
HAL Id: hal-00926563
https://hal.science/hal-00926563v1

Submitted on 9 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safecomp FastAbstract 25th September 2013
Marc-Olivier Killijian

To cite this version:

Marc-Olivier Killijian. Safecomp FastAbstract 25th September 2013. 2013. �hal-00926563�

https://hal.science/hal-00926563v1
https://hal.archives-ouvertes.fr

	
	
Safecomp	 FastAbstract	
Program	
25th	 September	 2013	 16:00-‐17:30	
	
	
	
	

	
Each	 FastAbstract	 will	 have	 a	 60	 seconds	 short	 presentation	 on	 the	 25th	 from	 16:00.	
Then	 the	 posters	 will	 be	 presented	 until	 17:30.	
	
1	 -‐	 	 C.	 Arar,	 H.	 Kalla,	 S.	 Kalla	 and	 B.	 S.	 Sabrina	

Fault-‐Tolerant	 Real-‐Time	 Scheduling	 Algorithm	 for	 Energy-‐Aware	 	
Embedded	 Systems	

	 	
2	 -‐	 	 I.	 Silva	 and	 L.	 A.	 Guedes,	 P.	 Portugal	 and	 F.	 Vasques	
	 Common	 Cause	 Failure	 Analysis	 for	 Wireless	 Sensor	 Networks	
	 	
3	 -‐	 	 T.	 Probst,	 E.	 Alata,	 M.	 Kaâniche,	 V.	 Nicomette,	 Y.	 Deswarte	
	 An	 Approach	 for	 Security	 Evaluation	 and	 Analysis	 in	 Cloud	 Computing	
	 	
4	 -‐	 	 M.	 Machin,	 J.-‐P.	 Blanquart,	 J.	 Guiochet,	 D.	 Powell	 and	 H.	 Waeselynck	
	 Specifying	 Safety	 Monitors	 for	 Autonomous	 Systems	
	 	
5	 -‐	 	 J.	 Dittmann,	 T.	 Hoppe,	 C.	 Vielhauer	
	 Multimedia	 Systems	 as	 Immune	 System	 to	 Improve	 Automotive	 Security?	
	 	
6	 -‐	 	 S.	 Shida,	 A.	 Uchida,	 M.	 Ishii,	 M.	 Ide,	 and	 K.	 Kuramitsu	
	 Assure-‐It:	 A	 Runtime	 Synchronization	 Tool	 of	 Assurance	 Cases	
	 	
7	 -‐	 	 K.	 Łukasiewicz,	 J.	 Górski	
	 Integrating	 agile	 practices	 into	 critical	 software	 development	
	 	
8	 -‐	 	 A.	 Kumar	
	 Outsourced	 Linear	 Algebra	
	 	
9	 -‐	 	 R.	 Bloomfield	 and	 R.	 Stroud	
	 Security-‐informed	 Safety	
	 	
10	 -‐	 	 A.	 Ruiz,	 H.	 Espinoza,	 T.	 Kelly	
	 Adequacy	 of	 Contract	 Grammars	 for	 Component	 Certification	
	 	
11	 -‐	 	 A.	 Zammali,	 A.	 de	 Bonneval,	 Y.	 Crouzet	
	 Communication	 Integrity	 for	 Slow-‐dynamic	 Critical	 Embedded	 Systems	

	 	 	
12	 -‐	 	 C.	 Woskowski,	 M.	 Trzeciecki,	 F.	 Schwedes	
	 Robust	 by	 "Let	 it	 Crash"	
	
14	 -‐	 	 A.	 L.	 de	 Oliveira,	 R.	 T.	 V.	 Braga,	 P.	 C.	 Masiero,	 I.	 Habli,	 T.	 Kelly	

Impact	 of	 Feature	 Interaction	 on	 the	 Safety	 Analysis	 for	 Unmanned	 Avionics	
Product	 Lines	

	 	
15	 -‐	 	 J.	 Na,	 D.	 Lee	
	 A	 Study	 on	 the	 Reliability	 Improvement	 Factor	 of	 Fault	 Tolerant	 Mechanisms	

Fault-Tolerant Real-Time Scheduling Algorithm for
Energy-Aware Embedded Systems

Chafik Arar, Hamoudi Kalla, Salim Kalla and Bendib Sonia Sabrina
Department of Computer Science, University of Batna, Algeria

Email: {arar.chafik,hamoudi.kalla}@gmail.com,{salim.kalla,Bendib.SS}@univ-batna.dz

Abstract—In this paper, we propose a fault-tolerant scheduling
approach that achieves low energy consumption and high relia-
bility efficiency. Our scheduling solution is dedicated to multi-bus
heterogeneous architectures, which take as input a given system
description and a given fault hypothesis. It is based on active
redundancy to mask a fixed number k of failures supported in
the system, so that there is no need for detecting and handling
such failures. In order to maximize the system’s reliability, the
replicas of each operation are scheduled on different reliable
processors. Our solution can maximize reliability and reduce
energy consumption when using active redundancy.

I. I NTRODUCTION

Embedded systems invade many sectors of human ac-
tivity, such as medical applications, transportation, energy
production, robotics, and telecommunication. The progresses
achieved in electronics and data processing improves the
performances of these systems. As a result, the new systems
are increasingly small and fast, but also more complex and
critical, and thus more sensitive to faults. The presence ofsome
faults in these systems, accidental (design, interaction,. . .) as
well as intentional (human, virus, . . .), are inevitable. Due to
catastrophic consequences (human, ecological, and/or financial
disasters) that could involve a fault, these systems must be
fault-tolerant [1]. A fault can affect either the hardware or
the software of the system. In this paper, we consider only
processors faults in distributed architectures with buses. A bus
is a multipoint connection characterized by a physical medium
that connects all the processors of the architecture. As we
are targeting embedded systems with limited resources (for
reasons of weight, encumbrance, energy consumption, or price
constraints), we investigate only software solutions.

We address hardware fault-tolerant approaches based on
scheduling algorithms, to tolerate processors faults in dis-
tributed architectures. The approach that we propose is our
most recent work for building fault-tolerant distributed em-
bedded real-time systems. Prior results have been published
in [2], [3]. In this paper, we are interested in approaches based
on scheduling algorithms that maximize reliability and reduce
energy consumption when using active redundancy to tolerate
processors faults.

The paper is organized as follows. Section II describes the
system model and states the faults assumptions. Section III
presents our approach for providing fault-tolerance. Finally,
Section IV concludes the paper.

II. M ODELS

The algorithm is modeled as a data-flow graph, called
algorithm graph and noted ALG. Each vertex of ALG is

an operation and each edge is a data-dependence. A data-
dependence corresponds to a data transfer between a producer
operation and a consumer operation. o1→ o2 means that
o1 is a predecessor of o2, and o2 is a successor of o1.
Figure 1(a) presents an example of an algorithm graph, with
eight operations I, I’,A, B, C, D, O and O’.

(b)(a)

ODI

A

O’
B

C

I’

P1 P2

P4P3

Fig. 1. Algorithm and architecture graphs.

The architecture is modeled by a non-directed graph, noted
ARC, where each node is a processor, and each edge is a
bus. We assume that the architecture is heterogeneous and
fully connected. Figure 1(b) is an example of ARC, with four
processorsP1, P2, P3 andP4, and two buses Bus1 and Bus2.

We assume only hardware components failures and we
assume that the algorithm is correct w.r.t. its specification, i.e.,
it has been formally validated, for instance with model check-
ing and/or theorem proving tools. We consider only transient
processors faults. We assume that at most k processors faults
can arise in the system, and that the architecture includes more
than k processors.

III. T HE PROPOSED APPROACH

The solution that we propose to tolerate processors faults is
based on the active redundancy of operations. The advantageof
the active redundancy is that the obtained schedule is static; in
particular, there is no need for complex on-line re-scheduling
of the operations that were executed on a processor when the
latter fails; also, it can be proved that the schedule meets
a required real-time constraint, both in the absence and in
the presence of faults. In many embedded systems, this is
mandatory.

To tolerate upto k arbitrary processors faults, each oper-
ation o of ALG is actively replicated on k+1 processors of
ARC. For example, to tolerate two processors faults, three
replicas of each operation of the ALG given in Figure 1(a) are
scheduled on different processors (see Figure 3). We assume
that all values returned by the k+1 replicas of any operationo
of ALG are identical.

Figure 2 presents an example of a fault free schedule, where
operations are not replicated.

time

P4

A

data

B

Bus2P2 P3P1 Bus1

Fig. 2. A fault-free schedule.

In order to maximize the reliabilityR of the schedule, we
propose to use the Global System Failure Rate per time unit
(GSFR) function that we have proposed in [3]. The GSFR is
the failure rate per time unit of the obtained multiprocessor
schedule. In our approach, the replicas of each operation are
scheduled on the best processors that minimizes GSFR.

The GSFR of scheduling an operationoi, noted Λ, is
computed by the following equation:

Λ(Sn) = − logR(Sn)/U(Sn) (1)

where,Sn is the static schedule at stepn of the algorithm,
andU(Sn) is the total utilization of the processors.

time

P2 P3P1 Bus1 P4

A2

data

A1

A3

Bi

Bus2

Fig. 3. A reliable fault tolerant schedule.

A. Voltage, frequency, and energy consumption

The maximum supply voltage is notedVmax and the
corresponding highest operating frequency is notedfmax. For
each operation, its execution timeExe assumes that the pro-
cessor operates atfmax andVmax. The execution time of the
operation placed onto the processor p running at frequency f
(taken as a scaling factor) is:

Exe(X, p, f) = Exe(X, p)/f (2)

Concerning the power consumption, we follow the model
of Zhu et al. [4]. For a single operation placed onto a single
processor, the power consumption Pc is:

Pc = Ps + h(Pind + Pd) (3)

where,Pd = Cef V 2 f , Ps is the static power (power
to maintain basic circuits and to keep the clock running), h
is equal to 1 when the circuit is active and 0 when it is

inactive,Pind is the frequency independent active power,Pd

is the frequency dependent active power, Cef is the switch
capacitance, V is the supply voltage, and f is the operating
frequency.

For a multiprocessor schedule S, we cannot apply directly
equation 3. Instead, we must compute the total energy E(S)
consumed by S, and then divide by the schedule length L(S):

P (S) = E(S)/L(S) (4)

In our approach, as the k+1 replicas of each operation
are scheduled actively on k+1 distinct processors, the energy
consumed by the system is maximal. In order to reduce energy
consumption, we propose to execute the k+1 replicas of an
operation with different frequencies f. As all the k+1 replicas
of each operation may have different end execution time
(see Figure 3 for the replicas of A), we choose to align the
execution time of all the replicas by changing the frequencyf
of each replica. For example, to reduce energy consumption of
the system of Figure 3, we align the first two replicasA1 and
A2 with A3 by changing frequencies as shown in Figure 4.

time

Bus2 P3P1 Bus1 P4

A3

A1

Bi

data

A2

P2

Fig. 4. The proposed scheme to reduce energy consumption

The new frequency of each replicaoi of o is depend on
the end execution time of the last scheduled replica ofo.

IV. CONCLUSION

We have proposed in this paper a solution to tolerate several
processors faults in distributed heterogeneous architectures
with multiple-bus topology. The proposed solution is based
on active redundancy, and on GSFR to maximize reliability
and to reduce energy consumption. Currently, we are working
to evaluate our approach.

REFERENCES

[1] N. Suri and K. Ramamritham, “Editorial: Special section on depend-
able real-time systems,”IEEE Trans. Parallel and Distributed Systems,
vol. 10, no. 6, pp. 529–531, Jun. 1999.

[2] I. Assayad, A. Girault, and H. Kalla, “Tradeoff exploration between
reliability, power consumption, and execution time for embedded systems
- the tsh tricriteria scheduling heuristic,”STTT, vol. 15, no. 3, pp. 229–
245, 2013.

[3] A. Girault and H. Kalla, “A novel bicriteria scheduling heuristics pro-
viding a guaranteed global system failure rate,”IEEE Trans. Dependable
Sec. Comput., vol. 6, no. 4, pp. 241–254, 2009.

[4] D. Zhu, R. Melhem, and D. Mossé, “The effects of energy management
on reliability in real-time embedded systems,” inInternational Confer-
ence on Computer Aided Design, ICCAD’04, San Jose (CA), USA, Nov.
2004, pp. 35–40.

Common Cause Failure Analysis for Wireless
Sensor Networks

Ivanovitch Silva and Luiz Affonso Guedes
Federal University of Rio Grande do Norte, Natal, Brazil

{ivan,affonso}@dca.ufrn.br

Paulo Portugal and Francisco Vasques
University of Porto, Porto, Portugal
{pportugal,vasques}@fe.up.pt

Abstract—Simultaneous failures of multiple devices make the
dominant contribution to the unreliability of wireless sensor
networks. They can hamper communications over long periods of
time and consequently disturb, or even disable, the management
algorithms of the network. In this preliminary work, we consider
two types of common cause failures: hardware, and the tempo-
rary disruption of links. We propose an evaluation methodology
based on the fault tree formalism for analyzing the reliability
and availability of any wireless sensor network when common
cause failures are considered.

Index Terms—Common cause failure, fault tree, reliability,
availability, wireless sensor network.

I. INTRODUCTION

In wireless sensor networks (WSN), the failure of a single
device might not be critical to the applications due to its
intrinsic redundancy. However, when simultaneous failures
occur with multiple devices, the consequences are likely
to be disastrous, particulary for critical applications (patient
surveillance, industrial environments, safety monitoring) [1].
This type of failure is known as common cause failure (CCF).

It is very important to measure the impact of CCF as
soon as possible, ideally in the early phases of planning and
designing the network. When done properly, such an early
evaluation can anticipate decisions regarding the topology,
criticality of the devices, the levels of redundancy, and network
robustness. A tentative effort to evaluate a WSN considering
CCF was performed in [2], but the technique was focused
on a single cluster. By introducing the concept of coverage-
oriented reliability, the same authors extended the previous
work in [2] to support a more flexible way to configure failure
conditions [3]. However, it is not possible to create two or
more coverage subsets for the same cluster. In [4], the effects
of CCF on a WSN were also evaluated. The authors proposed
a progressive scheme based on binary decision diagrams for
evaluating any WSN topology. However, the model supports
neither generic network failure conditions nor an importance
analysis of the devices.

The main focus here is to investigate the influence of
common cause failures on a WSN. It becomes clear from the
above discussion that previous research has only provided a
partial solution for this problem. We proposed a methodology
based on the fault tree formalism in [5] to evaluate the
reliability and availability of a WSN, supporting the definition
of flexible network failure conditions. Here, we extend this
methodology to support CCF for both hardware and links.

Input

Paths from sink to devices that
encopass the failure condition

Fault tree generation

Output

Topology
Measures

to compute

Failure, repair
and CCF data

Network failure
condition

Device types

Reliability
Availability
MTTF
Component importance

Fig. 1. Overview of the method-
ology for common cause failure
analysis.

and

pathi pathn

cp

or

devi

...

(a) (b)

devk

...

pathi

or

hwi
(c)

CCFk

...

devi

Fig. 2. Device failure condition.

II. EVALUATION METHODOLOGY INCORPORATING
COMMON CAUSE FAILURES

An overview of the methodology adopted in this preliminary
work is given in Fig. 1. The process starts by providing
information about the network topology, device types, device
failure and repair processes, CCF data, and network failure
condition. The latter expresses the conditions that may lead
to a network (system) failure, and is defined by a logical
expression that combines the failure status of the devices. The
next step is to find all the paths between the sink and devices
that encompass the failure condition. This is necessary for
attaining flexible failure conditions and for supporting self-
healing routing protocols. In the following step, a fault tree
is generated using all the previous data. Finally, the metrics
of interest (reliability, availability, MTTF, and importance
measures) are computed.

A. Assumptions

The main assumptions of this methodology are summarized
as follows:

• Faults: only permanent faults are considered. The links,
due their wireless nature, are more affected by transient
faults (millisecond scale). However, temporary barriers or
bad weather conditions can obstruct a link for long hours.
This case is also considered as a permanent fault. Failure
occurrences are characterized by a failure distribution, by
means of a CDF (cumulative distribution function). Any
type of CDF can be used to describe their occurrence.

