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Abstract—Classical adaptive mathematical morphology is
based on operators which locally adapt the structuring elements
to the image properties. Connected morphological operators act
on the level of the flat zones of an image, such that only flat
zones are filtered out, and hence the object edges are preserved.
Area opening (resp. area closing) is one of the most useful
connected operators, which filters out the bright (resp. dark)
regions. It intrinsically involves the adaptation of the shape
of the structuring element parameterized by its area. In this
paper, we introduce the notion of reference-driven adaptive area
opening according to two spatially-variant paradigms. First, the
parameter of area is locally adapted by the reference image. This
approach is applied to processing intensity+depth images where
the depth image is used to adapt the scale-size processing. Second,
a self-dual area opening, where the reference image determines
if the area filter is an opening or a closing with respect to the
relationship between the image and the reference. Its natural
application domain are the video sequences.

I. INTRODUCTION

Area opening (resp. area closing) is a morphological filter
that removes from an image the bright (resp. dark) connected
components having a surface area smaller than the parameter
A [13]. Area openings on gray-level images can be imple-
mented from an upper level set decomposition as well as
using more efficient algorithms based on max-tree [8] or
component tree [4] representations. For a recent overview of
applications of area openings, see [6]. It is also possible to
formulate area-based operators which simultaneously filter out
bright and dark connected components and consequently being
self-dual [10]. The same effect can be obtained by working
a tree representation of the image called Fast Level Lines
Transform [3].

The main interest of area opening resides in the fact that
they can be seen as morphological openings with a structuring
element which locally adapts its shape to the image structures
and consequently the contours of the objects are not deformed.
This is the common property of connected operators [7].
Classical adaptive mathematical morphology is based on op-
erators which locally adapts the structuring elements to the
image properties, see state-of-the-art of adaptive morphology
in recent papers [11] [2].

Hence, area opening can be seen as an adaptive operator.
However area opening takes just the information from one
image. In this article, we formulate two variant of area opening
that can deal with two images, one image where we would
apply the area filter and the other one, called the reference,
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introduces an external adaptivity of the operator. These for-
mulations can be considered as reference-driven adaptive area
opening according to two different spatially-variant paradigms.
First, the parameter of area is locally adapted by the reference
image. This approach is applied to processing intensity+depth
images where the depth image is used to adapt the size
scale processing. Second, a self-dual area opening, where the
reference image determines if the area filter is an opening
or a closing with respect to the relationship between the
image and the reference. Its natural application domain are
the video sequences. The present adaptive area openings are
defined according to the framework of grain filters by Boolean
predicates introduced in [15].

Note that our self-dual area opening according to a ref-
erence is related to the levelings [5], but in our case we
deal with an area criterion. In a recent work [9], it has been
proposed a framework for adaptive connected operators based
on a reconstruction from a marker propagated over increasing
quasi-flat zones according to an attribute, then a selection on
a hierarchical representation of the attribute value leading to
the strongest change. This idea is related to the notion of
ultimate opening [1], which in fact do not produce a transform
having the properties of an algebraic opening. We notice that
in our case, the proposed adaptive area openings have the
needed algebraic properties. In addition, the adaptability of
the area value is parameterized by an external reference and
the corresponding size-adaptive opening can be straightforward
formulated in an upper level set decomposition framework.

II. BACKGROUND ON AREA OPENINGS

Let E be a subset of the discrete space 72, which represents
the support space of a 2D image and 7 C R be the set of
intensity pixels values. Hence, it is assumed that the value at
a pixel position x € F is represented by a scalar grey-level
intensity s € 7 by means of the function f: £ — T.

A. Algebraic openings in mathematical morphology

Let f € F(E,T) be a grey-scale image. Morphological
opening of f according to structuring element B is defined as
vB(f) = 0B (e5(f)), where eg(f) and 0 (f) are respectively
the erosion and the dilation of f by the flat structuring
element B [17]. More generally, an algebraic opening ~(f)
is any operator on f following these three properties [17]: (a)
increasing, i.e., if f < g then v(f) < ~v(g); (b) idempotent,
ie., Y(v(f)) = ~(f); (c) anti-extensive, ie., v(f) < f.



The latter property means that bright structures are removed
from the image. Similarly, an algebraic closing ¢ is any
operator F(E,T) — F(FE,T) being increasing, idempotent
and extensive (i.e., acting on dark structures).

