves

pretty well whatever the considered input streams. We are

convinced of the undisputable interest of such a metric in

various domains including machine learning, data mining,

databases, information retrieval and network monitoring.

Regarding future works, we plan to consider a distributed

setting, where each site would be in charge of analyzing its

own streams and then would propagate its results to the other

sites of the system for comparison or merging. An immediate

application of such a tool would be to detect massive attacks

in a decentralized manner (e.g., by identifying specific

connection profiles as with worms propagation, and massive

port scan attacks or by detecting sudden variations in the

volume of received data).
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Figure 4. Comparison between the Sketch ⋆-metric and the φ metric as
a function of the number of cells k per partition (the number of partitions
t of the count-min sketch data structure is set to 4). For synthetic traces,
m = 200, 000 and n = 4, 000.
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