• CCF: the model support two types of CCF: hardware and
link. The former is caused by shocks or other actions
that damage the device hardware, whereas the latter is
caused by temporary interruptions of a link (occurrence
� milliseconds). Depending on the scenario, the CCF
can be fatal or non-fatal to the network.

• Network failure condition: the network failure condition
(NFC) defines which combination of devices may lead to
a network failure and its equivalent to the TOP event of
fault tree. The methodology used in this letter supports
any combination that can be expressed using boolean
operators (i.e., AND, OR, K-out-of-N).

B. Device Failure Condition

After defining the NFC, it is necessary to define the condi-
tions that may lead to the failure of a device. According to
Fig. 2a, a device is considered faulty if all the paths between
it and the sink fail (event cp – conectivity problem). On the
other hand, as described in Fig. 2b, a path fails if at least one
device along that path fails. Finally, a device also can fail if
its hardware fails (event hw) or if at least one CCF occurs
(Fig. 2c).

Note that it is necessary to exert some effort to find all
combinations that may lead to a connectivity failure. In order
to attain this, it is necessary to search all paths between the
sink and devices that belong to the NFC. The paths are found
by performing a depth-first search (DFS) in an adjacency
matrix that represents the network. All the paths generated
are then stored in a data structure based on a fault tree.

III. PRELIMINARY RESULTS

In this section, we evaluate the common cause failures for
wireless sensor networks. The main target of the analysis
is to highlight the influence of common cause failures upon
network reliability. We assume a wireless sensor network mesh
topology typical for condominium monitoring applications to
validate the idea (Fig. 3). In this scenario, we consider that
the network fails if at least three devices fail.

Sink

Device 1Device 2

Device 3

Device 4

Device 7

Device 6

Device 5

Fig. 3. Topology adopted in the evaluation process.

Regarding the failure properties, we assume that device
failures occur at a constant rate. In order to simplify the
procedure here, we assume that all devices have the same
failure rate (λ ≈ 1E − 5).

The evaluation measures the influence of CCF on the
network reliability. The results are described in Fig. 4. Despite
the events CCF 1 and CCF 2 having different configurations,
when both events occur the influence on network reliability is
similar. This behavior results from the difference in criticality
of devices 1, 2, and 7. Note that the network reliability
decreases quickly when the events CCF 1 and CC2 are
designed together. This scenario can even be pessimistic, but
when compared to with the scenario without CCF, we observe
that no consideration of CCF for network reliability is a very
unrealistic assumption.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000
N

e
tw

o
rk

 R
e
lia

b
ili

ty
Time(h)

Without CCF
CCF 1
CCF 2

CCF 1 and CCF 2

Fig. 4. Network reliability analysis considering common cause failure.

IV. DISCUSSION AND FUTURE WORK

In this preliminary work, we proposed an evaluation model
for wireless sensor networks considering common cause fail-
ures. The proposal is based on the fault tree formalism and
it considers hardware and link failures. A mesh topology was
used for its validation (network reliability). It is also possible
to analyze the network availability, and the criticality of the
devices. The result showed the importance of considering
CCFs during the design of a network, mainly when multiples
CCF can occur. This analysis can be used to design any
wireless sensor network. In future research, we plan to extend
this methodology to analyze the redundancy, coverage factor,
and hierarchical models.

REFERENCES

[1] R. Dilmaghani, H. Bobarshad, M. Ghavami, S. Choobkar, and C. Wolfe,
“Wireless sensor networks for monitoring physiological signals of mul-
tiple patients,” Biomedical Circuits and Systems, IEEE Transactions on,
vol. 5, no. 4, pp. 347–356, 2011.

[2] A. Shrestha, L. Xing, and H. Liu, “Infrastructure communication reliabil-
ity of wireless sensor networks,” in Dependable, Autonomic and Secure
Computing, 2nd IEEE International Symposium on, 2006, pp. 250 –257.

[3] A. Shrestha, H. Liu, and L. Xing, “Modeling and evaluating the reli-
ability of wireless sensor networks,” in Reliability and Maintainability
Symposium, 2007. RAMS ’07. Annual, jan. 2007, pp. 186 –191.

[4] L. Xing, H. Liu, and A. Shrestha, “Infrastructure communication relia-
bility of wireless sensor networks considering common-cause failures,”
International Journal of Performability Engineering, vol. 8, no. 2, pp.
141–150, 2012.

[5] I. Silva, L. A. Guedes, P. Portugal, and F. Vasques, “Reliability
and availability evaluation of wireless sensor networks for industrial
applications,” Sensors, vol. 12, no. 1, pp. 806–838, 2012. [Online].
Available: http://www.mdpi.com/1424-8220/12/1/806/

An Approach for Security Evaluation and Analysis
in Cloud Computing

T. Probst1,2, E. Alata1,3, M. Kaâniche1,4, V. Nicomette1,3, Y. Deswarte1,4

1CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France
2Univ de Toulouse, INP de Toulouse, LAAS F-31400 Toulouse, France

3Univ de Toulouse, INSA de Toulouse, LAAS F-31400 Toulouse, France
4Univ de Toulouse, LAAS, LAAS F-31400 Toulouse, France

{probst,ealata,kaaniche,nicomett,deswarte}@laas.fr

Abstract—This paper describes a novel approach for security
evaluation and analysis in cloud computing environments. The
objective is to provide an automated way to evaluate the efficiency
of security mechanisms aiming at protecting the cloud computing
infrastructures and applications. In particular, we focus on access
controls and intrusion detection/prevention systems. We leverage
cloud benefits to optimize the audit and assessment processes.
The proposed approach is currently under implementation on
our cloud platform.

I. INTRODUCTION

By offering various service and deployment models [1],
cloud computing provides easy ways to host and manage
infrastructures and applications, while reducing deployment
and operation costs. However, the rapid development of cloud
computing over the last few years has raised new security
concerns [2], [3]. Enforcing the security and dependability of
cloud computing infrastructures is necessary to allow their use
for the deployment of critical applications. Different levels of
protection are needed to implement security policies, as done
in traditional environments. Nevertheless, there are specific
characteristics and challenges that need to be taken into
account carefully in cloud computing environments. Among
others, we can cite: 1) the co-residence of several clients
on the same physical infrastructure; 2) the mix of different
technologies like virtualization, new network architectures,
Web applications and services; 3) the co-existence of different
levels of security controls on the client side and on the cloud
provider side; and 4) the emergence of new attacks involving
cloud infrastructures. Thus, usual security mechanisms must
be adapted so they can be efficient in such a context. Our
purpose it to assess the efficiency of these mechanisms.

Except for recommandations such as the Cloud Security
Alliance guidance on security assessments [4], very few ap-
proaches for cloud security evaluation have been developed
so far. We can cite Bleikertz’s work [5], addressing security
audits in public cloud infrastructures. His approach allows to
generate attack graphs from network accessibility graphs and
vulnerability scans. However, it only addresses network-based
attacks and the attack scenarios found are never executed. Fur-
thermore, no in-line firewall or Intrusion Detection/Prevention
Systems (IDS/IPS) evaluation is performed.

In this paper, we propose an approach to efficiently conduct

automated security evaluations and analysis of Infrastructure
as a Service cloud computing environments. The ultimate goal
is to give the client a detailed picture of the risks he takes by
using the cloud, and the provider a good insight of what sort of
threats a client may represent. In particular, we are interested
in two challenges regarding cloud computing security: access
controls (including network and user access filtering) and
intrusion detection and prevention. To evaluate the efficiency
of these security measures, we follow a two-phase process:
1) access control analysis to evaluate the performance of
network and user access filtering, and get the accessibilities;
2) IDS/IPS evaluation by executing relevant attack scenarios
that take into account the accessibilities found.

Further details about the proposed approach are presented
in the remainder of this paper.

II. PROPOSED APPROACH

Various security mechanisms are deployed in the cloud to
implement security policies: firewalls, IDS/IPS, Identity and
Access Management (IAM) tools. Our objective is to verify
that they are correctly deployed and configured to fit the
security requirements of the client and of the provider.

Our methodology and its corresponding steps are illustrated
in Fig. 1. It is based on the elaboration and execution of attack
scenarios targeting the hosts involved in the client’s virtual
infrastructure. As these attacks may compromise hosts and, as
a consequence, could interfere with the client’s business, we
chose to clone (step a) this infrastructure (virtual datacenters:
networks, firewalls, machines and applications) and perform
attacks on this clone. Furthermore, cloning the client’s in-
frastructure allows us to purposely inject vulnerabilities on
the different hosts, to set up and perform complex attack
scenarios, which is particularly useful when one needs to
assess the efficiency of IDS/IPS in the presence of some
specific vulnerabilities and attacks. We take into account the
presence of other potentially malicious concurrent clients that
we represent through other infrastructures we control.

To be automated, our approach takes advantage of cloud
computing embedded technologies to run audit operations
(cloning infrastructures, executing virtual machines, deploying
applications).

Fig. 1. Overall evaluation and analysis process

A. Analysis of access control policy

The list of authorized communications (so-called accessi-
bilities) inside the infrastructure to be assessed, is identified
using three ways:

1) By retrieving statically the client’s security policy, written
in a formal or informal specification document (step b1).

2) By extracting information from the cloned cloud com-
ponent’s configuration (networks, hypervisor-based fire-
walls, virtual firewalls, IAM tools) (step b2).

3) By performing experiments: sending traffic such as net-
work sweeps in order to verify the effective possible
communications (step b3).

These accessibilities are translated into a set of handy rules.
We chose the Prolog logic programming language because it
is well adapted to express predicates and compute some logic
to deduce rules characterizing the accessibilities, such as:
communica t ion (sou rce , s p r o t o , s p o r t , d e s t i n a t i o n , dp ro to , d p o r t) .

This rule specifies the kind of traffic a source object (IP
address, network, security group...) can send to a destination
object. By processing these rules, one can identify inconsis-
tencies in the implementation of the policy (normally the three
set of rules should be equivalent), and deduce the accessibility
matrix (taking the second or the third set of rules). The
confrontation of the outcomes highlighting the inconsistencies
produces an access control policy evaluation as a first result
(step c).

B. Evaluation of Intrusion Detection and Prevention Systems

To compose attack scenarios, we need to use a simple attack
taxonomy based on the attack vector. For this purpose, we
follow a dimension-based classification [6], using the attack
vector as the dimension. To be as exhaustive as possible
in the evaluation of the IDS/IPS, we plan to execute every
possible attack category on behalf of every possible attacker
(insiders and outsiders) and towards every possible target. The
actually running virtual machines and their images are first
scanned to find potential vulnerabilities (step d1). Additional
exploitable vulnerabilities that are associated to the accessi-
bilities found (step d2) will be injected on purpose to check
the IDS/IPS reaction under some specific attack campaigns
for which alarms are expected to be raised. A dictionary

containing the description of attacks (exploit, vulnerability,
environment parameters, and expected results) for each class
of our taxonomy is used to perform the injection of these
vulnerabilities and their matching exploits. The preconditions,
postconditions and objectives are deduced from the attack
scenarios built and launched on the fly (step e). The output
of the Security Information and Event Management (SIEM),
which aggregates and correlates the IDS/IPS probes, along
with the state of the targets, will be used to give us the verdict
to know whether the attacks have been detected/prevented or
not, according to the expected results from the aforementioned
dictionary (step f). Finally, quantitative metrics will be derived
to assess false negative and false positive detection rates for
each attack class, and also to identify optimal configurations
of the IDS/IPS in the cloud infrastructure.

III. CONCLUSION

This paper presents the principles of an approach we are
developing to automatically conduct security evaluations and
analysis in cloud computing infrastructures. Our approach is
aimed at optimizing the overall process while providing accu-
rate assessments of the major security aspects of the cloud. The
proposed approach is currently investigated and implemented
using a VMware vCloud Suite platform including various
security mechanisms.

ACKNOWLEDGMENT

This research is supported by the French project Investisse-
ments d’Avenir Secured Virtual Cloud (SVC).

REFERENCES

[1] Cloud Security Alliance, ”Security Guidance for Critical Areas of Focus
in Cloud Computing v3.0”, 2011.

[2] M. Jensen et al., ”On Technical Security Issues in Cloud Computing”, in
IEEE International Conference on Cloud Computing, Bangalore, India,
2009, pp. 109-116.

[3] I. Studnia et al., ”Survey of Security Problems in Cloud Computing
Virtual Machines”, in Computer and Electronics Security Applications
Rendez-vous, Rennes, France, 2012, pp. 61-74.

[4] Cloud Security Alliance, ”SecaaS Implementation Guidance: Security
Assessments”, 2012.

[5] S. Bleikertz, ”Automated Security Analysis of Infrastructure Clouds”,
M.S. thesis, Department of Informatics and Mathmatical Modelling, Tech-
nical University of Denmark, and Department of Telematics, Norwegian
University of Science and Technology, 2010.

[6] S. Hansman and R. Hunt, ”A taxonomy of network and computer attacks”,
in Computers and Security, 2005, 24 pp. 31-43.

Specifying safety monitors for autonomous systems
Mathilde Machin∗†, Jean-Paul Blanquart‡, Jérémie Guiochet∗†, David Powell∗† and Hélène Waeselynck∗†

∗ CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
† Univ de Toulouse, LAAS, F-31400 Toulouse, France

{mmachin | guiochet | dpowell | waeselynck}@laas.fr

‡ EADS Astrium, 31 rue des cosmonautes, 31402 Toulouse, France
jean-paul.blanquart@astrium.eads.net

I. INTRODUCTION

Autonomous systems aim to be versatile and able to perform
tasks in various ill-defined environments. These systems are
often critical since their failure can lead to large financial
losses or human injury. In this context, classical safety mea-
sures are inflexible and are not sufficient to guarantee that the
system behaves safely. For instance, emergency stop buttons,
if used alone, transfer responsibility for safety to the user,
which is clearly inadequate for a system that is supposed to
be autonomous. Electromechanical solutions such as bumper
motor switches reduce versatility since, for example, they
cannot be used for systems that need to push objects or operate
in the presence of fragile obstacles.

As a result, autonomous systems have to be equipped with
means for context-dependent safety enforcement. We consider
here a device called a safety monitor, which is equipped with
the necessary means for context observation (i.e., sensors) and
able to trigger, when necessary, the appropriate safety action.
We require the monitor to be maximally permissive, in that it
should only restrict its versatility (i.e., what the system is able
to do) to the extent necessary to ensure safety.

Flexible safety measures are used in the robotic domain in
[1], where the safety context is simply the distance from the
robot to a human, because only the robot-to-human collision
hazard is taken into account. A richer context is needed in
order to cover a wider range of hazards, obtained through
hazard analysis, as in [2].

Once a hazard is identified by hazard analysis, it is neces-
sary to specify what the monitor has to do to avoid it. This
is not straightforward. To determine when to act, precursory
conditions have to be extracted from the hazard analysis.
Obviously, how to intervene is also of interest and according to
the chosen strategy, the precursory conditions may be different.
We call the couple when/how or observation/intervention a
safety rule, which is a requirement for the safety monitor.

We distinguish initiative and restriction rules. An initiative
rule launches an action in order to change the state. On the
contrary a restriction rule inhibits certain state changes, e.g.,
by means of an interlock device or by request filtering.

This work is partially supported by the SAPHARI Project, funded under
the 7th Framework Programme of the European Community.

Synthesis of restriction rules has been widely studied in
the context of supervisory control [3], which is a formal
method that generates a ‘controller’ from a system model and
a constraint model (to avoid the catastrophic state in our case),
both expressed as automata. In this context, ‘control’ means
forbidding the occurrence of certain controllable events.

However, the need for initiative rules arises when inhibitions
alone cannot ensure safety or are inefficient. For instance, to
avoid a mobile obstacle, the triggering of ‘brake’ or ‘swerve’
actions would be more efficient than forbidding ‘acceleration’.
Since any such action takes a non-zero time to produce an
effect (for example, braking in order to stop), it has to be
anticipated by some safety margin (with respect to time or
some other physical variable)

Our approach for specifying safety monitors is based on
hazard analysis and considers both initiative and restriction
rules. After a brief summary of previous work, we give
the directions of our current research aimed at strengthening
requirement elicitation by the use of formal methods.