B. Upper level sets and area opening for grey-level images

Area opening is a typical example of algebraic opening.
Given a binary image b, which can be represented by the set
of the finite union of its connected components of value 1, i.e.,
C;7 = UyCy, such that b ({Cy}) = 1, the area opening of size
0 < X € N is defined as follows [13]:

= U{Ck|area(ck) > A} (H

k

Therefore, v, (b) is the union of the connected components
of b with area greater or equal than A. By area is meant the
Lebesgue measure in Z2. This operator is equivalent to

\/{’YB

where consequently B; is a structuring element. The proof
of this result can be find in [13]. Obviously, computing the
area opening according to (2) is an impossible task. But, as
a supremum of openings, it gives an interpretation of the
area opening as an adaptive operator: at every location, the
structuring element adapts its shape to image structure.

f)|Bi is connected and card(B;) = A} (2)

Area openings are naturally extended to grey-scale im-
ages [13]. Since we are going to work on the connected
components of grey-scale image f € F(E,T), it is common
to decompose it into its upper level sets, where the upper level
set for a given threshold s € 7 and a given image f is the
binary image defined as:

Xxﬂ@){égﬁgij 3

Using now the family of upper level set, we can easily obtain
the original image as [12]:

f=> Xf) @

seT

Our interest in upper level sets can be explained by the fact
that there are many interesting properties linking upper level
set with flat morphological operators [12]. Namely, if we have
defined a binary area opening I') with the attribute value A,
the corresponding grey-scale area opening ) of image f is

given by
£ = TaX:(f) )

seT

For the sake of pedagogy, we show here how to check
that ) is an algebraic opening since a similar mechanism
will be used for the proposed adaptive area openings. More
precisely, we should prove that v, is increasing, anti-extensive
and idempotent.

a) Increasing: Let us consider f and g two grey-scale
images such as f < g. So for all s € T, X,(f) < X(g).
Since T'y is an opening we have: T'\(X(f)) < I'x(Xs(9)),
< Y ser Ia(Xs(9))- Hence we have

. Hence this operator is increasing.

thus T IA(X

f% <%

b) Anti-extensive: Let us consider f a grey-scale image.
For all s € T, I'x(Xs(f)) < Xs(f) since I'y is an opening.

Hence 3,7 Tx(X,(f) < 2oser Xs(f)- So n(f) < f.
Hence this operator is anti-extensive.

c¢) Idempotent: Let us consider f a grey-scale image.
Since +, is anti-extensive we have:

() < nlf) (6)

Moreover 1A (1(f)) = " (X, e7 Ta(Xs2(f))), hence we
have (1 () = Suer Da (Xor (Bo,er Tr (X (1))).
Since XSl (ZSQGTF)\(X‘ (f))) = Zsz€|[81 ;Nﬂ‘ F)\(Xs2 (f))’

where  card(7) = N. So easily we have
S oretor v A (X () > I (X, (),
hence YserIa (2526[[sl N]. F/\(ng(f))) Z
2oerINIANXa (F) = X e IA(Xai(f)). So we

have

() = () (7

Hence thanks to (6) and (7) this operator is idempotent and
we now conclude that ) is an algebraic opening.

III. Si1ZE ADAPTIVE AREA OPENING
A. Definition

Let us consider two grey-level images f and r. It can
be interested to develop an area opening on f which will
depend locally on the information driven by r. In order to
have an operator that do not cut objects, we choose to work
on connected components. Thus we start by decomposing f
into its upper level sets {X;(f)}se7. We are now going first
to write our opening for binary images, then just by a similar
demonstration to the previous one, the addition of this binary
opening on all the upper level set would still be an opening.
That is how we would create our size adaptive area opening
on grey-scale images.

For now let us consider f as a binary image, and the
reference r as a grey-scale image. Let us decompose f €
F(E,{1,0}), in a set of connected objects called C]T, where
there are all the connected components with positive pixels,
and in another set C%, where there are all the connected
components with zero pixels, such as f = C+ U CO We
introduce a Boolean function v CJr — {1,0} that measures
the area of positive connected component Cy € C T and checks
if it is greater than \(r, C). Hence, for all C, € CJr we have:

_ 1 if area(Cy) > A(r, Ck)
v(Cr) = { 0 otherwise

(®)

For our application, we need to define also another Boolean
function u : Cf — {1,0} such as for all G}, € Cj we have:

w(Ch) = { 1if Var(f(Ck)) <a )

0 otherwise

where var(r(C%)) represents the variance of image r inside the
connected component Cj, and « is a threshold. This choice of
u was motivated by the fact that the adaptation in size for a
connected component in f makes sense only if the variation
in C}, of the reference image is limited. Other alternative
functions u can be considered for the same purpose.



