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Abstract— Flooding due to rivers overflowing have affected 

this year many countries in the world. The engendered problems, 

due to their intensity, are relative to goods and persons safety, 

and often cause a sharp increase of the insurance costs, which is 

no more tolerable in the actual economic context. To prevent 

these problems, it is necessary to limit water heights downstream 

the streams. In the literature, numerous described works were 

done on flows modelling and management. The work presented 

in this paper, is interested in the quantitative management by 

means of floods diversion areas placed along the river and for 

which location and sizing are known. A management method 

computing the height of gates opening at each time step is 

proposed. The strategy is based on a transportation network 

model of the flood diversion area system including the time 

transfer delays. It allows the computation of the water volumes to 

be stored in time. Simulation results for different flood episode 

are discussed. 

Keywords—transportation networks; time delay; flood 

lamination; network modelling. 

I.  INTRODUCTION 

The last decades violent natural phenomena have been 
observed on both sides of the planet, which according to 
experts are largely due to climate change [1]. Among these 
phenomena, we are interested in floods due to river 
overflowing, whose severity and magnitude are increasingly 
significant. Today, this is particularly manifest as attested by 
the floods in all Europe and particularly in central Europe 
where flooding of the Elbe and Danube were deadly and 
exceeded the record level of 2002. In fact, flooding due to 
excessive rainfall and surface runoff can cause significant 
damages, properties loss and injuries around the world. To 
prevent these problems, river systems are increasingly 
equipped with means for detecting floods and floodplains sized 
and positioned according to the topography. Flood 
management requires increased reactivity as compared to other 
management methods based on planning where the necessary 
data are known a priori. Indeed, given rapidity climatic 
phenomena at origin of the most of these floods, and difficulty 
of accurately assess their magnitude; managers must take 
important decisions quickly in an uncertain context. The 
integration of adapted digital tools to these crises is relevant 
and necessary to improve the decision-making [2], [3]. The 

difficulty is related to the choice of the optimization model 
associated to management method, which depends on device 
characteristics, data availability, goals to achieve and 
constraints to be satisfied. In the literature, different 
optimization techniques are proposed to help flood 
management among which we can mention: the linear 
programming [4], nonlinear programming [5], [6], 
multiobjective optimization [7] or genetic algorithms [8]. Some 
heuristics are also used to deal with this management, notably 
algorithms for flows maximizing [9], [10], [11]. Unfortunately, 
the management methods based on algorithms for flows 
maximizing do not take into account the transfer time of water 
volumes. Thus, the objective of this paper is to describe a 
method for managing storage of volume displaced in expansion 
areas, which are available along of a watercourse in a river 
system. The proposed method is based on the transport 
networks with time delay. The paper is organized as follows. 
Section II describes the flood-diversion area system. Section III 
gives the main definitions of network flow modeling with time 
delay. A three-flood-diversion-area system modeling is 
detailed. In section IV, the simulation results during a flooding 
period are displayed and discussed. Finally, the conclusion 
summarizes the interest of the proposed flood lamination 
strategy combined to the 1D simulator and suggests some 
future works. 

II. FLOOD DIVERSION AREA SYSTEM 

A flood-diversion-area (FDA) system consists of a series of 
FDAs distributed along the river. A FDA is a floodplain area 
equipped with  controlled gate. The gate opening creates 
depression waves that interfere with the flood wave to reduce 
peak flood discharges. To illustrate our approach we use a 
simplified example, with , of a river as a benchmark.  

A river reach provide with three lateral floodplain area 
( , , ) is assumed (see Fig.1). The river and the 
floodplains are separated by levees everywhere except at 

certain points where they are connected through a gate, , 
. These vertical levees are high enough for avoiding 

overflow. For simulation purposes, this river is modeled using 
1D Shallow water equations [12], [13]. We assume that  is 
the transfer time from the gate  to the following gate 

. 
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Fig. 1. River with three lateral floodplain. 

 

III. TRANSPORTATION NETWORK DESIGN 

INCLUDING TIME DELAY 

In previous work [14], in order to model our benchmark, 
we proposed the use of a static transportation network, where 
we assume that  and . The problem was 
formulated as a Min-Cost-Max-Flow problem that minimizes a 
linear cost function subject to the constraints of flow 
conservation and minimal and maximal capacities. In this 
formulation we tried to determine an optimal lamination flow 
that satisfies physical constraints required by a flood scenario 

and the optimization method management parameters. 
However, the transfer time delays were not taken into account. 
Therefore, herein, in order to improve the management 
method, we propose to introduce time delay in the system 
through the use of a temporized transportation network. Thus, 
we will see some aspects of the impact of time delay on the 
studied river system. 