II. PREVIOUS WORK

Previous work [4] has addressed the process for eliciting
safety rules, based on a HAZOP-UML hazard analysis [5].
The system is described abstractly with UML use cases and
sequence diagrams. Each row of a HAZOP table considers a
deviation of the UML model and its consequences, assigning
a severity level to it. For each deviation with a severity level
of “serious” or higher, a constraint is formulated in natural
language, by negation of the deviation or of an effect of the
deviation.

The constraint is then expressed formally as an invariant,
with predicates on variables that are observable by the monitor.
A region graph is built from the invariant; the region violating
the invariant is called the catastrophic region. Each transition
leading to the catastrophic region has to be neutralized either
by an inhibition or by insertion of an action and an associated
safety margin (e.g., see Figure ??). Safety rules elicited from
each deviation should be applied in the context of the consid-
ered use case. The currently applicable use case is assumed
to be identified on-line by the safety monitor. The problem
of simultaneous and potentially conflicting interventions is
addressed by composition of graphs and manual analysis.

v < Vmax

Safe

v ≥ Vmax

Catastrophic

(a) Region graph from invariant

v < Vmax -m
Vmax-m <

v
< Vmax

Margin
Trigger
Braking

v ≥ Vmax

Catastrophic

(b) Region graph with a margin state

Fig. 1: Example of margin insertion in region graph applied to a simple speed limitation

III. CURRENT WORK

We are currently extending the three steps of the work
described in Section II: hazard analysis, safety modeling and
safety rule elicitation.

1) HAZOP-UML improvements: Since a use case may in
fact encompass several different situations, different safety
rules can be required. We need contexts at a finer granularity
than use cases. We extend the HAZOP table by the addition
of a contextual information column. It aims to identify in the
whole context (speed, temperature, human distance...) the rel-
evant conditions under which the considered deviation leads to
a given consequence. This extra piece of information enables
the safety rules to be applied only in relevant cases and incites
experts to discover other contexts where the consequences are
different.

2) Towards a formal model: HAZOP-UML is an informal
analysis using natural language whereas we aim to have a
computable model. To ease formal modeling, we propose to
disambiguate the constraint formulated from a HAZOP row by
using a CNL (Controlled Natural Language), which is a natural
language with restriction on syntax and vocabulary [6].

In addition, we aim to propose a template for analyzing
each constraint. Safety-relevant variables are identified as well
as thresholds. Unobservable conditions have to be replaced by
predicates on observable variables. We also need to reconsider
the differences between the ideal physical variables mentioned
in HAZOP and their logical representation within the monitor,
taking account of sensor accuracy, precision, range, sampling
rate, and so on. Once the region graph is built, potential actions
are examined. If the observed variables are controllable, this
is quite straightforward. In case of uncontrollable variables,
indirect actions have to be considered, which could imply ad-
ditional observable variables. Actions require the insertion of
margin regions. Variables, thresholds and actions are iteratively
added to the graph until it models the state space behavior of
the complete set of safety rules.

3) Formal support: We aim to improve the scalability of
the method by the use of formal methods applied at each of
three steps:
a) Design and checking of safety rules for one constraint.

Model-checking can be used to guarantee that the local
catastrophic state is inaccessible. Supervisor synthesis can
find possible restrictions. It may not be possible to define
an automatic method to find initiative rules. However,
initiatives might be suggested from a catalogue of actions,
with models of their effects on observable variables.

b) Evaluation of redundancy between constraints. We have
found from several case studies that it is quite common

for a single safety rule to cover constraints from several
HAZOP rows. To discover this automatically, we need a
formal model, i.e., the safety invariant, and a formal method
that can reason about predicates on real variables, such as
an SMT (Satisfiability Modulo Theory) solver.

c) Validation of the overall set of rules. Once all safety rules
are defined, all relevant thresholds are identified and real
domains with their predicates are reduced to enumerated
sets of values. Therefore, we could use classical boolean
model-checkers, to check overall properties such as the
presence of simultaneous actions. To assess monitor per-
missiveness, versatility has to be modeled either by CTL
(Computational Tree Logic) properties or by graph models.

IV. CONCLUSION

Our current research aims to ensure correctness, complete-
ness and consistency of safety monitor requirements by formal
methods. The results of formal methods are exact. However,
if the underlying models are inaccurate, exact results have no
interest. Therefore, the modeling step has to be done very
carefully (in our case, the constraint analysis). Using different
formal methods, the problem of translation and equivalence
between formalisms will arise. The underlying goal is to
have a formal proof of correctness from hazard analysis to
implementation.

Our method will be applied on an industrial robot that helps
aeronautics workers to install brackets in aircraft. The task is
a collaborative one: the robot projects an image and prepares
the surface with a solvent, while the worker glues the bracket.

REFERENCES

[1] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, and
G. Hirzinger, “Towards the robotic co-worker,” in Robotics Research.
Springer, 2011, pp. 261–282.

[2] R. Woodman, A. F. Winfield, C. Harper, and M. Fraser, “Building safer
robots: Safety driven control,” The International Journal of Robotics
Research, vol. 31, no. 13, pp. 1603–1626, 2012.

[3] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM journal on control and optimization,
vol. 25, no. 1, pp. 206–230, 1987.

[4] A. Mekki-Mokhtar, J.-P. Blanquart, J. Guiochet, D. Powell, and M. Roy,
“Safety trigger conditions for critical autonomous systems,” in 18th.
Pacific Rim Int’l Symp. on Dependable Computing (PRDC). IEEE, 2012,
pp. 61–69.

[5] J. Guiochet, D. Martin-Guillerez, and D. Powell, “Experience with model-
based user-centered risk assessment for service robots,” in 12th Int’l Symp.
on High-Assurance Systems Engineering (HASE). IEEE, 2010, pp. 104–
113.

[6] R. Schwitter, “Controlled natural languages for knowledge representa-
tion,” in 23rd Int’l Conf. on Computational Linguistics (COLING ’10):
Posters. Association for Computational Linguistics, 2010, pp. 1113–
1121.

Multimedia Systems as Immune System

to Improve Automotive Security?

Jana Dittmann
1
, Tobias Hoppe

1

1
 Otto von Guericke University Magdeburg

Germany

Claus Vielhauer
1, 2

2
Brandenburg University of Applied Sciences

Germany

Abstract—Our motivation is driven by the fact, that security

mechanisms often cause additional efforts and costs, and need to

be aligned with safety goals - protecting human and environment.

Especially in the field of automotive security, producers are seek-

ing cost efficient, environmental-condition-adaptive (robust) and

fast approaches, if possible combined with existing concepts re-

using resources. Initially, working in automotive security, it was

easy to see that a wide variety of attacks is possible, e.g. using

knowledge from classical computer and network security inci-

dents. It became clear, that malicious activities on car IT systems

might also lead to safety relevant issues such as accidents with

threats to life or physical condition of the driver herself, occu-

pants and people in the environment. We are inspired by the ba-

sic law of robotics established by I. Asimov1 and apply it to

automotive design: "1. A vehicle may not injure a human being,

or, through inaction, allow a human being to come to harm. 2. A

vehicle must obey orders given it by human beings except where

such orders would conflict with the First Law. 3. A vehicle must

protect its own existence as long as such protection does not

conflict with the First or Second Law.". This entire bunch of re-

quirements would cause "heavy" technology and expensive solu-

tions. Coming from multimedia security, it became stepwise

clearer that we cannot neglect known security mechanisms, but it

is worth to combine them with knowledge about multimedia sys-

tems (MM systems). For example MM sensory, data streams,

protocols, quality etc. enable the car to perceive the occupants

and environment more precisely and can help to detect in-car

and outside-car anomalies caused by security incidents with an

estimation/prediction of harm. Existing automotive components

designed for safety, entertainment and comfort services should

be able to help in achieving secure and safe car behavior. In the

article we discuss the opportunity to understand vehicles as sin-

gle and cooperative MM systems with the ability to become an

enabler for future automobile security detection, warning and

reaction strategies – as a kind of vehicular immune system build-

ing Multimedia-enabled Asimovian Secure Automobiles (MASA).

I. MULTIMEDIA AUTOMOBILES AND AUTOMOBILE

SECURITY CHALLENGES

IT has arrived in the automotive world since years. Comfort
and safety goals guided and still guide the developments and
car IT becomes increasingly complex; autonomous and self-
interacting cars offer a wide variety of sensory and complex
analysis logic for interaction and presentation.

The bad thing - Due to complex functional and structural
component dependencies, vulnerabilities in design, implemen-
tation or configuration are very likely and may be exploited

1
 I. Asimov. 1942. Runaround. Astounding Science Fiction.

maliciously to cause security incidents. Motivations are mani-
fold ranging from tuning, stealing, manipulations or unlocking
of functions/restrictions up to infecting cars with malware di-
sturbing or harming driver and occupants. Managing automo-
tive security incidents has to face the challenge, that incidents
should not cause any threat to life or physical conditions by en-
suring fundamental Asimov laws, which is very seldom expli-
citly considered yet. Therefore several constraints arise, e.g.
existing security mechanisms which stop and reconfigure or
update hard- or software should not be applied whilst driving
to avoid difficult handling by the driver. When vulnerabilities,
e.g. as reported in [1], [2] and [3], get exploited in complex
scenarios like downhill driving on a winding road, the car
needs to recognize this as difficult situation and well-selected
reactions are needed to keep the car well on the road. Using the
findings from [4], we can summarize: the car needs complete
and correct information of the initial state of the world, the car
is the sole cause of change, and action execution is atomic, in-
divisible, and results in effects which are deterministic and
completely predictable. Of course, the automotive world is not
static or has complete information to derive and determine a
perfect security mechanisms avoiding harm. The awareness of
security as relevant business factor is raising, but producers
need to balance their costs and resources by reusing existing
components and implementations and try to reduce restrictions
coming along with the introduction of security mechanisms.

II. THE FUTURE: MULTIMEDIA ENABLED SECURITY

INCIDENT DETECTION AND REACTION

The good thing - automotive systems are mobile MM syste-
ms offering a wide variety of sensor and media technology en-
abling cars to perceive humans, other subjects and objects be-
havior or its environment and context more precisely. For ex-
ample, car sensors determine inside climate, outside weather,
road conditions, know vehicle speed even those from other ob-
jects, windows and doors states, distance to surrounding su-
bjects and objects, can determine seat occupations, number of
persons in the car, profile drivers and occupants (persons gen-
der, age, weight, height) etc. This involves indeed a lot of MM
acquisition aspects. Sensory data is communicated to electronic
control units for analysis and appropriate adjustment, to driver
– car-to-human – or, in future, to other cars (car-to-car) and in-
frastructure (car-to-infrastructure), e.g. to enable autonomous
driving. Based on individual car sensors and available MM ca-
pabilities it should be possible to design and build a model ab-
out what a car can "see" and which information can be used
and communicated for incident detection, warning and re-
action. Based on safety functions in case of an incidents, the in-

volved MM system should be able to determine the current dri-
ving situation and environment and which potential harm needs
to be avoided. Further, it should be capable of a wide variety of
driver support for handling incidents in a safe manner. Know-
ledge from MM systems can help to better understand car
behavior, identify anomalies and implausible states. Of course
car MM systems are not yet designed as security measure and
there is still uncertainty about interplay of individual technical
system states to the global system behavior on roads (e.g. im-
perfect data propagation). Conditions of individual drivers and
occupants (health etc.), environment, other cars and car occu-
pants etc. are very dynamic and not yet considered in a global
manner and transferred into a context model to determine se-
cure and safe states. E.g., [5] motivates complex multi-agent
environment solutions as adjustable autonomy considering dif-
ferent humans’ interaction with varying preferences, inaccura-
cies and uncertainties. In [6] vehicles behavior is understood as
team context actions with uncertainty and mutual information
mismatch. How may MM systems become a use case for
automotive security? Some examples:

MM systems can support security incident handling to
make an informed decision by providing a detailed cross
media analysis of available data from car sensory and connec-
ted systems. Existing cross media analysis can help to further
investigate fast algorithms in high speed drives and on highly
dynamic media – with sensory data of different spatial/tem-
poral resolution and quality, or with varying amounts of sur-
rounding activities – e.g. activity level during low/high traffic.

Drivers and occupants interact with modern cars, environ-
ment and with infrastructure (other cars, their drivers etc.)
causing complex interplay, further uncertainty, error or loss of
information. MM data needs to be interpreted in its context

to determine secure and insecure states, potential error and
loss within its dynamic environment. A car context model
might help to interpret cross media analysis results, considering
different drives such as high/low speed or parking, to be able to
predict harm and to achieve a more efficient reaction. Enhanc-
ing context-based cross media analysis with consistency
and plausibility checks on signal, data, feature and application
level are further examples. After malicious actions (such as
handbrake activation requests at high driving speed), implau-
sible behavior detected early in the particular context (analyz-
ing all sensor data and fusing into driving context) can help to
stop hazards already before they occur.

"First aid" guidelines can be defined and applied, control-
ling how the car should behave avoiding blackout situations
before full recovery is performed in a secure and safe manner –
e.g. in the next service station. Similar strategies are already
applied today on failures of safety-critical components: default
/ fallback strategies like “limp home mode” for engine control
units, override functions for automatic steering or emergency
modes in the ESP system. For security incidents, a more fine
granular analysis of component behavior and context seems
possible to define sensor-dependent command variables en-
forcing normal behavior. Approaches might use re-injection of
all kind of available plausible data known from context mo-
dels to components/networks. Resources of other nodes could
be shared via the network to take over functionality from a fail-

ing node, or considering organic computing principles within
MM context for self-healing.

How to solve conflicts? To avoid harm, cross media analy-
sis and car MM context can check consistency and plausibility
to find anomalies and define reactions for the current driving
context. Further questions arise: how to react when not all mul-
tilateral security and safety interests of the affected car(s) and
human(s) can be satisfied? Is the safety of the infected car’s
driver more important than the safety of other humans – or how
can the MM system help to understand cross-party con-
tent/context and communicate risks to others?

How can MM user interfaces be used to communicate secu-
rity incidents and safety risks to drivers, occupants or even the
environment? Security warnings might be designed MM
based and context-adaptive (e.g. regarding speed and traffic),
as already discussed e.g. for incident reactions [1]. Also the re-
silience behavior of individual drivers and occupants to techni-
cal incidents could be investigated and how MM systems can
address this. Which MM elements (visual, acoustic, haptic …)
should be selected, what advice should be given? After acci-
dents, systems could evaluate context criteria to select first aid-
ers and derive/communicate appropriate instructions [7].

In summary, it is worth to extensively study and enhance
MM technology means as vehicular immune system to enhance
security incident detection, reaction and warning to prevent
harm. We see a great potential to understand vehicles as single
and cooperative MM systems, also for future autonomous cars.
Whilst a large number of MM acquisition, processing, analysis
and understanding techniques have been developed specifically
for investigating comfort and safety applications, relatively few
attention has been paid to the understanding of automobile-
related MM content for security incident handling. MM sys-
tems can be a substantial enabler of immune systems for future
automotive security to avoid/reduce harm by building Multi-
media-enabled Asimovian Secure Automobiles (MASA).

Acknowledgements: This work was partly supported by
German Research Foundation, project ORCHideas (DFG GZ:
863/4-1). Thanks to A. Lang, S. Kuhlmann, S. Kiltz, M. Hilde-
brandt and J. Fruth for our joint work during the last six years.

REFERENCES

[1] T.Hoppe, S.Kiltz, J.Dittmann. 2009. Applying intrusion detection to
automotive IT - early insights and remaining challenges. Journal of
information assurance and security, Vol. 4. 2009, 3, ISSN: 1554-1010.

[2] T.Hoppe, S.Kiltz, J.Dittmann. 2011. Security threats to automotive CAN
networks: practical examples and selected short-term countermeasures,
In: Reliability engineering & system safety, Elsevier, Vol. 96.2011, 1.