Therefore, we can now define the area opening on the
binary image f driven by the reference r as:

nr(f) = JCHI(Cr € C&e(u(Cr) = D&((Cr) = 1)}. (10)

k

Using (5), we formulate size adaptive area opening ¥ .(f) on
a grey-scale image f € F(FE,T) as the sum of the previous
binary opening applied in all its upper level sets:

(@) = (X () (). (11)

seT

B. Proof of the opening

Let us demonstrate that operator (10) is an algebraic
opening, and consequently that (11) is also an opening.

d) Anti-extensive: Image f is binary, so is its result
Y- Hence we have 7, .(f)(C) = C%T(f) U C%m-(f)'

Let us consider ¥y ,(f)(C) € C;YrA (f)> in this case thanks
to the definition of the opening we have C € C;{ SO C% o €
C;‘ . Then it means that ¥y (f) < f.

e) Increasing: Let us consider two binary images f
and g such as f < g, so C;‘ - C:{. Let us assume that
I (C) € C%,r(f)' In this case we have C ¢ C},
v(C) = 1 and u(C) = 1. Easily, thanks to the fact that
C; C ¢y, we have 7, ,(f)(C) € C% (g That means that

CE (5 S5 gy hence Ta,(£)(C) < Anr(£)(O).

f) Idempotent: Let us consider a binary image f. Since
~x is anti-extensive we have:

e (e () < ae(f) (12)

Let us consider Jx (Y- (f))(C) € C%,r(%,r(f))’ since the
definition of the opening 7y ,(f)(C) € C;; .(f)- Thanks to
the definition of the opening ¥ (V- (f))(C) € C;YrA () thus
+ +
CirrGiar() € G () @nd hence
T (ar () Z e (f)- (13)

Then we can conclude that 7, , is idempotent and finally,
together with d) and e), that our operator is an opening.

C. Application to adaptively filter out RGB-D images

In this section we consider the application of size adaptive
area openings to processing intensity (or color) images using
the range or depth image. Therefore, let us imagine we have
two images from the same scene, one image would provide
visual information and the other one would provide the 3D
depth information. This is typically the case of the images
produced by the well-known Kinect camera.

To illustrate its performance, we use the example depicted
in Figure 2. If one use the classical area opening on this
example, as given in images (c) and (e), the opening would
act independently of the distance of the real object from the
camera.

However, projection camera model based on geometrical
optics implies that further an object is from the camera smaller

it is, and then by applying an area opening of attribute \ we
will remove objects whose size in pixel is smaller than this
attribute. But we would not take into account its real size in
comparison with the same object closer to the camera. That is
why we implemented a attribute A\(r, C') that depends on the
depth of the image. By this approach, we can process objects
on the image invariantly to their distance to the camera, and
without an explicit 3D reconstruction of the scene. For our
application, we have use a parametrization of the surface area
as the function A(r, C) such as for all C' € C;‘ we have:

M) = 3 emi=r@) 4 A (14)
This function is quite simple but as one could see in Figure
1, this new attribute would not be constant, and would vary
according its depth information. Here we simply assume that
the radius of the object is proportional to the distance and
that the area grows with respect to the square of radius. A
possibility of improvement involves to use a more appropriate
model for the camera.

If we observe the size adaptive area openings, images
(d) and (f) in Figure 2, we note that as expected the bright
structures are simplified, without deforming the contours of
the objects, but the effect of the simplification is adapted to
the distance such as large objects far from the camera are not
removed.

A, O
—,

10000

2, 4, 6, 8 10

Fig. 1. Example of attribute function A(r, C'), where on the abscissa one
has the depth scale, which is between 1 and 10 for a typical Kinect camera
scene, and on the ordinate the value of the area.

IV. SELF-DUAL ADAPTIVE AREA OPENING
A. Self-dual morphological operators

Mathematical morphology was initially developed for bi-
nary images, and the first morphological operators were the
erosion and the dilation. These transforms are dual between
them. It means that applying a dilation on an image f is the
same as applying an erosion on the complement of f and then
doing the complement of this result, where the complement is
a way to inverse the role of the foreground and the background,
ie.

es(f)@) = Cop(Cf)(),

s(f)@) = Cen(Cf)(a),
where Cf denotes the complementary of f. Hence the effect
of a morphological operator depends on what is foreground

on the image and on what is background. Moreover their
effects on foreground are different than those on background.