For this purpose, we study the evolution of the state of our 
flood-diversion area system at each  ,  in the 

horizon , with , using the 

temporized transportation network  given in Fig. 2. It can be 
seen as a dynamic flow network [15], [16] composed by 
interconnected static sub-networks. These connections allow 
for model temporization. 

The network  where  is a set of  

nodes defined as follows. The network layers are indexed 

through the use of exponent . 

•  represents the gate   at , with ; 

 is the   at ; 

•  is a source node corresponding to the fictive entry 

point of our FDAs system at ; 

•  is a sink node corresponding to the fictive exit 

point of our FDAs system at ; 

•  is an extra source node corresponding to the fictive 
entry point of our transportation network whatever the 
period is;  

•  is an extra sink node corresponding to the fictive exit 
point of our transportation network whatever the period 
is; 

These nodes are associated to the set of valued arcs  

describing the following connections: 

• Between the nodes  and  such as 

 with  and 
. It carries the delayed discharge 

that passes by between the gate  and the gate . 

This kind of arc is designed as type 1 arcs in the 
following. 

• Between  and , with  and 

 , it represents the flow 
downstream the exit point of our FDAs system when 

this discharge is not stored in the . 

• Between  and , with , it 

represents the flow downstream the exit point of our 
FDAs system when this discharge is not stored in the 

. 

• Between nodes  and , is the flow  at 

the entry point that is always transferred towards the 
gate .  

• Between nodes  and , with  and 

, it takes into account at initialization 
the flow upstream the gate  in the FDAs system. 

 

Fig. 2. Temporized network model with static sub-networks. 



• Between nodes  and , it takes into account 

the water volume already stored in the  at the 
initialization. 

• Between nodes  and , the arc connects each 

gate with its FDA, and represents the flow crossing the 
gate  towards the  at the end of each period 

. 

• Between nodes  and , with 

, the arc indicates that the water 
stored in the  at the end of the period  is 
available at the beginning of period . This kind 
of arc is designed as type 2 arcs in the following. 

• Between nodes  and , the arc respects 

transportation network conservation flow rules. 

 

In each sub-network there is no transfer time between the 
different nodes. Transfer times are introduced by connecting 
the different sub-networks with type 1 and type 2 arcs.  

The use of such a model requires that transfer times are 
static from a layer to another in the set  while they depend 

on the flow-rate, which changes over time. Moreover, this kind 

of model, depending on the size of the time horizon  and the 

period , can lead to an oversize transportation network. 

Herein, in order to overcome these two points we propose a 
reduced size model (see Fig. 3), which allows enhancing the 
temporized network: more dynamic and suitable for various 
river sections with variable transfer time. 

 

This reduced transportation network is obtained by the 
conservation of nodes number of a sub-network, by the fusion 
of all the different sub-networks of our previous model and by 
eliminating arcs between sub-networks. In this reduced size 
model, link between layers are represented through a matrix 
and thus the transportation network communicates with this 
matrix where the values of delayed flow are stored. In Fig. 3, 
for each arc, its maximum capacity is written in blue, its 
minimum capacity is written in red and its cost is written in 
black.  

 

 

 

Fig. 3. Dynamic reduced size network. 

Algorithm : Flood_Lamination 

Input  

,  the time horizon and the time period 

 the number of samples 

 the numbers of gates and FDA in the  

river system, herein  

 such that the transfer time   from gate   

to gate  is ,  

 indicator for using or not  

 the flow of flood scenario at 

 for  

 the lamination flow at  for  

 the network  

Output  
 the optimal flow from  

arc  to arc  in the network 

The gate  opening value  

is equal to   

Begin 

for  to  
  

%  is the  temporization matrix 

for  to  

 
end 

end 

for  to   

for  to  
 

end 

end 

for  to  

Actualize_Network  

Compute_Optimal_Flow  

Actualize_Temporization_Matrix  

end 

End 

Fig. 4. Flood lamination algorithm. 



 

 

The Flood-Lamination algorithm described in Fig.4 uses all 
these arc values in order to derive the gate opening set-point 
values. In the Flood-Lamination algorithm, after an 
initialization phase, at each , the network is actualized (see 
Fig. 5), the optimal flow is computed and the temporization 
matrix is actualized (see Fig. 6). In order to compute the 
optimal flow, the Min cost Max flow problem resolution for 
this reduced size temporized network is done, using a Linear 
Programming formulation (as described in Nouasse et al., 
2012), according to our management objectives. In the 
algorithms: 

•  is the flow entering the network at . 