[3] K.Koscher et al.., 2010. Experimental Security Analysis of a Modern
Automobile. IEEE Symposium on Security and Privacy, 2010.

[4] D.Weld, O.Etzioni. 1994. The first law of robotics (a call to arms).
Proceedings of the twelfth national conference on Artificial intelligence
(vol.2), AAAI'94, ACM, USA, ISBN 0-262-61102-3.

[5] D.V.Pynadath, M.Tambe. 2002. Revisiting Asimov's First Law: A Re-
sponse to the Call to Arms. ATAL '01, Springer, ISBN 3-540-43858-0.

[6] N.Schurr et al.. 2007. Asimovian multiagents: applying laws of robotics
to teams of humans and agents. 4th international conference on
Programming multi-agent systems, ISBN: 978-3-540-71955-7.

[7] S.Tuchscheerer, T.Hoppe, C.Krätzer, J.Dittmann. 2011.
FirstAidAssistanceSystem (FAAS). Intelligent robots and computer
vision XXVIII, Proceedings of SPIE; 7878.

Assure-It: A Runtime Synchronization Tool of
Assurance Cases

Shunsuke Shida, Atsushi Uchida, Masaki Ishii, Masahiro Ide, and Kimio Kuramitsu
Yokohama National University

Yokohama, Japan
{shida-shunsuke-vn, uchida-atsushi-vt, ishii-masaki-cs}@ynu.ac.jp , imasahiro9@gmail.com, kimio@ynu.ac.jp

Abstract—More recently, the idea of runtime synchronization
of GSN has been proposed, where evidences are being collected
from logs that are produced by monitors and other software
components. By introducing the runtime synchronization, GSN
can be regarded as a program where its validity is checked by
applying runtime contexts. In this fast abstract, we introduce
Assure-It, a novel tool that enforces administration scripts with
assurance cases guidance and runtime synchronization.

Keywords—administration scripts; assurance cases; system
dependability; software engineering supports;

I. INTRODUCTION
Scripting languages such as Bourne shell and Perl have

been broadly used to perform system administration tasks,
including system maintenance, system diagnosis, and failure
response [1]. As these tasks are strongly related to the
realization of system dependability (reliability, availability,
etc.) requirements, software engineering supports for
administration scripts are practically significant. However,
most of these today’s scripts are written in an ad hoc manner,
unfortunately resulting in several causes of system failures.

Assure-It is a novel open source tool and developed in the
JST/DEOS project to provide the means of modularizing
scripting solutions for system administration under
dependability requirements. The key idea is the use of
assurance cases in order to associate dependability goals with
administration tasks, which will be composed in a final
executable script. Due to the specified association, the partial
failure of script execution can be detected as an error from the
associated dependability goals. In addition, Assure-It allows us
to argue an incremental analysis of failure-case, which enables
richer failure/error handling.

This fast abstract will show how Assure-It works with the
concept of assurance cases. Several dependability goals (such
as system and data availability, privacy and accountability) are
argued over assurance cases, by associating monitoring and
administration tasks. From the assurance cases, Assure-It can
generate an executable script, directly connected to the
realization of argued dependability goals.

The rest of this fast abstract proceeds as follows. Section 2
introduces Goal Structuring Notation, a standard notation of
assurance cases, used in Assure-It. Section 3 overviews how

Assure-It generates executable scripts from the arguments on
assurance cases. Section 4 briefly describes the summary of
this fast abstract.

II. GSN AND THE CONCEPT OF ASSURE-IT
Assure-It has adopted GSN[2] as a common notation

bridging existing assurance cases methodology. In addition, we
attempt to add dynamic properties in order to synchronize
assurance cases with runtime system through script executions.

A. Goal Structuring Notation
Goal Structuring Notation has four major elements, goal

(depicted in rectangle), strategy (parallelogram), evidence
(oval), and context (rounded rectangle). The goal element is a
claim that a system certainly has some desirable properties.
The evidence element is a fact supporting that the linked claim
is true. The goal without linked evidence is called undeveloped
goal and depicted with diamond. The strategy element is an
assumption or a pre-condition that linked goal holds. Fig. 1
shows an example of GSN.

B. Extended Functional Evidence
The functional GSN, we propose in this fast abstract, is an

extended one that accepts as one of valid evidence a program
that produces logs supporting the correctness of its
performance. Note that logging feedbacks are required for

Fig. 1 An Example of GSN.

Strategy(S1(
!Arguing!over!
a,ributes!

Goal(G2(
System!is!reliable!

Goal(G3(
System!is!available!

Goal(G1(
System!is!
dependable!

Context(C1((
System!runs!
on!AWS!!

Evidence(E1(
so7ware!is!
well!tested!

Evidence(E2(
Scale!out!
solu:on!

Context(C2((
Response!:me!
should!be!less!
than!200ms!

runtime synchronization as depicted in Fig 2. A typical
example of the program is a monitor notifying us of erroneous
situations. Another typical example can be a system
administration script that performs data backup and failure
handling tasks, which straightforwardly lead to the realization
of some dependability properties. From viewpoint of
programming, these monitors and tasks are regarded as a
function taking runtime contexts and then checking the validity
of the associated goal.

It is important to note that the absence of failures in the
functional element is not practical. Robin et al [3] proposes the
meta assurance cases method to argue failure-case analysis on
GSN. Using these methods, we can generate more reliable
script that includes richer failure/error handling. Due to the
space constrain, we are omitting the formalization of meta
GSN in this fast abstract.

III. TOOL DESCRIPTION
Assure-It allows arguing the strategic division of

dependability goals with assurance cases method. Fig. 3
describes the overview of Assure-It. It generates executable
scripts from GSN arguments, binding each of operational
solutions with strategy as control flows and deploys the
generated scripts on running systems, and execution results are
generated. Assure-It consists of two applications: a client and a
server. Users create assurance cases by using client application,
which is accessible through a mordern web browser.

A. Code Generation from Assurance Cases
As noted above, source code is generated from Assurance

Cases, which is created by Assure-It to get in touch with

runtime environment. In Assure-It evidence element consist of
static evidence such as test results and code snippets, short
length of shell scripts. The script that performs system
administration is generated by making code snippets
structured depending on rules described on strategy.

IV. SUMMARY
The assurance cases method provides the guidance to

modularize administration tasks from viewpoint of de-
pendability requirements. Assure-It is a tool that can generate
an executable administration script by combining modularized
tasks on assurance cases arguments. Running the generated
script is an evaluation of dynamic assurance cases, being
applied by runtime contexts.

REFERENCES
[1] Mario Tokoro. Open Systems Dependability: Dependability Engineering

for Ever-Changing Systems. CRC Press, 2012.
[2] Tim, K. and Rob, W.: The Goal Structuring Notation A Safety

Argument Notation, In Proc of DSN 2004 (2004).
[3] Robin E. Bloomfield, Peter Bishop: Safety and Assurance Cases: Past,

Present and Possible Future - an Adelard Perspective, in Making
Systems Safer: Proceedings of the Eighteenth Safety-Critical Systems
Symposium, pp. 51-67, (2010).

Fig. 2 Static Evidence and Runtime Synchronization

Fig. 3 An Overview of Assure-It

Integrating agile practices into critical software

development

Katarzyna Łukasiewicz, Janusz Górski

Gdańsk University of Technology

Gdańsk, Poland

{katarzyna.lukasiewicz, jango}@eti.pg.gda.pl

Abstract— Development of safety-critical software is

constrained by the requirements of numerous standards and

recommendations. In consequence, the development costs and

time are considerably higher. In order to deliver high quality

products faster and at lower cost safety-critical software

developers may look for more efficient approaches and in

particular the agile development practices are considered as a

promising alternative. In this text we describe our research

towards introducing agile practices into critical software

development processes

Keywords— safety-critical software; agile practices; software

development; process improvement; safety assurance

I. PROBLEM STATEMENT

The need to deliver high quality systems, faster and at

lower cost in comparison to competitors encouraged

companies to look for more efficient solutions [1], [2]. Agile

methodologies are known to successfully address these issues

for non-critical projects. Presumably agile practices can

reduce both cost and time to market when applied to safety-

critical projects as well. While benefits can be significant, the

main concern are quality and safety assurance. Plan-driven

methodologies adequately address these objectives and have

been integrated into the safety lifecycle for a long time. A

growing body of evidence demonstrates that agile practices

with their flexibility and the potential for shortening the

development time and lowering the development costs could

be complemented by more disciplined approach and therefore

bring the best of the two worlds together [3], [4], [5], [6], [7],

[8]. In particular, the challenge is to find an effective way of

introducing agile practices into the critical software

development process while ensuring that the level of

assurance required by the corresponding domain specific

standards is sufficient from the regulatory and system

certification viewpoints. A mechanism for maintaining such

control over the critical (agile) software development process

could result in an explicit assurance (safety) case which

integrates the assurance requirements with the arguments and

evidence demonstrating that the requirements are satisfactorily

implemented. Providing a methodological framework and

tools for building, maintaining and assessing such assurance

cases for the software development processes could help

safety-critical software developers (in particular SMEs) to

streamline their processes with agile practices and to maintain

conformance with safety standards and certification

requirements.

II. OBJECTIVES

The main goal of the research is to develop a
comprehensive solution that would help safety-critical software
developers to incorporate agile practices in the most profitable
way while meeting the safety requirements imposed by
standards and certification bodies. In particular, we are
interested in a solution that provides for incremental
development of an assurances case in paralel to the progress of
the software development process which would make the
assurances case a sort of „side effect‟ of the software
development.

Although we want the solution to be as generic as possible, we
decided to focus on medical software domain. Medical devices
are becoming increasingly software intensive and the market of
suppliers as well as clients is growing rapidly. Health related
electronic devices find their use in hospitals, homes,
pharmaceutical companies and in many contexts has safety
relevance. Most of such products need to be compliant with
appropriate the related standards (e.g. GAMP [9], ISO 13485
[10], IEC 62304 [11]) and explicit assurance cases for medical
devices are expected to be required by the relevant regulatory
bodies.

III. METHODOLOGY

 First, a literature review has been performed together with
the review of the recommended, currently applied practices of
critical software development and the review of currently used
agile software development practices.

To better understand the risks related to application of the agile
practices in critical software development processes we plan to
perform a series of case studies with the involvement of
software engineers. During these case studies the participants
are requested to analyze and assess risks related to the agile
practices and to propose the ways of controlling these risks.
The case studies are bound by target system and its
environment (the common insulin pump example has been
selected for that purpose) and by the process context of
software development (here, we concentrate on Scrum and
Extreme Programming).

To represent the constraints imposed by the relevant standards
and recommendations and to incrementally construct a related

assurance case we will use the TRUST-IT methodology [12]
and in particular its application scenario related to standards
conformance [13], [14] and the related platform of services
[15]. Referring to standards and the present good practices we
will develop a set of argumentation patterns that will also
reflect the knowledge on risk mitigation related to the agile
development practices acquired during the case studies. In
order to justify each pattern we will prepare complementary
meta-arguments. We described these ideas in more detail in
[16], [17].

Upon completion of the planned case studies we will analyze
the results and determine which of the agile practices raise
most doubt when applied in safety critical projects and thus
require extended evidence when building assurance arguments.

Alongside the case studies we will prepare templates for meta-
arguments as well selected assurance argument patterns, for
software development processes which incorporate agile
practices, both presented in NOR-STA tool [15].

The complete method is planned to be a subject of validation
with active participation of stakeholders and experts. Our aim
is to establish cooperation with medical software developing
companies to provide a satisfactory validation context.

IV. EXPECTED RESULTS

 The results of this research will be delivered as a set of
argument patterns justified by associated meta-arguments
supporting introduction of agile practices into critical software
development and the related models of business processes
explaining how the argument patterns are to be used to
incrementally develop an assurance case for the resulting
software. These results will be packaged on the top of the
NOR-STA platform of generic services supporting application
of evidence based argumentation [15].

V. PRESENT STATE

The research described in this paper is an ongoing project.
To date we carried out two case studies in 2012 (CS1) and
2013 (CS2) with the goal to investigate how junior software
engineers identify and assess risks associated with applying
selected agile practices to critical software development and
what are their suggestions concerning risk mitigation. The
results of the CS1 can be found in [16] and [17]. We plan to
carry out workshops for more advanced practitioners in the
nearest future as a continuation of the case studies.

REFERENCES

[1] K. Petersen, C. Wohlin, “The effect of moving from a plan-driven to an
incremental software development approach with agile practices,”
Empirical Software Engineering, vol. 15(6), pp. 654–693, 2010.

[2] M. McHugh, F. Mc Caffery, V. Casey, M. Pikkarainen, “Integrating
Agile Practices with a Medical Device Software Development
Lifecycle,” Proceedings of European Systems and Software Process
Improvement and Innovation Conference (EuroSPI), Vienna, Austria,
25-27 June, 2012

[3] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stupperich, D.
Kiefer., J. May. and T. Kähkönen, “Agile Software Development in
Large Organizations,” Computer, vol. 37(12), pp. 26-34, 2004

[4] H. Glazer, D. Anderson, M. Konrad and S. Shrum, “CMMI or Agile :
Why Not Embrace Both!” Software Engineering Process Management –
Technical Note for Software Engineering Institute, Carnegie Mellon
University, 2008

[5] M. Poppendieck, T. Poppendieck, “Lean software development: an agile
toolkit,” Addison-Wesley, 2003

[6] J. Babuscio, ”How the FBI Learned to Catch Bad Guys One Iteration at
a Time,” 2009 Agile Conference Proceedings,Chicago, USA, 24-28
August 2009, pp. 96-100

[7] N. Potter, M. Sakry, “Implementing Scrum (Agile) and CMMI
together,” Process Group Post Newsletter, 16(2),
http://www.itmpi.org/assets/base/images/itmpi/Potter-ScrumCMMI.pdf,
2009

[8] M. Pikkarainen, A. Mantyniemi, “An Approach For Using CMMI in
Agile Software De-velopment Assessments: Experiences From Three
Case Studies,” Proceedings of SPICE Conference, Luxembourg, 3-5
May 2006

[9] ISPE GAMP 5 Publications,
http://www.ispe.org/index.php/ci_id/11614/la_id/1.htm

[10] ISO 13485:2003 ,
http://www.iso.org/iso/catalogue_detail?csnumber=36786

[11] IEC 62304,
http://webstore.iec.ch/preview/info_iec62304%7Bed1.0%7Den_d.pdf

[12] J. Górski, “Trust-IT – a framework for trust cases”, Workshop on
Assurance Cases for Security - The Metrics Challenge. Proc. of DSN
2007, Edinburgh, UK, 2007, pp. 204-209

[13] J. Górski, L. Cyra, J. Górski, “SCF - a Framework Supporting
Achieving and Assessing Conformity with Standards,” Computer
Standards & Interfaces, Elsevier, vol. 33, 2011, pp. 80-95

[14] J. Górski, A. Jarzębowicz, J. Miler, “Validation Of Services Supporting
Healthcare Standards Conformance,” Journal on Metrology and
Measurement Systems, vol. XIX, No. 2, 2012, pp. 269-282

[15] NOR-STA project Portal, http://www.nor-sta.eu

[16] J. Górski, K. Łukasiewicz, “Agile development of critical software, can
it be justified?” 7th International Conference on Evaluation of Novel
Approaches to Software Engineering, Wrocław, Springer, 2012

[17] J. Górski, K. Łukasiewicz, “Assessment of risks introduced to safety
critical software by agile practices - a software engineer‟s perspective,”
Computer Science, vol. 13(4), 2012

http://www.ispe.org/index.php/ci_id/11614/la_id/1.htm
http://www.iso.org/iso/catalogue_detail?csnumber=36786
http://webstore.iec.ch/preview/info_iec62304%7Bed1.0%7Den_d.pdf
http://www.nor-sta.eu/

Secured Outsourced Linear Algebra

Amrit Kumar
Department of Computer Science

École polytechnique
Palaiseau, France

email: amrit.kumar@polytechnique.edu

Jean-Louis Roch
MOAIS, LIG-INRIA joint team

University of Grenoble
Grenoble, France

email: jean-louis.roch@imag.fr

Clément Pernet
MOAIS, LIG-INRIA joint team

University of Grenoble
Grenoble, France

email: clement.pernet@imag.fr

Abstract—We propose an interactive algorithmic scheme for
outsourcing matrix computations on untrusted global comput-
ing infrastructures such as clouds or volunteer peer-to-peer
platforms. In this scheme, the client outsources part of the
computation with guaranties on both the inputs’ secrecy and
output’s integrity. For the sake of efficiency, thanks to interaction,
the number of operations performed by the client is almost
linear in the input/output size, while the number of outsourced
operations is of the order of matrix multiplication. The scheme is
homomorphic, based on linear codes (especially evaluation/inter-
polation version of Reed-Solomon codes). Privacy is ensured by
encoding the inputs using a secret generator matrix, while fault
tolerance is ensured by the high error detection and correction
capability of the code. The scheme can tolerate multiple malicious
errors and hence provides an efficient solution beyond resilience
against soft errors.