(b) reference r

(©) 10000, ( ®) Y10000,r(
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(2) Y2500, (f) — Y2500, ( (h) Y10000,r (f) — F10000,(

Fig. 2. Examples of size adaptive area opening from a Kinect camera
scene: (a) image representing the level of intensity of the scene; (b) image
representing the depth of the scene (more a pixel is bright further it would
be), (c) and (e) represent the classical area opening, (d) and (f) represent the
size adaptive area opening, and (g) and (h) represents the difference between
classical area opening and size adaptive area opening.

However sometimes we need a tool that is able to treat both
foreground and background of an image in the same way. By
this motivation, we arrive at a different morphology which is
intrinsically self-dual [14] [16]. More precisely, we want to
work with self-dual operators, which means that if ¥ is an
operator, we have W(f) = CU(Cf) for every image f.

The main ingredient of self-dual morphological operators
is a new partial order, as the one depicted in Figure 3(a), such
that given two points s and ¢, then s < ¢ implies that:

0<s<tort<s<O0 (15)

Partial order (15) depends on a constant reference at 0.
More generally, if we consider two spatial functions (i.e.,
images) f and g and an additional spatially-variant reference
r, such as the example given in Figure 3(b), we introduce a

Fig. 3. Top, example of two ordered images f and g such that f < g.
Bottom example of two ordered images f and g with respect to a reference
r such that f <, g.

spatially-variant partial order driven by r as:

9(a) > f(a) > r(a) if (@) > () o
o(x) < (o) 1) if 9(z) < r(a)

Thanks to Propositions 5.1 and 5.2 of [16], it is possible to
define a self-dual opening 7y, on image f € F(E,T) with
respect to reference image f € F(F,T) from an opening -y

P =W =) VO) = al(r = f)VO) +r

which is idempotent, anti-extensive, and increasing according
to the partial ordering (16), so it is an algebraic opening. How-
ever, this operator do not preserve the connected components
if the reference r is not constant. That means that even if )
is a connected filter, the straightforward self-dual counterpart
Y. is not.

fﬁrg@V:E{

That is why we decided to work again on at the connected
component level. Obviously there are two cases, all the pixels
of the connected component of image f are above the one
of reference r so we apply a classical area opening. The
second case is similar, it is when all the pixel of the connected
component of image f are bellow the one of reference r, so
also in this case we apply a classical area closing. However
there is a third case, where we can apply in an object both
closing and opening. In order to solve this ambiguous case,
we decided to create a third spatially-variant zone where the
identity is applied.

B. Definition

Let us focus on a formal definition of our self-dual area
opening. Like with the previous opening we want to implement
the opening on upper level sets. In this case, we have choose to
build a trinary upper level set 7 = {—1,0, 1}, by calculating
the binary upper level set and putting all null pixels to —1 on
the trinary upper level set.

Then, let us decompose our trinary image, whose values
belong to {—1,0,1}, in a set of connected objects. The trinary
image can be decomposed into three sets of connected objects,



one corresponding to the objects whose value is 1: C}; one
to the objects whose value is —1: Cf_; and one to the objects
whose value is 0: C?. An example of such image is given in
Figure 4, where card(C*) = 6, card(C™) = 3, card(CO) =1
It is now possible to decompose f and r, f = C U C U Cf
and also for r = C;F UC,~ UCP.

We consider again a Boolean function v that for each
connected component Cj, € C;ﬁ' U Cf_ measures the area and
checks if it is greater than \:

o(Cr) = { 1if area(Ck) > A (17)

0 otherwise

°.Q
60

Fig. 4. Example of trinary-valued upper level set of an image f (left) and a
reference r (right).

We introduce now an additional Boolean function w that
would check if the objects are in the “opening area”, or in the
“closing area”, or on the “identity area”. Therefore, VC}, € C;‘,
we have

. 1if Cp, CCo
u(Cr) = { 0 otherwise (18)
and VC; € C;
[ 1ifc;cct
u(Cy) = { 0 othe]rwise (19)

Thus we can now define the area opening on the trinary
image f according to the trinary reference r as:

() = HCI(C c c)&(u(C) = 1)&(v(C)
J{Cl(C ccg((u(C) =0)} — [ {CI(C c Cf)&(u(C)
—J{CI(C c ¢))&(u(C) = D& (v(C)

D} +
0)}
1}

Now, using (5), we can define a self-dual area opening
x.r(f) on grey-scale image f according to reference r as the
sum of the area opening (20) applied in all upper level sets
considered as trinary images, i.e.