• is the maximum peak flow of flood scenario.

•  is the maximum  storage 
capacity, depending on . 

•  is the maximal capacity on the arc between the gate 
 and the . 

•  is a strategy parameter with 

 

•  is the lamination flow chosen by the river system 
manager and defined as the flow level at which the 
river flow must be laminate, i.e. the hydraulic set point 
over the foreseen horizon Hf. 

•  is the minimum capacity on the arc 
between the source  and the  . It corresponds 
to the amount of water already present in the . 

 

 

 

 

The dynamic reduced size network has been connected to the 
1D simulator (developed by [12], [13]), in order to update flow 
and water quantity stocked with measured values. The scheme 
used is given in Fig. 7 and the algorithm for actualization of 
temporized matrix is modified as given in Fig. 8. 

 

 

Fig. 7. Dynamic reduced size network connected with 1D 

simulator 

Algorithm : Actualize_Temporization_Matrix 

Input  

the numbers of gates  

and FDA in the river system, herein  

 the  temporization matrix 

  the iteration number 

 such that the transfer time   from  

gate  to gate  is   

 the network  

Output  

the temporization matrix

Begin 

for  to   

 

end 

for  to  

 

end 

End 

Fig. 6. Actualization temporization matrix algorithm. 

Algorithm : Actualize_Network 

Input 

 the numbers of gates and FDA in the river 

system, herein  

 the  temporization matrix 

  the iteration number 

indicator for using or not 

 the lamination flow at   

 the network  

Output  

 the network  

Begin 

 

for to  

 

end 

for  to  

             

end 

for  to  

 
 

end 

End 

Fig. 5. Actualization network algorithm. 



 

 

IV. COMPUTATIONAL RESULTS 

We present some results obtained using the method where our 

network model is connected with the 1D hydraulic simulator. 

The network model allows calculating the optimal flow-rate. 

This flow-rate value will be used for computing the opening 

height of each FDA gate. The computation algorithm involves 

a static inversion of the free flow open channel equations [17]. 

 

In Fig. 9 (a)  is the inlet discharge. The  is the 

outlet measured discharge when the flood lamination strategy 

is applied. The parameters of the network delay model are 

,  and . 

The sum of the stored water volume in each FDA is plotted in 

Fig. 9 (b). The water volume to store in the FDAs is the 

volume such as  is over . This volume is denoted 

 in Fig. 9 (b), and approximated with the 

trapezoidal numerical integration of the flow-rate function 

above .  

 

 

Fig. 9. Simulation results for , , water levels forward the gates (d1, fd) and backward the gates (d2, bd) 

Algorithm : Actualize_Temporization_Matrix 

Input  

the numbers of gates  

and FDA in the river system, herein  

 the  temporization matrix 

  the iteration number 

 such that the transfer time   from  

gate  to gate  is   

 the network  

Output  

 the  temporization matrix 

Begin 

for  to   

 

end 

for  to  

 

end 

End 

Fig. 8. Actualization temporization matrix algorithm 

 



In Fig 9. (c), (d) and (e) the gate opening values are displayed 

for gate 1, 2 and 3 respectively. In these figures,  stands for 

the water level forward each gate and  stands for the water 

level backward each gate. 

The values of  and  were estimated by an 

empirical method for , however methods like the 

one developed in [18] can be used. 

 

Simulations were done for the same input scenario (i.e. values 

of  displayed in black) and for  for 

three different regulation strategies. Results are given in Fig. 

10, where  obtained in case where the gates were 

always open is displayed in red dotted line ( ). In 

the case where the lamination strategy proposed in [14] was 

applied   is displayed in blue crosses line 

( ). Finally, when the lamination 

strategy proposed here (with the network delay model) 

 is displayed in red ( ). The peak flood 

discharge reduction is better in the latter case. 

V. CONCLUSION 

A flood lamination strategy based on a transportation network 

model including time delay was proposed. The strategy allows 

controlling a river system equipped with flood diversion areas. 

In order to avoid oversize in the transportation network and to 

include non-static transfer times, a reduced graph with 

temporization matrix was proposed. Results obtained with this 

strategy for water storage purpose were discussed. The 

strategy can be improved by modeling the release of water 

from the FDAs to the river. Furthermore, beyond a 

quantitative flood management an important problem to 

address is the quality of water in the river and in the FDAs. 

These extensions will be studied in future works. 
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