I. SCENARIO

Computational power is often asymmetric. On the one
hand, global computing platforms such as clouds available
through internet provide a large scale of computational power
and resources, but remain susceptible to various kinds of
malicious attacks and faults. While on the other hand, a
relatively weak local client is secure and reliable. The goal
of today’s computing infrastructure is to provide solution to
draw the benefits of both of these components while ensuring
secrecy of certain inputs.

In a scenario (Figure 1) where a weak but reliable client
outsources a computation on a given input, the client should be
able to efficiently verify the correctness of the result returned
by the untrusted platform. Solutions for general computations
either rely on Probabilistically Checkable Proofs (PCPs) [1],
or fully-homomorphic encryption (FHE) schemes as in [5].
Considering their complexity, these constructions are currently
beyond practical use. However, authors in [9] propose a new
construction that can efficiently verify general computations
under cryptographic assumptions. This construction compactly
encodes computations as quadratic programs [4] which are
then encoded as elements of a group equipped with a bi-
linear map. The weak client receives a proof (of constant size)
along with the computational result. The verification procedure
involves group operations.

Furthermore, on large scale computing systems error re-
silience is an issue. Error probability increases with the node
count [2]. Algorithm-based Fault Tolerance (ABFT) [7] so-
lutions have been explored for matrix computations without

This work has been partially supported by the LabEx PERSYVAL-Lab: no.
ANR-11-LABX-0025.

Fig. 1. Outsourcing a task to an untrusted platform

considering privacy. Focusing on a small rate of soft errors,
an ABFT dense linear system solver is provided in [2] that is
based on a low density parity check. Soft errors in general are
produced in case the computing system is subject to cosmic
radiations. Yet, on externalized computing platforms, malicious
attacks that may corrupt a large number of intermediate com-
putations are of concern. Such massive attacks occur due to
Trojan attacks, and more generally orchestrated attacks against
widespread vulnerabilities of a specific operating system that
may result in the corruption of a large number of resources.
In [10], an ABFT efficient solution for matrix multiplication
is proposed for integrity against massive attacks that is based
on a Reed-Solomon code.

In this work we extend this solution in both directions.
First, to provide secrecy, we use a secret code, based on
a private Vandermonde generator matrix. Second, we extend
the scheme to more general matrix computations such as LU
factorization or matrix powering (with application to connected
components in a graph), where the output data is non-linear in
the input data. A major constraint is efficiency: trivial lower
bounds for the cost of an interactive scheme are the size of
the input and the output (memory cost) and the work of the
best known algorithm (computational cost). We propose an
asymmetric scheme for matrix multiplication that is almost
optimal with respect to both the input/output size on the
reliable resource (user side) and the best upper bound on the
unreliable one (global computing platform side).

II. ABFT DENSE MATRIX MULTIPLICATION

As most of the linear algebra computations reduce to
dense matrix multiplication, the design of the interactive zero
knowledge protocol for computations is based on outsourcing
matrix product. For the sake of clarity, we restrict in the sequel
to k × k square matrices. The goal of these protocols is to
keep the complexity of the operations almost linear in the
size O(k2) of the input on the weak client, while on the
unreliable cloud, a complexity Õ(nω) would be acceptable,

where 2 < ω ≤ 3 denotes the exponent of matrix multipli-
cation cost. A standard way for ABFT matrix multiplication
consists in encoding the left and right operands by multiplying
each by the generator matrix of a linear code [2], [7]. In the
sequel, we use Evaluation-Interpolation linear codes, denoted
RS (Reed-Solomon). These codes defined over a base field F
are maximum distance separable. Assuming F larger enough,
for any n with card(F) ≥ n > k, an (n, k) RS code is
characterized by a k × n matrix G. A source vector x of size
k is encoded by y = x · G; any configuration of (n − k)/2
errors in y is guaranteed to be corrected.

The proposed secured ABFT protocol is as follows. The
weak client initiates the protocol by generating two (n, k) RS
codes, defined by G1 and G2. The input k × k matrices A
and B are encoded as: GA = tr(G1) · A and GB = B · G2,
where tr denotes the transpose map. G1 and G2 are kept secret
which eventually makes A and B secret. The client sends GA

and GB to the global platform that performs the computation
and sends back a result matrix R. Various errors may occur
during computations or communications that are modeled by
an insecure or noisy channel: the received matrix is seen as
a perturbation of the correct encoded result GC = GA · GB .
Upon decoding R, the client obtains a matrix C̃ which verifies
C̃ = A · B + E, where En×n is the error matrix. The client
can correct up to (n−k)2/4 errors in C̃ to recover C = A ·B.

The cost of computation on the reliable client sums to the
cost of encoding and decoding. The encoding of each row or
column reduces to k polynomial evaluations of degree k in
n points, each computed in O(nlog2n) with precomputation,
so Õ(n2) for the full matrices A and B. With fast extended
GCD, decoding can be performed in O(nlog2n) for each row
or column, so Õ(n2) for the matrix C̃. The multiplication is
performed by the remote platform in O(nω).

The client also has the possibility to verify the correctness
of the result. This verification allows to detect cheating work-
ers and even prevents man-in-the-middle (MITM) attacks. A
cheating worker may not compute the matrix product correctly
(and hopes that the fault remains undetected) while in the
MITM scenario, an adversary might simply intercept the com-
munication between the client and the platform and replaces
the result by some other good-looking matrix, ex. the adversary
might replace the matrix R by GAtr(GA). For verification i.e.
testing if C = AB, we propose to use probabilistic Freivalds’
algorithm [3] which runs in O(n2), and states the correctness
with good probability.

To ensure secrecy of inputs, the generator matrices G1

and G2 are kept secret. The evaluation points are randomly
chosen and kept secret. However, if secrecy is discarded, the
evaluation points are chosen to be 1, α, α2, . . . , αcard(F)−2,
where α is a generator of the multiplicative group of the base
field F. With this choice of evaluation points, Fast Fourier
Transformation (FFT) allows fast encoding and decoding and
provides a logarithmic advantage. We note that a small field
(such as F2) would not provide enough evaluation points.

III. ILLUSTRATIVE EXAMPLE : INTERACTIVE BLOCK LU
DECOMPOSITION

Extending the idea, we also propose an ABFT interactive
block LU decomposition protocol where the client outsources

the task of LU decomposition to the platform. This protocol
follows the standard block LU decomposition algorithm, where
the inverse of the diagonal element is calculated locally and
the blocks below the diagonal element are updated. The task of
updating the sub-matrix to the right and below of the diagonal
element is shared between the cloud and the client. We note
that sub-matrix update requires the computation of matrix
multiplication, hence is outsourced thanks to the previous
matrix multiplication. Upon retrieving the product, the update
operation reduces to addition and is performed locally. This
interaction outsources the larger part of computation to the
remote platform, while the smaller part is performed by the
client. Let K be the block size: the cost of computation on
client’s side is Õ(n2Kω−2) for block inversions and column
update, and Õ(nωK−ω+2) for sub-matrix updates; while on
the untrusted cloud, the cost is O(nω). For ω = 3, the
optimality is obtained when the block size is K =

√
n.

IV. CONCLUSION

In this paper, we design an efficient alternative to FHE
based outsourcing with acceptable practicality and security.
Our ABFT solution is resilient against malicious errors and
hence goes beyond the correction of soft errors and can even
handle MITM attacks. The scheme computes matrix operations
such as matrix-matrix multiplication and can be extended
to interactive protocols performing more complex operations
on matrices. The ongoing work includes quantifying security
provided by our scheme, the study of the related cost-security
trade-off and include other computations in the framework.
While this work is based on large finite fields, a perspective
is the design of efficient solution for floating point numbers,
based on dedicated encoding for matrix multiplication.

REFERENCES

[1] Sanjeev Arora. Probabilistic checking of proofs: a new characterization
of np. In Journal of the ACM, pages 2–13, 1998.

[2] Peng Du, Piotr Luszczek, and Jack Dongarra. High performance dense
linear system solver with resilience to multiple soft errors. In ICCS,
pages 216–225, 2012.

[3] Rusins Freivalds. Probabilistic machines can use less running time. In
IFIP Congress, pages 839–842, 1977.

[4] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct nizks without pcps.

[5] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009. crypto.stanford.edu/craig.

[6] Philippe Golle and Ilya Mironov. Uncheatable distributed computations.
In Lecture Notes in Computer Science, pages 425–441. Springer, 2001.

[7] Kuang-Hua Huang and J. A. Abraham. Algorithm-based fault tolerance
for matrix operations. IEEE Trans. Comput., 33(6):518–528, June 1984.

[8] Fabian Monrose, Peter Wycko, and Aviel D. Rubin. Distributed
execution with remote audit. In In Proceedings of the 1999 ISOC
Network and Distributed System Security Symposium, pages 103–113,
1999.

[9] Bryan Parno, Craig Gentry, Jon Howell, and Mariana Raykova. Pinoc-
chio: Nearly practical verifiable computation. Cryptology ePrint
Archive, Report 2013/279, 2013. http://eprint.iacr.org/.

[10] Jean-Louis Roch and Sebastien Varrette. Probabilistic certification of
divide & conquer algorithms on global computing platforms. application
to fault-tolerant exact matrix-vector product. In ACM publishing, edi-
tor, Parallel Symbolic Computation’07 (PASCO’07), London, Ontario,
Canada, July 2007.

[11] Radu Sion. Query execution assurance for outsourced databases, 2005.

crypto.stanford.edu/craig
http://eprint.iacr.org/

Security-Informed Safety
“If it’s not secure, it’s not safe”

Robin Bloomfield
Centre for Software Reliability

City University London
reb@csr.city.ac.uk

Robert Stroud
Adelard LLP
London, UK

rjs@adelard.com

Abstract— Traditionally, safety and security have been
treated as separate disciplines, but this position is increasingly
becoming untenable and stakeholders are beginning to argue that
if it’s not secure, it’s not safe. The idea of combining safety and
security is not new but neither is it straightforward. To illustrate
the complexities of the problem, we explore some of the
challenges that need to be overcome in order to develop a
principled approach to “security-informed safety”.

Keywords—security-informed safety; assurance cases.

I. INTRODUCTION
For a system to be safe, it also has to be secure. Otherwise,

a safety critical system – one that can harm or injure people –
could provide attackers with a potential mechanism for causing
widespread damage or panic, and it is credible that such
systems could become the target of malicious actions.

In principle, achieving interworking between safety and
security should be straightforward. Both are sophisticated
engineering cultures that emphasise the need for good process,
the importance of risk analysis and the need for assurance and
justification. However, these similarities are superficial and in
practice there are significant challenges, as experience with
large-scale systems has shown.

To illustrate the complexities of the problem and in order to
stimulate debate, we explore some of the technical issues
involved in combining safety and security assurance in a
principled way. Our work is informed by an investigation of
these issues in the context of the railway industry [1], but is
more widely applicable to safety engineering in general.

II. CONCEPTS
The commonalities between safety and security are

frequently obscured by the use of different concepts and
terminologies. Indeed, there is considerable variation in
terminology both within and between the safety and security
communities. Thus, to achieve a shared understanding of the
key concepts within each domain, there is a need to establish a
lingua franca or even a common ontology.

The IFIP WG 10.4 dependability taxonomy [2] offers some
hope for defining a consistent set of terms. In particular, it
makes a clear distinction between cause and effect and
highlights the need to be clear about system boundaries.

Broadly speaking, safety is concerned with protecting the
environment from the system whereas security is concerned
with protecting the system from the environment. Security and
safety can both be viewed as kinds of dependability and use
similar techniques to identify potential failure modes and
assess their impact on the overall system. Thus, there is
considerable overlap between safety and security methods,
although the focus is different and in some cases safety and
security requirements can be in conflict.

In particular, one of the major differences between safety
and security is that a secure system needs to cope with
evolving threats and changes to the environment through
design and architectural measures as well as operational ones.
It is important for the system to remain safe and secure despite
such changes, in other words, to be resilient to change.

III. PRINCIPLES
There are many overlaps between safety and security

principles, but there are also some significant differences in
emphasis and some potential conflicts. For example, defence in
depth is an important architectural principle for both safety and
security that depends on the use of multiple, and as far as
possible independent, barriers. However, security
considerations are likely to challenge the effectiveness and
independence of safety barriers.

From a safety system perspective, security principles [3]
such as economy of mechanism, least privilege, and
psychological acceptability are probably all readily acceptable.
Other principles, such as complete mediation and end-to-end
arguments, could have a significant impact on the architecture
and performance of systems. But perhaps the most radical
security principles from a safety perspective are those based on
Kerchoffs’ principle [4], namely ease of recovery and open
design.

In particular, although safety systems are already designed
to support operational changes for calibration and maintenance,
the ease of recovery principle, which states that the security of
the system should not depend on anything that cannot be easily
changed, could have far reaching impact on the architecture of
safety systems.

Moreover, changes to threats over the lifetime of the
system will probably mean that controls that were adequate
initially will need to be reconsidered. This has implications for

This research was commissioned on behalf of UK government and the
UK rail industry.

the architecture and lifecycle of embedded safety systems
where design life may be 20-40 years.

Given the uncertainties around future threats, systems
should be designed to be adapted and replaced perhaps sooner
then would be necessary from just a safety perspective. This
could have significant architectural and cost implications for
large infrastructure projects, particularly those that are already
in progress

IV. METHODOLOGY
Risk assessment is a fundamental step in safety and security

analysis, but the underlying threat model is different. There is a
need for a unified methodology for assessing the threats to the
safety and security of a system.

Security considerations can have a significant impact on a
safety case. For example, there needs to be an impact analysis
of the response to security threats and discovery of new
vulnerabilities and reduction in the strength of protection
mechanism. This suggests a greater emphasis on resilience of
the design.

It is also necessary to consider the potential for attack
during a safety incident and the opportunity this might provide
for malicious activity. A fail-safe state may not be as safe as
previously thought if the system is under attack and the
assumption that any security attack on a control system could
only, at worst, cause a fail-safe state to be reached is in general
not true. Moreover, assumptions about the capabilities and
state of society may change; for example, consider managing a
safety incident during a major security incident.

Given the importance in security of open scrutiny of design
and implementation (e.g. of crypto), it is an appropriate
question whether security-informed safety cases in entirety or
part should be disclosed. Within the safety community, the
principle of independent assessment is well established, but the
design details within a safety case are usually considered to be
confidential and are not made public in their entirety.

The key question is whether publishing the detailed design
and safety analysis for a system would make the system less or
more safe and secure, or more precisely which aspects would it
be beneficial to expose and which not.

V. STANDARDS
Safety standards already require “malevolent and

unauthorized actions to be considered during hazard and risk
analysis” [5], and there have been a number of domain-
specific attempts to define a unified approach to safety and
security assurance [6][7]. However, the standards framework
for dealing with security-informed safety needs to be more
explicitly designed than is currently the case. In particular, the
relationship between generic and domain-specific safety and
security standards needs to be clarified, and terminological and
conceptual differences need to be resolved.

The standards framework should be based on explicit
principles and use a consistent terminology. The standards
groups should ensure they have available a suitable mix of both
security and safety expertise.

Standards often use “levels” as a way of classifying
systems, risks and controls. However, it is important to
understand the assumptions that underpin these classification
schemes and not to confuse different kinds of classification. In
particular, risk levels, requirement levels, and assurance levels
need to be carefully distinguished.