(@) = ) e (Xs(f)) (). 1)
s€T

C. Proof of the opening

g) Anti-extensive: Since the original image f is a
trinary valued function, we can decompose the study in three
cases. First case, f(z) is white so its value is “+1”, so this
pixel is in an object that belong to C?. From the definition

of the previous operator there are two options. First one, the
result is white valued so: ¥ ,(f)(xz) = 1, or the result is
grey valued so v -(f)(z) = 0. In both cases we have that:
ar(f)(x) 2 f(x). Using exactly the same demonstration, we
can assert that if f(z) = —1 we also have v . (f)(z) < f(x).
If f(x) =0 we have 75 .(f)(z) = 0. Hence this operator is
anti-extensive.

h) Increasing: Now let us consider two trinary images
f and g, we have the following property:

Crccy
fjg@{c cc (22)

Now let us consider C' an object from C}. There are two
possibilities according to the operator. It is possible that
M (FC) € Cf or W(NC) € CF. I A (F)(C) C
C+ then ﬁ“r(g)(C) C C[ because f =< g. So we have
CL C B Usmg the same demonstration, we have
C;T,r(f) g C.;M(g). So we have 75 (f) =< 7x.r(g). Hence this
operator is increasing.

i) Idempotent: Let us consider an object C' C C}“.
From the definition of the operator there are two possibilities,

either yx.(f(C)) C CW (r) of I (f(C)) C C% (f)

If . (f(C) cC C%%(f), then easily we have
Mr(f(C) = C. So u(C) = u(yx,(f(C))) and v(C) =
U(’y)\,r(f(c)))’ then we ﬁnally have ’7/\1(7)\7(f(0)) c
C%j,(,y)\ o (F(O))? therefore x.(f(C)) = Yar (xr (f(C)).

If 4x-(f(C) C Com ~()» then easily we have
T (O) ¢ e and (7€) -
Yo (i (F(C)).

D. Application to differential image processing

First to see the result of this opening we tried with simple
images and a non flat reference in Figure 5, where we see that
this opening is self-dual and does not create discontinuities on
connected components. We also try in Figure 6 to apply this
opening in video-surveillance applications. We took as images
f (a) and r (b) two different frames of a video. One can see the
result of the opening in images (c) and (d), and the residues

(20which represent the detailed erased by the opening on images

(e) and (f). These residues illustrate the fact that bright and
dark objects are similarly affect by the self-dual area opening.

We note that ¥ (f) # 7a,r(r) and consequently, this
asymmetry should be taken into account for differential image
analysis. In the case of videosequences, it seems natural either
to consider r as the frame at time t — 1 and f the frame at
time ¢ or to consider r as a background image of the scene
(learned online or fixed) and f each one of the frames. We
should point out that the use of area openings for comparison
of images was already consider in [3], however in a different
framework since here we consider explicitly the computation
of the self-dual area opening driven by a reference image and
not only shape reconstruction of one image with the other as
in [3].



(©) Y500, (f) (d) Y5000, (f)
Fig. 5. Examples of spatially-variant self-dual area opening with non-flat

reference v 5, (f)-

- A

© f —Fs00r(f) £ = Fs000(f)

Fig. 6. Examples of spatially-variant self-dual area opening with non-flat
reference from video-surveillance domain.

V. CONCLUSIONS AND PERSPECTIVES

The purpose of this study was to build two adaptive
connected morphological filters that could operate on two
images using the information from a image to adapt the effect
of the filter on the other image. Both have been theoretically
characterized to validate their properties. They can be imple-
mented straightforward using upper-level set decomposition
and connected component selection. More efficient algorithms
should be considered in ongoing developments.

From an applicative viewpoint, both operators were moti-
vated by practical current problems. The first one is a scale-
adaptive 2D image processing according to the scene depth.
That allows to filter out objects of same size in 3D scene
invariantly to their projection into the 2D image. The second
one involves a self-dual processing of an image according to
a background or reference image. The classical framework of
application is image sequence processing using a reference
scene or the frame ¢ — 1 as reference to process frame t.
For instance, it can be used for novelty detection in video-
surveillance applications but also in image denoising and
regularization of an image according to the reference.
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