A particular concern is the problem of justifying
requirements that specify the use of particular methods and
tools to achieve a specific level. In order to support
interworking between safety and security standards, we need to
develop a better understanding of the rationale for such
recommendations and the evidence base that supports them.

Security standards are often based on security controls, a
concept that embraces a wide range of different interventions
covering process, product and organisation. In contrast, safety
standards are typically based on an engineering life cycle
model. In principle it should be possible to relate safety
mitigations to security controls, but in order to perform such an
analysis, it will be necessary to define a common way of
classifying controls and mitigations.

VI. NEXT STEPS
We believe that some or all of the following next steps

would be helpful in establishing a more principled approach to
“security-informed safety”.

• Develop guidance on concepts and terminology to support
dialogue between the safety and security communities.

• Research the applicability of security principles to safety
and the associated trade-offs and conflicts.

• Consider how to make credible arguments that safety and
security risks have been reduced to as low as reasonably
practicable.

• Investigate how a Claims-Arguments-Evidence based
methodology could be used to support the development of
a security-safety protection profile.

• Intercept and support the standards process in order to
clarify the relationship between safety and security and
resolve some of the terminological and conceptual issues.

REFERENCES
[1] R. E. Bloomfield and R. J. Stroud, “Safety and Security: Concepts,

Standards and Assurance”, Adelard reference D/719/138002/2, v2.0,
March 2013.

[2] A. Aviziensis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing”, IEEE
Transactions on Dependable and Secure Computing, Vol. 1, No. 1,
January-March 2004.

[3] J. H. Saltzer, M. D. Schroeder, “The Protection of Information in
Computer Systems” CACM Vol. 17(7), July 1974.

[4] A. Kerckhoffs, ‘La cryptographie militaire’, Journal des sciences
militaires, vol. IX, pp. 5–38, Jan. 1883, pp. 161–191, Feb. 1883.

[5] EN 61508-1:2010, Functional safety of
electrical/electronic/programmable electronic safety-related systems —
Part 1: General Requirements.

[6] Praxis High Integrity Systems, SafSec: Integration of Safety & Security
Certification, November 2006.

[7] ED-202, Airworthiness Security Process Specification, EuroCAE,
December 2010.

Adequacy of contract grammars for component
certification

Alejandra Ruiz, Huascar Espinoza
ICT-European Software Institute Division

TECNALIA
Zamudio, Spain

{alejandra.ruiz, huascar.espinoza}@tecnalia.com

Tim Kelly
Department of Computer Science

University of York
York, United Kingdom
tim.kelly@cs.york.ac.uk

Abstract— The use of contracts in component-based
development is a well-established approach. However there exists
a wide range of views as to the nature of the contracts that are
necessary to support safety-critical systems development,
assurance and certification. Different standards and projects
have tried to reduce ambiguity and propose the best practice in
this area. In this paper we present work that moves one step
further forward with the creation of a methodology and
grammar that incorporates encompasses and helps structure
current models of ‘safety contracts’.

Keywords— component; certification, contracts, grammar

I. INTRODUCTION

As systems become increasingly complex and distributed
development becomes increasingly commonplace, there has
been greater interest in component-based and contract-based
approaches to system development and assurance. In parallel
with this, certification standards are increasingly supporting the
the notion of modular (component) certification. For example,
DO-297 [1] addresses this topic in the context of modular
avionics and the concept of SEooC (safety element out of
context) has been introduced in the new automotive safety
standard ISO 26262 [2]. These new concepts are not easy to
apply. Ruiz et al [10] has previously described the difficulties
faced by industry when attempting to apply the SEooC concept
(particularly with respect to managing assumptions). Contract
based approaches can help structure and manage the activities
associated with compositional certification. .

II. TECHNICAL APPROACHES

A number of different technical approaches to contract
specification have been studied. Each of them typically focuses
on solving one objective. There are some identified reasons
behind formalizing contracts such as [11]:

• Avoid human errors

• Support for validation or checking

• Interoperability between different suppliers

• Facilitate the integration of the components within
the system

The following table shows some of the approaches already
explored for improving the definition of contracts:

TABLE I. DIFFERENT CONTRACT TECHNICAL APPROACHES

Approach Description Ref

Formal
language

Specification of a formal meta-modeling
language for design contracts. It provides
information about components behaviour,
variables and interfaces but not the
implementation

[3]

Specification of a formalization of safety cases.
Safety argumentation can be logical deduction,
probabilistic, expert judgement or historical
experience. Formalizing some elements
supports precision and cheching methods

[12]

Metamodel

The ‘Rich Component’ Metamodel focuses on
the integration of component-based design by
the use of contracts from different
perspectives: such as operational actors,
functions, logical components or technical
components.

[6]

Reference
architecture

In different domains there have been initiatives
to define a reference architecture with an open
API e.g. AUTOSAR. These reference
architectures can be decomposed into different
components. The integration of these
components is implementation independent
and is aided by well-defined interfaces

[7]
[13]

Properties
modelling

Formal and structured property modelling . [8]

Pattern

Definition of a generic pattern for safety case
contracts. They propose the GSN notation as a
way to structure agreements between safety
case modules.

[9]

All of these approaches try to solve parts the whole problem
from different perspectives. Some approaches, such as those
that concentrate on defining reference architectures, focus on
design standardization and component integration rather than
certification. (Although an argument can be made that they
may reduce the costs of certification through establishing
standardized interfaces.)

III. HIGH LEVEL GUIDANCE

Different assurance and certification standards have
addressed the problem of component-based assurance in
different ways. Here, we focus especially on the avionics and

automotive domains. In the automotive domain, the
introduction of the Safety Element of Context (SEooC)
together with the standard ISO 26262 [2] has opened the door
to modular approaches regarding functional safety. An
example of a safety-oriented ‘contract’ can be seen in ISO
26262 [2], where the term Development Interface Agreement
(DIA) is used to defines the procedures and responsibilities
allocated within distributed developments for items and
elements. In the DIA the supplier should exchange with the
customer information such as: feedback about conflicts,
completeness, consistency, etc.; technological limitations,
behaviour models, incl. fault models, feedback about boundary
between the component and its environment.

In the avionics domain we can find similar requirements
with respect to module and application reuse within an IMA
(Integrated Modular Avionics) platform. In DO-297 [1]
(amongst other requirements) it is required that limitations,
assumptions, etc. are documented and a usage domain analysis
performance to ensure that any component is being reused in
the a way that is compatible with the original design intent.

Other aerospace avionics guidelines such as AC 20-148 [4]
concerning reusable software components indicate that in order
to reuse components, stakeholders must identify any
installation, safety, operational, functional and performance
possible concerns. Developers need to state clearly the DO-
178B objectives that are fully and partially addressed, and how
compliance has been achieved. They need to state clearly the
failure conditions, safety features, protection mechanism,
architecture limitations, software levels, interface specification
and the process for certification. AC 20-170 [5] defines
incremental acceptance as, “A process for obtaining credit
toward approval and certification by accepting or finding that
an IMA module, and/or off-aircraft IMA system complies with
specific requirements. This incremental acceptance is divided
into tasks. Credit granted for individual tasks contributes to the
overall certification goal.” This definition implies that the
process in which the system assurance is performed is also
important. At every stage some form of recognition is
submitted in relation which a compliance data package. The
process is divided into 6 tasks: Module acceptance;
Application acceptance; IMA system acceptance, Aircraft
integration of IMA system, Change and reuse of modules or
applications. Reuse can be done at Task 1and 2 level.

IV. COMPARISONS

Our on-going work addresses the challenge of integrating
the existing approaches described in the previous sections. In
doing this, we hope to improve consistency of approach across
and reduce uncertainty as to the necessary considerations in
safety-oriented contract specification and management.

Guidelines from the standards offer the best practices and
interpretations of the standards in order to comply with certain
requirements. Those best practices can be modelled within the
different technical approaches and impact on the methodology
for the system development. Different technical measures can
be put into place in order to assure the correct and complete
following of the guidance and practices.

In our approach we propose to formalized contracts through
an well defined and structured contract ‘grammar’ to support

how users may systematically assure safety of their system
while integrating components. In order to do it we propose the
definition of a BNF (Backus Normal Form or Backus–Naur
Form) grammar. In this structure we will take into account the
different views of contracts. AC 20-148 states that, "identify
any installation, safety, operational, functional, or performance
concern". We organise our contract grammar around these
aspects to help identify such concerns. Fenn [9] proposes to use
argumentation not only on safety cases but also on safety
contracts, so our grammar should support argumentation.
Rusby [13] has previous identified different types of
argumentation. These types can be used to help provide extra
structure to the argumentation aspects of the contract grammar.

One of the benefits of formalizing safety contracts will be
the possibly of tool support for checking or generating
contracts. We are using Xtext [14] as the technology to
implement our grammar and be able to interoperate with other
future tools. Moreover, with the provision of a defined
grammar for safety contracts we will be able to support
validation of contracts (e.g. helping identify incomplete
contracts).

ACKNOWLEDGMENT

The research leading to these results has received funding
from the FP7 programme under grant agreement n° 289011
(OPENCOSS) and nº608945 (Safe Adapt)

REFERENCES
[1] RTCA DO-297/EUROCAE ED-124 Integrated Modular Avionics

(IMA) Development Guidance and Certification Considerations

[2] International Organization for Standardization (ISO), ISO26262 Road
vehicles – Functional safety, ISO, Nov 2011

[3] D.2.5.4 Contract Specification Language (CSL); SPEEDS Project;
Deliverable; Rev. 1.0.1; April 2008: URL: http://speeds.eu.com/
downloads/D_2_5_4_RE_Contract_Specification_Language.pdf; PDF-
Document; Last visit: 2013-02-13

[4] FAA Advisory Circular: AC 20 148 Reusable Software Components

[5] FAA Advisory Circulation AC 20-170

[6] D_SP1_R3.3_a_M3 Meta-Model Concepts for RTP V; CESAR Project;
Deliverable. http://www.cesarproject.eu/index.php?id=47&L=0; PDF-
Document; Last visit; 2013-02-12

[7] Fürst S.: AUTOSAR – An open standardized software architecture for
the automotive industry. 1st AUTOSAR open conference & 8th
AUTOSAR premium member conference, Detroit, US, Oct. 2005

[8] ATTEST2 Project, URL: http://www.atesst.org Last visit: 25/06/2013

[9] J. Fenn, R. Hawkins, P. Williams, and T. Kelly, “Safety Case
Composition Using Contracts -Refinements based on Feedback from an
Industrial Case Study,” in Proceedings of 15th Safety Critical Systems
Symposium(SSS’07), February 2007

[10] A. Ruiz, H. Espinoza, F. Tagliablò, S. Torchiaro, A. Melzi, “A
Preliminary Study towards a Quantitative Approach for Compositional
Safety Assurance” Proceedings of 21st Safety Critical Systems
Symposium, February 2013

[11] Machine-checkable Assurance Case Language http://www.omg.org/cgi-
bin/doc?sysa/2012-9-4

[12] J. Rushby, “Formalism in safety cases,” in Making Systems Safer:
Proceedings of the Eighteenth Safety-Critical Systems Symposium,
Springer, 2010, pp. 3–17.

[13] ARINC 653 Avionics Application Software Standard Interface

[14] Xtext, » http://www.eclipse.org/Xtext

Communication integrity
for slow-dynamic critical embedded systems

Amira Zammali (1),(2)
(1) CNRS, LAAS, 7 avenue du colonel

Roche, F-31400 Toulouse, France
(2) Univ of Toulouse, UPS, LAAS,

F-31400, Toulouse, France
Email: zammali@laas.fr

Agnan de BONNEVAL (1),(2)
(1) CNRS, LAAS, 7 avenue du colonel

Roche, F-31400 Toulouse, France
(2) Univ of Toulouse, UPS, LAAS,

F-31400, Toulouse, France
Email: agnan@laas.fr

Yves CROUZET (1),(2)
(1) CNRS, LAAS, 7 avenue du colonel

Roche, F-31400 Toulouse, France
(2) Univ of Toulouse, LAAS,
F-31400, Toulouse, France

Email: crouzet@laas.fr

Abstract—We present, in this paper, challenges and works in
progress for a new communication integrity approach that is
based on error detection codes and targets slow-dynamic critical
embedded systems. The novelty of this approach lies in the fact
that it takes profit of the fault tolerance criterion of slow-
dynamic systems. Thus, it does not focus on each exchanged
message but rather on a set of messages (which number is being
be set according to the safety requirement of the targeted
system). This approach relies on a set of control functions whose
error detection capabilities and coverage are complementary,
which improves the resulting detection capability compared to
the usual use of one unique control function.

Keywords—slow-dynamic systems, critical embedded systems,
fault tolerance, safety, communication integrity, error detection
codes.

I. INTRODUCTION AND PROBLEMATIC

Nowadays, critical embedded systems are based on
complex networks including active intermediate nodes. This
increases the occurrence of erroneous messages and introduces
new types of errors, even though the occurrence of undetected
erroneous messages can lead to catastrophic events (e.g.
airplane crash). Thus, ensuring the communication integrity in
such systems is crucial. Traditionally, integrity policies aim at
avoiding the occurrence of one undetected erroneous message.
So they use heavy error detection codes in order to obtain an
efficient detection power per each exchanged message. Yet,
previous works [1] in our research team revealed that, for some
kinds of systems, to meet the safety requirement, there is no
need to focus very strongly on the integrity of each message. In
fact, avoiding the occurrence of a number X (X>1) of
undetected erroneous messages among N messages is sufficient
for these systems. These previous works have defined a
cumulative error detection policy consisting of a set of
complementary control functions. This policy was based solely
on CRCs codes and targeted Flight Control Systems. These
works open horizons to us in order to dig deeper and propose a
more complete and generic approach adopting the
complementary property of used functions. Section II describes
the targeted systems: slow-dynamic critical embedded systems.
Section III presents the context communication integrity
approach to be adopted in these targeted systems and section
IV is devoted to present our works in progress.

II. SLOW DYNAMIC CRITICAL EMBEDDED SYSTEMS

The class of systems we target in our works is the class of
slow-dynamic critical embedded systems. The critical property
induces high safety requirements. It means the system is low
fault tolerant because of some kinds of failures may lead to
catastrophic events (loss of goods and even lives): typically,
failure rate must be less than 10-9 failure/hour. “Embedded”
means that such systems do not dispose of a huge of resources
(memories, processors, etc.) and communications are based on
short messages (e.g. 100 bits for Flight Control Systems).

The novelty, here, is the “slow-dynamic” property of the
system (first defined in [1]). In fact systems can be classified
into two classes: i) fast-dynamic systems; ii) slow-dynamic
systems. “Fast-dynamic systems” are defined by a duration of
their significant changes very close to the duration of the
refresh cycle of their changes command computation. This
enables to send one unique message (command) during the
duration of significant change. Thus, an undetected erroneous
message may lead to a catastrophic event. While the so-called
“slow-dynamic systems” are defined by a duration of
significant changes is much larger than the refresh cycle
duration. This enables to send several messages (commands)
during this duration (see Fig.1). Thus, a catastrophic event
cannot result from one undetected erroneous message, but only
from a set of undetected erroneous messages whose number
exceeds a threshold being set according to the case study.

Fig. 1. Slow-dynamic systems compared to fast-dynamic systems

An example of slow-dynamic system is the flight control
system on commercial airplanes. Computers exchange control-
command messages with the actuators governing the flight

Data C

1- Fast-dynamic system

2- Slow-dynamic system

1 2 3 4 5 6 7 8 9 10

Data C Data C Data C Data C Data C Data C Data C Data C Data C

CData Data

1

C: Check

Duration of significant change

Refresh cycle

Duration of significant change

Refresh cycle

control surfaces. These surfaces are designed to move slowly
(about 50°/s). The refresh cycle duration (about 10 ms) is much
smaller than the duration of a significant change. Thus, many
control-command messages are exchanged and the system can
tolerate several undetected erroneous messages.

This slow-dynamic property makes possible to deal with
the problem of communication integrity in a different way.

III. COMMUNICATION INTEGRITY APPROACH

As described before, for slow-dynamic critical embedded
systems, the integrity policy does not focus on each exchanged
message. Our goal is rather to avoid the occurrence of more
than X undetected erroneous messages among N transmitted
ones. So instead of using one unique control function, we rely
on a set of complementary ones, which means they have
complementary (therefore cumulative) detection capabilities
and coverage. So, this policy is more efficient, as described in
Fig. 2, where we assume: all messages are erroneous, X=3,
N=10, three complementary functions F1, F2 and F3 (and D:
Detected, ND: NonDetected).

In our approach, we target the application layer and we aim
at ensuring the end- to-end integrity. We consider the
following assumptions:1) the key safety requirement of
considered systems is the tolerance of less than 10−9 failures
per hour [2] [3]; 2) the X undetected erroneous messages
among N can be considered either as consecutive, nor as not
consecutive; 3) intermediate nodes are active (with memories
and treatment capabilities); 4) communication channels are
binary and symmetric; 5) messages size is around 100 bits; 6)
refresh cycle is around some ms; 7) targeted errors are random
independent errors, burst errors and particularly repetitive
errors; 8) the redundancy must be as low as possible in terms
of check bits, networks components and channels.

Fig. 2. Error detection policy : one function versus multi functions policy

IV. CHALLENGES AND WORKS IN PROGRESS

Several challenges are arising with the specificities of our
error detection policy. The first one is to find theoretical proofs
and/or validate by experimentations the complementarity
property of nonCRC codes. Previous works [1] have proved
that two different CRC generator polynomials are
complementary only if they share a minimum of common
factors. Now, our goal is to find other complementary codes.
An other side of this challenge is to use complementary codes
belonging to different families in the same detection policy.

The second challenge is to limit the resources consumption in
terms of calculation time and memory since we consider
embedded systems. The third challenge is to decrease the
redundancy in terms of check bits in order to respect the short
messages property we consider. The forth challenge is to
ensure the synchronization between the network nodes (source,
sink and intermediate nodes) in order to be sure that they use
all, at every refresh cycle, the same control function. The last
challenge is to extend the application domain of the detection
policy and explore other slow-dynamic critical embedded
systems and not only be limited to flight control systems.

To take up these challenges, our approach is based on an
optimal error detection codes selection. In fact, for CRC codes,
it was proven [4] that conventional polynomials are not
necessarily the best choice to make. Moreover, we are
exploring lightweight codes like Adler and Fast CRCs that
have efficient capabilities with a lower complexity than CRCs.
Besides, we are working on automotive systems in order to
study the possibility to apply our policy to it. To validate our
theoretical solution, we will rely on simulations via the Matlab-
Simulink platform which provides tools to model and simulate
communications. Experimentations will consist of Monte Carlo
simulations. We have started modelling our experimentations.
We are working on three models of errors injection: i)
exhaustive injection (considering all possible erroneous
messages); ii) selective injection (considering a kind or a
subset of erroneous messages) and iii) random injection. To
accelerate simulations, we are exploring the “Parallel
computing” tool, a Matlab tool that we are working on it. It
permits to make a set of parallel simulations while providing
the synchronization between inputs, outputs and parameters.

V. CONCLUSION

In this paper, we have first presented how the dynamic of a
system can impact the way of considering communication
integrity in critical embedded systems. For the class of slow-
dynamic systems, we have reminded an innovative solution
based on complementary error detection functions. In this
context, one of the most important challenge we deal with, is to
find (by theory or simulation) other error detection codes (than
CRCs codes previously used), that would consume less time
and memory, while having the property of complementary
detection capabilities and coverage. And we seek to extend this
approach to other domains than only aeronautic.

REFERENCES
[1] A. Youssef, Y. Crouzet, A. de Bonneval, J. Arlat, J. J. Aubert and P.

Brot, “Communication integrity in networks for critical control
systems”. The European Dependable Computing Conference (EDCC),
Coimbra, Portugal, 18-20 Oct. 2006, pp.23-34

[2] M. Paulitsch, J. Morris, B. Hall, K. Driscoll, E. Latronico and Ph.
Koopman, “Coverage and the use of cyclic redundancy codes in ultra-
dependable systems”. The international Conference on Dependable
Systems and Networks (DSN), Yokohama, Japan, 28 June-1 July 2005,
pp.346-355

[3] Federal Aviation Administration, “System Safety Handbook, chapter
3:Principles of System Safety”, 30 december 2000, 19 p.

[4] Ph. Koopman and T. Chakravarty, “Cyclic redundancy code (CRC)
polynomial selection for embedded networks”. The international
Conference on Dependable Systems and Networks (DSN), Florence,
Italy, 28 June-1 July 2004, pp.145-154.

F1F1F1F1 F1F1F1F1F1F1

F3F2F1

ND ND ND ND ND ND ND NDND ND

ND ND ND D ND ND D NDD ND
F3F2F1 F3F2F1 F1

Error Recovery

Undetected erroneous messages
=> Catastrophic event

0 1 2 3 4 5 6 7 8 9 10

Erroneous
command

Correct
command

Erroneous
command

Correct
command

0 1 2 3 4 5 6 7 8 9 10

Robust by „Let it Crash“

Christoph Woskowski, Mikolaj Trzeciecki, Florian Schwedes

Zühlke Engineering GmbH

Landshuter Allee 12

80637 Munich, Germany

{christoph.woskowski,mikolaj.trzeciecki,

florian.schwedes}@zuehlke.com

Keywords— safety-related; fault-tolerance; supervisor

hierarchies; let-it-crash; Erlang

A. Introduction

Critical software systems are bound to perform extensive
error detection and exception handling. The corresponding
source code is typically implemented in a defensive
programming style. Typical strategies to ensure robustness
include elaborate exception handling and error-code returning
routines. Most often, error handling code fragments are often
not separable from the source code realizing the core
functionality, and they are prone to errors themselves. For
extending exception handling in order to further improve fault-
tolerance, even more source code is necessary. However some
leftover vulnerability always remains, especially in complex,
multithtreading, and distributed systems. Producing more code
ultimately results in more complexity while reducing
readability and maintainability. This in turn inevitably leads to
programming errors.

The programming language Erlang breaks a new ground for
handling fault-tolerance problems. Very light-weight processes
in separate memory areas enable straightforward concurrency
with communication solely based on message passing.
Processes are able to monitor and – in case of a process
termination – restart each other very swiftly. The exception
handling method of choice for a worker process is to terminate
itself (“let it crash” – LiC), if it is unable to handle the situation
locally. Dedicated supervisor hierarchies ensure appropriate
error responses by starting a different process or by restarting a
new instance of the terminated one.

This work presented in this abstract investigates, whether
the let-it-crash paradigm for fault-tolerant systems may also be
applicable to safety-related software projects. The scenario
chosen for this demonstration approximates (and simplifies) a
project within the medical device control software domain.

B. ModelProject

Although often a necessity, long term hospitalization is
expensive and can even pose a health threat to hospitalized
people. For reducing these costs and risks, a number of patients
are treated at home. In such a case, an appropriate and reliable
monitoring system must be used. In our (fictional) project, such
a monitoring system is developed which uses so called
“functional clothing”. This clothing is a kind of garment

incorporating wireless sensors, which allows the patient to
move freely around without being restricted, even while their
vital signs keep being monitored. The signals from the sensors
arrive wirelessly at a base station located in the same house or
room as the patient. This device employs a constant connection
with all active sensors, is able to power them on and off and
switches to an alternative measurement location if need arises
(failure, implausible data). The base station establishes a
connection with the hospital and transfers the data for
evaluation.

Fig. 1. Proof of concept scenario

The subject matter of the LiC proof-of-concept is the
software development for the base station. The project focusses
a high reliability of measurement data acquisition and transfer
of the patient’s vital signs to the hospital. A maximum number
of currently active sensors is set to limit power usage. At the
same time a minimum coverage of the vital signs has to be
guaranteed: for every point in time at least two out of three
critical values (heart rate, breathing rate and blood pressure)
have to be available.

The safe state of the house station is a complete shutdown,
since the hospital system gets alarmed about the missing data.

C. Implementation and testing

Our prototypical implementation in Erlang makes use of
the supervisor hierarchies and allows for deployment of worker
processes and supervisors as well as the evaluation of
separating business logic from error handling. The

development concentrates on the software of the base station
and just simulates the external sensors on the one side and the
hospital system on the other. The diagram [Fig. 2] depicts the
example setup, showing the runtime view of the processes and
dependencies.

Fig. 2. Runtime view of processes and dependencies

The generic supervisor hierarchy is solely responsible for
creating the worker processes (sensor drivers and data
collector) and for handling errors by restarting or replacing
terminated processes.

The sensor drivers and the data collector on the other hand
contain the core functionality (business logic) and no error
handling at all. In case of missing sensor values, for example,
the sensor driver just terminates and gets replaced. The same
happens if there is data available but outside of valid limits.

In connection with regulatory requirements concerning
medical devices (e.g., IEC 60812), we test the prototype
depicted above for the following failure situations:

 Failure to perform the desired function

 Performing a function that was not desired

 Performing a function at a wrong time

 Incorrect timing or order of executions

 Recognition and handling of critical

conditions by the system

A simple and effective variant of testing fault-tolerance is
based upon a so called “Chaos Monkey” - a process injected
into the system under test with the sole task of randomly
terminating other system processes. In traditional systems with
a small number of complex tasks, this typically leads to
complete failure within a very short period of time.

In our system following the LiC philosophy this only
triggers the process monitoring and thus a fast replacement of
the terminated software part. This has been tested in a
simulated uninterrupted Base Station run of multiple days. In
spite of the chaos monkey killing random components, our
system is able to maintain basic functionality.

Further, we tested the concurrency behavior of the system
by adding the necessity of the sensors to calibrate themselves.
The calibration functionality opposes the normal sensor
activity, as the abovementioned limitations to the maximum

and minimum count of the active sensors remain in place. In
our prototype, a sensor performing calibration at undesired
moment gets “crashed” by a dedicated supervisor, following
the LiC approach consequently.

D. Conclusion

Considering the LiC application hypotheses proposed
above, the following can be stated about the patient monitoring
scenario implemented in Erlang:

1. Ensure the execution of critical functionalities. Ill-
performing tasks are stopped and restarted, no matter the cause.
For instance, a malfunctioning sensor driver gets terminated
and replaced by another one.

2. Prevent the unintended execution of a function. When a
functional monitor detects a worker executing an unintended
function, this worker gets terminated and replaced, thereby
preventing the execution. For instance, a sensor calibration is
aborted when there is another calibration request of higher
priority.

3. Define and monitor the conditions for carrying out a
critical function. Workers and functional monitors can control
task execution and results given distinct validation checks. This
excludes any measures to correct the situation besides
restarting affected processes. A sensor driver validates the data
received from its sensor before forwarding it to the collector. If
a violation is detected, the driver terminates itself so the
supervisor can start another driver which in turn can connect to
another physical sensor. The driver does however not attempt
to correct the invalid values in any way.

4. Ensure carrying out critical functions at a specific time
and in specific order. Conflicts within task sequences can be
resolved by terminating blocking processes which violate the
order or a time constraint, as illustrated by the sensor
calibration functionality. Thus lifelocks in calibration
concurrency can be prevented – allowing only one sensor to
calibrate at a time – and calibration of any sensor type is
guaranteed within a given time-interval.

5. Unexpected failures have no influence or result in a safe
state. Malfunctioning processes are immediately replaced by
new ones, thus ensuring their functionality is not lost. Fatal
function loss immediately results in system shutdown. For
instance, the patient controlling system is robust with regard to
sporadic process crashes as well as to the complete loss of one
sensor data type.

E. Future work

The missing hard real-time abilities of Erlang pose a
problem when it comes to time-critical safety applications.
There are strategies to solve this issue, e.g. using external low-
level libraries written in C/C++. These solutions have to be
analyzed and developed further. For the applicability of LiC
for safety critical systems, the underlying Erlang language
features have to be evaluated against safety standards like IEC
61508-3. Research is also necessary on whether it is possible to
apply LiC without Erlang. Analyzing the language features and
corresponding counterparts in other languages or frameworks
will provide the necessary information.

Impact of Feature Interaction on the Safety Analysis for

Unmanned Avionics Product Lines
André L. de Oliveira12, Rosana T. V. Braga1, Paulo C. Masiero1, Ibrahim Habli2, Tim Kelly2

1Mathematics and Computer Science Institute, University of São Paulo, São Carlos-SP, Brazil

2Department of Computer Science, University of York, Deramore Lane, York, United Kingdom
{andre_luiz, rtvb, masiero}@icmc.usp.br, {ibrahim.habli, tim.kelly}@york.ac.uk

Abstract—Unmanned Avionics Systems (UAS) are real-time

critical embedded systems that include high-integrity requirements.

Most of these systems need to be certified before use, particularly in

civil airspace. To reduce development cost, some UAS software is

developed as part of a Software Product Line (SPL). A product-line

comprises a reference architecture and a set of reusable core assets.

New systems can be derived from the product-line architecture and

core assets based on a predefined process that manages and controls

permitted variations, based in part on product-line features defined

in a feature model. However, many features are interdependent and

hence complicate the analysis of all potential feature combinations

for product-line systems. In this paper we discuss the impact of

feature dependencies in the safety analysis of unmanned avionics

SPLs and present a preliminary model-based solution for managing

the impact of these dependencies.

Keywords—unmanned avionics; product-lines; feature interaction;

I. INTRODUCTION

Unmanned aircraft systems are systems built to support
aircrafts that do not require a human pilot [1]. Software Product
Lines (SPL) consist of systems that share a common set of core
requirements that differ according to a set of allowable variations
[2]. SPL have been used to develop avionics software [3]. Safety-
critical product-lines, such as avionics systems, include high-
integrity safety requirements. For avionics SPLs to be used, it is
necessary that both systems and aircraft be certified against pre-
established guidance. Variability analysis and management is
crucial for development of safety-critical SPLs, for which it should
be considered in both product-line development and safety
analysis. For example, safety case development [4] is an approach
that has been used for documenting assurance arguments for
safety-critical systems, such as avionics, in order to obtain
certification credit. As with other product-line assets [2], product-
line safety cases need to include mechanisms for managing the
impact of variation [5]. Establishing a balance between safety
assurance and reuse management is a challenging task in product-
line safety analysis because a safety-critical SPL should satisfy its
safety properties in all products derived from selecting and
combining product-line features and assets.

II. RESEARCH PROBLEM

Feature interaction is defined as a feature or features affecting
the behaviors of some other feature(s) [6]. This affects product-
line safety analysis and development assets in both SPL domain
engineering and application engineering. Thus, the following
questions arise: a) how can product line safety/hazard analysis
address feature interaction for avionics? b) How can assurance be
provided that product-line assets are ready for reuse in several
allowable configurations? Here we focus on two main challenges:
1) certification: certification authorities typically deal with single
product certification and not with a product-line; and 2) feature
interaction: dealing with the dependence relationships between
product-line assets and how to provide assurance for the reuse of

both product-line development and safety analysis assets. Feature
interaction variation in product-line development assets and their
operational environment (usage context) have a significant impact
on safety analysis assets related to hazard identification, risk
analysis, risk management (mitigation measures), risk monitoring,
risk acceptance, and safety case argumentation. The addition of a
feature into a safety-critical product-line can potentially lead to
changes in many safety analysis assets, because it is necessary to
consider and analyze the interaction of the new feature with other
SPL features to perform safety analysis.

Variability management problems in avionics safety-critical
SPLs relate to the complex traceability between functional

dependencies (in aircraft functions) and product-line feature
interaction and among product-line development, safety analysis,

and safety assurance (safety cases) assets [4][5]. There are
proposals for metamodels in the literature that address some of

these problems, as the product-line Functional Failure Model [7]
and the OMG Structured Assurance Case Metamodel [8], but

there is little guidance, methods, or techniques that describe how
to use such models together to manage such traceability. There is

also no automated tool-support to use these models in order to

analyze the traceability between product-line development, safety
analysis, and safety argumentation assets.

III. PROPOSED SOLUTION

Our proposed solution to deal with feature interaction

problems in avionics SPL development and safety assessment
assets is based on the concept of ‘problem-solution feature

interaction’ and a feature interaction mapping approach built
based on this concept [6]. Problem-solution feature interaction is

defined as an interaction between two or more
architectural/implementation features (solution-space) that only

arises based on one or more domain features (problem-space)
from the feature model. The feature interaction mapping approach

proposed by Sanen et al. [6] combines concepts of configuration
knowledge and feature interaction, and the provisioning of

automated tool support for complex mappings. In safety-critical
SPLs, safety knowledge should be part of SPL configuration

knowledge. Such knowledge covers SPL safety assets such as
hazard logs, risk assessment, mitigation measures and

argumentation data. So, in order to reuse knowledge about certain
hazards and conditions in safety-critical SPLs we should

incorporate ‘safety knowledge’ into ‘configuration knowledge’.

We can abstract the ‘problem-solution feature interaction’
concept to address the traceability problem in safety-critical
product lines. For example, avionics product-line feature models
(domain models) map to the problem-space part of the concept,
while Functional Dependency Models from avionics software can
map to the solution-space part. We can also extend the concept of
‘problem-solution feature interaction’ to address safety (i.e.

variation interaction in safety assessment data) in safety-critical
product lines. The reason for this is that there is also interaction
between product-line development and safety assets. Thus, in the
same way that the concept of ‘problem-solution feature
interaction’ we can have interactions between one or more safety
requirements (in the safety domain) that only arise in the presence
of one or more feature (requirements/architectural) interactions in
a specific usage context. To support modeling of feature
interactions in SPLs, languages such as Feature-Oriented
Requirements Modeling Language (FORML) [9] can be used. In
this language, SPL modeling considers two viewpoints: the world
problem, which comprises domain modeling using feature models
to specify valid SPL combinations, and behavior model, to model
feature interaction considering each SPL feature separately
(feature module) using state-machines. FORML can be used to
express feature interaction relationships in SPL feature and
avionics functional models; and for expressing safety requirements
interaction in safety-critical SPLs.

In order to address safety-critical product-line traceability for
the UAS domain, we firstly propose a mapping between SPL
feature interactions and avionics system function dependencies
using merging metamodels, interfaces and parsing techniques.
Model merging is a process of merging two source models ‘MA’

and ‘MB’, instances of ‘MMA’ (feature interaction) and ‘MMB’
(functional dependence) metamodels, into a target model ‘MC’,
which is an instance of ‘MMC’ (merged) metamodel. We aim to
use a merging language, such as Epsilon Merging Language
(EML) [10], to build our proposed merged metamodel for feature
interaction and avionics functional dependencies, within the
Eclipse Modeling Framework (EMF). EMF will be used to
provide automated tool support for traceability between product-
line development, safety analysis, and safety argumentation assets.

We also propose other traceability merging metamodels to map
core and variation points in product-line development (feature

and context models), safety analysis (hazard identification, risk
analysis, risk management), safety argumentation (safety cases)

assets, manned and unmanned aircraft certification guidance, and
product-line processes [2]. The merging metamodel for the safety

case will be built based on the Goal Structuring Notation (GSN)
[4][5] and the OMG SACM metamodel [8] and integrated with

product-line processes [2]. From using our proposed merging
metamodels, it will be possible to get traceability between a

product-line feature associated with one specific usage context,
and its correspondent safety analysis data, such as hazards related

to the features in the assumed context, risk analysis data as risk
severity and probability of occurrence, risk mitigation measures

to be adopted, risk acceptability analysis, and safety
argumentation (safety case models).

The presence of such traceability can contribute towards

improvements in providing assurance of product-line features and
feature interaction safety properties. This can be justified because

the use of these metamodels can improve the management of
product-line feature interaction safety requirements. We believe

the use of such approach can facilitate the certification process of
product-line configurations (through easier identification and

management of dependencies) by reusing pre-certified safety
analysis and safety argumentation data. The use of our merging

metamodels can also contribute to reduce the complexity of
adding new features and feature interactions to an existing

product-line, due to the traceability between product-line

interactions, safety analysis, and safety argumentation assets.

To support and facilitate the use of our proposed metamodels, we
are developing a UAS product-line development process and

guidance to support the management of avionics software
development, safety analysis and argumentation activities and

their assets. Ongoing work involves developing tool support for
both metamodels and the UAS development process, and

validating the metamodels in real world case studies.

IV. RELATED WORK

Product line safety has been addressed in the literature, e.g. in
Liu et al.[11], Habli et al. [7], and the MISSA Project [12]. Liu et

al. [11] integrated SPL safety analysis with model-based
development in a state-based modeling approach using two

product-line safety analysis techniques: Software Failure Modes,
Effects and Criticality Analysis, and Software Fault Tree

Analysis. The MISSA Project [12] proposed a solution for
assigning DALs for avionics systems developed from a set of

models, by using Functional Dependency Models (FDM) and
safety analysis tools. FDM is used for decomposing functions

(features in an SPL) into sub-functions that correspond to classes
or levels, or functional failure modes that impact the effects of a

function failure condition. After all functional failure modes and
all classes of functional performance are found, the

decomposition is closed by allocating physical resources to
implement the function. This data is processed by safety analysis

tools to support the allocation of DALs to functions and their

possible combinations. Habli et al. [7] proposed an SPL
functional hazard model which is integrated with product-line

context and domain (feature) models, and a model-based SPL
hazard assessment approach aimed at integrating functional

hazard assessment to product-line domain engineering and
application engineering phases.

ACKNOWLEDGEMENTS
CNPq Brazilian research agency (grant 152693/2011-4).

REFERENCES

[1] J. P. Potocki de Montalk, “Computer software in civil aircraft’, in:

Proceedings of 6
th

 annual conference on computer assurance, systems integrity,

software safety and process security, 1991, pp. 10-16.

[2] P. Clements, L. Northrop, Software product lines: practices and patterns,

Addison-Wesley Professional, 3
a
 ed., 2002.

[3] F. Dordowsky, R. Bridges, H. Tschope, Implementing a software product line

for a complex avionics system, In: 15th SPLC Conference, 2011, 241-250.

[4] T. Kelly, A systematic approach to safety case management,

in: SAE world congress, Society for Automotive Engineers, 2003.

[5] I. Habli, T. Kelly, A safety case approach to assuring configurable

architectures of safety-critical product lines, In: 1
st
 ISARCS, Springer-

Verlag Berlin, Heidelberg, 2010, 142-160.

[6] F. Sanen, E. Truyen, W. Joosen. 2009. Mapping problem-space to solution-

space features: a feature interaction approach. In Proc.GPCE, ACM, 167-176.

[7] I. Habli, T. Kelly, R. Paige. Functional Hazard Assessment in Product-Lines:

A Model-Based Approach. In Model-Driven Product-Line Eenginering, 2009.

[8] OMG, Structured Assurance Case Metamodel (SACM), available on-line:

http://www.omg.org/spec/SACM.

[9] P., Shaker, J. M., Atlee, S. Wang, "A feature-oriented requirements modelling

language," Requirements Engineering Conference, v. 151, n. 160, 24-28, 2012.

[10] D. S. Kolovos, R. F. Paige, F. A. C. Polack. Merging models with the epsilon

merging language (EML). In 9th MoDELS, Springer-Verlag, 215-229, 2006.

[11] J. Liu, J. Dehlinger, R. Lutz. Safety analysis of software product lines using

state-based modeling, J. of Systems and Software, v80, n11, 1879-1892, 2007.

[12] MISSA Project, MISSA Project Final Report: Extract of the Publishable

Summary, More Integrated Systems Safety Assessment, 2011.

A study on the reliability improvement factor of fault tolerant mechanisms

Jongwhoa Na, Dongwoo Lee

Department of Avionics and Electronics Engineering,

Korea Aerospace University,

Republic of Korea

{jwna, dongwoo1}@kau.ac.kr

Abstract—We present a study on the reliability improvement

factor (RIF) to quantify the reliability of the various fault

tolerant mechanisms at the system level. First, we find the system

level failure rate using co-simulation models and statistical fault

injection (StFi). We built co-simulation targets using SystemC

simulation models of baseline single-core ARM7, dual-modular

and triple-modular redundant ARM7 processors and Mibench

embedded benchmark SW. Since the number of experiments in

StFi is large, we utilized simulation kernel-modified simulated

fault injection tool. Next, we calculated the RIF using the failure

probability functions of the co-simulation targets. In this way, we

were able to compare the reliability improvement of the fault

tolerant mechanism at the system level.

Keywords; statistical fault injection, reliability improvement

factor, fault-tolerant processor, fault-tolerant mechanism

I. INTRODUCTION

In the safety-critical embedded systems (SCES) in aircrafts
and automobiles, fault tolerant processors (FTP) became a
major components. FTPs increase the reliability of the target
using various types of redundancies. However, these
redundancies also increase the cost of the target considerably.
In order to manage the cost increase in SCES, we need a
reliability index to quantify these redundancies. We may use
MTTF as a reliability index for the target, which has
components with sufficient usage history. However, because of
the fast developing speed in VLSI/SoC technology, it is
difficult to keep the usage history of the components of the
modern SCES. This calls for a reliability index without usage
history.

In this paper, we explain the application of the reliability
improvement factor (RIF) as a reliability index of the
effectiveness of the FT mechanism in the FTP. RIF is defined
as the ratio of the probability of failure, F(t), of the non-
redundant system to that of the redundant system [1,2]. For
example, using ARM7 processor as a baseline processor, we
may quantify the effectiveness of the TMR mechanism over
DMR by finding the RIFTMR of TMR ARM7 over baseline
ARM7 and the RIFDMR of DMR AMR7 over the same baseline.

We can calculate the F(t) of RIF by performing the fault
injection experiments and finding the failure rate of the FTP
and the baseline target. In order to make the failure rate
legitimate, we use statistical fault injection (StFi) with
confidence level and reasonable targets which can be a real
SCES at the final stage or co-simulation target at the early
stage of the development life cycle.

We report the case study of RIF for reliability index using
StFi and co-simulation target. We built a co-simulation model

of a SystemC hardware simulation model of baseline ARM7,
DMR ARM7, TMR ARM7 processors and the cross-compiled
executable files of the Mibench embedded benchmark suits [3].
For the statistical fault injection experiment, we calculate the
required number of fault injections at a 95% confidence level
for the given fault models and the SUT [4]. Because of the
complexity of the SUT, the required number of fault injections
is very large. Thus, the efficiency of the injection tool is
important. In this regard, we use a novel simulated fault
injection environment that uses a modified simulation kernel
instead of saboteur or mutation technique. A detailed
explanation of the kernel-modified simulated fault injection is
explained elsewhere [5].

II. FAULT TOLERANT PROCESSORS

For hardware, we designed a SystemC simulation model of
the ARM7 processor that could execute about 40 instructions
from the ARM7 architecture, as shown in Fig. 1.

Fig. 1. ARM7 processor model

In order to make the cases of the qualitative comparisons of
various FT mechanisms, we designed a SystemC simulation
model for the DMR and TMR ARM7 processors. In the case of
the DMR ARM7, we duplicated the data path with two ARM
processors and added a simple fault recovery controller that
could detect faults at the pipeline stages. In the design of the
TMR ARM7 in Fig. 2, we implemented the micro-architectural
redundancy by triplicating each module and adding a voter.
The details of the DMR and TMR architectures can be found in
many other studies [4].

Fig. 2. Triple modular redundant ARM7 processor

Identify applicable sponsor/s here. If no sponsors, delete this text box
(sponsors).

III. STATISTICAL FAULT INJECTION EXPERIMENTS

We performed fault injection experiments using the co-

simulation models using the three hardware models (baseline
single ARM7, TMR ARM7, and DMR ARM7 processors) and
the GSM code from a Mibench embedded benchmark suit, and
the four fault models (permanent and transient stuck-at-1/0).
For each of the experimental setups, we setup statistical fault
injection experiments by calculating the required number of
injections for the given confidence level. The results of fault
injections are summarized in Table 1. In the case of baseline
ARM7, the injection result should be one of the not-active,
benign, or silent data corruption (SDC) state. In the case of
DMR and TMR ARM7, we have two more states: recovered
and detected unrecoverable error (DUE).

TABLE 1 The results of statistical fault injection campaign on co-simulation
models and fault models

S/W GSM benchmark (Mibench)

H/W
 Fault type & model

 Failure type

Transient Permanent

stuck-at-1 stuck-at-0 stuck-at-1 stuck-at-0

Base-
line

ARM

Non Active 28,468 71,191 8 31,244

Benign 59,035 22,522 12,669 22,500

Silent Data Corruption 12,497 6,287 87,323 46,256

 DMR
ARM

Non Active 29,046 71,314 125 32,950

Benign 33,119 7,926 16,201 11,312

Recovery 35,217 17,706 44,705 33,312

Silent Data Corruption 519 769 75 1,008

Detected Unrecoverable Error 2,099 2,285 38,894 21,418

 TMR
ARM

Non Active 47,554 74,237 229 5,867

Benign 2,117 1,279 117 277

Recovery 89,882 34,260 19,138 13,669

Silent Data Corruption 447 224 516 187

Detected Unrecoverable Error 0 0 0 0

Using Table 1, we calculate the failure rate by dividing the
sum of the SDC and DUE failure rates by the total number of
fault injections for the three types of processors. Using these
failure rates and assuming steady state operating condition, we
are able to calculate the reliability or failure distribution
functions for each case of the baseline ARM, DMR ARM, and
TMR ARM co-simulation targets. With the failure function, we
can calculate the RIF of the DMR and TMR mechanism as
follows:

RIFFTM = (1- Rbaseline(t))/(1-RFTM(t))

We presents the RIFTMR and RIFTMR over baseline ARM7
processor in Fig. 3. Using the graph, we can compare the
effectiveness of the TMR mechanism over DMR mechanism
for given time in a quantitative manner. Initially, we can find
the effectiveness of the TMR mechanism to be 50~70 times
higher than that of the DMR mechanism. Also, we can find that
the improvement of RIFTMR over RIFDMR decreases over time.

Fig. 3. DMR and TMR reliability improvement factors for the transient
and permanent fault models

IV. CONCLUSION

We have reported on the reliability improvement factor
(RIF) of the DMR and TMR mechanisms. Instead of using the
static failure rates from the reliability block diagram, we
utilized the dynamic failure rates using the co-simulation
targets of SystemC hardware and Mibench benchmark
software so that the RIF becomes more practical. The
experimental results suggested that the TMR mechanism is
initially more resilient than DMR. As such, we may compare
the reliability or the cost-effectiveness of the FTM at the
system level of various types of redundancy mechanisms.

Using these simulation study as a basis, we are planning to
extend the experiments using other benchmark software and
other FT mechanisms to investigate the applicability of the RIF
as a quantitative reliability index of the fault tolerant
mechanism for a group of embedded systems.

REFERENCES

[1] D.W. Lee and J.W. Na, “A Novel Simulation Fault Injection Method for
Dependability Analysis,” IEEE Design and Testing, vol. 26, no.6, pp.
50-61, Dec. 2009.

[2] Krol, Th., A Generalization of Fault-Tolerance Based on Masking, Ph.D.
thesis, Eindhoven.

[3] Mei-Chen Hsueh, Timothy K. Tsai Ravishankar K. Iyer, “Fault Injection
Techniques and Tools,” IEEE Computer, April 1997.

[4] Shubu Mukherjee, “Architecture Design for Soft Errors,” Morgan
Kaufmann Publishers.

[5] Menkae Jeng and Howard Jay Siegel, “Implementation Approach and
Reliability Estimation of Dynamic Redundancy Networks,” Real-Time
Systems Symposium, pp. 79-88, New Orleans, LA, 1986.

	Final Safecomp FastAbstract Program
	FA1
	FA2
	FA3
	FA4
	FA5
	FA6
	FA7
	FA8
	Scenario
	ABFT Dense Matrix Multiplication
	Illustrative Example : Interactive Block LU Decomposition
	Conclusion
	References

	FA9
	FA10
	FA11
	FA12
	FA14
	FA15

