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Abstract

Today, with frequency and severity of extreme
weather, flood management became in the world a
major concern for governments. The engendered
problems are relative to goods and persons safety.
Their considerations require a predictive management
involving storage and draw-off strategy with several
flood areas in order to limit water heights to the down-
stream of streams. A good flood management requires
a control not only of storage to avoid downstream
problems but also of water release to protect the fer-
tility of flood expansion areas which are most often
based on growing areas. In the literature, numer-
ous described works were done on flows modeling and
management. The work presented in this paper, is in-
terested in the quantitative management by means of
floods expansion areas placed along the river and for
which we have their location as well as their sizing.
The performances of management depend on moment
and on height of gates opening which influence on
wave mitigation. The proposed management method
is based on a dynamic mechanism from which the wa-
ter volumes to be stored or draw-off in time are cal-
culated.

1. Introduction

Flooding due to excessive rainfall and surface
runoff can cause significant damages, properties loss
and injuries around the world. October 20, 2012,
heavy rains fell on the Pyrenean foothills. The flood
of the Gave de Pau overwhelmed the bottom of Lour-
des city and the sanctuary. In the night, Gave came
out of his bed and the Grotto was flooded. The
altar of the Grotto was literally submerged by wa-
ter. To prevent these problems, river systems are in-
creasingly equipped with means for detecting floods
and floodplains sized and positioned according to the
topography. Flood management requires increased
reactivity as compared to other management meth-
ods based on planning where the necessary data are
known a priori. Indeed, managers must take impor-

tant decisions quickly in an uncertain context, be-
cause most of these floods are induced by abrupt cli-
matic phenomena, and their magnitude are difficult
to accurately assess. The integration of adapted dig-
ital tools to these crises is relevant and necessary to
improve the decision-making [10], [15]. The difficulty
is related to the choice of the optimization model
associated to management method, which depends
on device characteristics, data availability, goals to
achieve and constraints to be satisfied. In the liter-
ature, different optimization techniques are proposed
to help flood management among which we can men-
tion: the linear programming [12],nonlinear program-
ming [2], [5], multiobjective optimization [6] or ge-
netic algorithms [4]. Some heuristics are also used to
deal with this management, notably algorithms for
flows maximizing [1], [3], [8]. Unfortunately, the man-
agement methods based on algorithms for flows max-
imizing do not take into account the transfer time of
water volumes. Thus, the objective of this paper is
to describe a method for managing storage and draw-
off of volume dispatched in expansion areas, which
are available along of a watercourse in a river system.
The proposed method is based on transportation net-
works with time delay. The paper is organized as
follows. Section 2 describes the flood-diversion area
system. Section 3 describes the proposed approach to
manage the flood. In section 4, the simulation results
during a flooding period are displayed and discussed.
Finally, the conclusion summarizes the interest of the
proposed flood lamination strategy combined to the
1D simulator and suggests some future works.

2 Flood diversion area system

A flood-diversion-area (FDA) system consists of
a series of nG FDAs distributed along the river. A
FDA is a floodplain area equipped with controlled
gate. The gate opening creates depression waves that
interfere with the flood wave to reduce peak flood dis-
charges. To illustrate our approach we use a simpli-
fied example, with nG = 3, of a river as a benchmark.
A river reach provide with three lateral floodplain
area (FDA1,FDA2,FDA3) is assumed (see Figure 1).



The river and the floodplains are separated by levees
everywhere except at certain points where they are
connected through a gate, Gr, r = 1, · · · , nG. These
vertical levees are high enough for avoiding overflow.
For simulation purposes, this river is modelled using
1D Shallow water equations [7]. We assume that τr
(r = 1, · · · , nG− 1) is the transfer time from the gate
Gr to the following gate Gr+1.

Figure 1. River with three lateral floodplain.

3 Dynamic RGTM mechanism

In previous work [13], in order to model our bench-
mark, we proposed the use of a static transporta-
tion network, where we assumed that τr = 0, r =
1, · · · , nG−1. The problem was formulated as a Min-
Cost-Max-Flow problem that minimizes a linear cost
function subject to the constraints of flow conserva-
tion and minimal and maximal capacities. In this for-
mulation we tried to determine an optimal lamination
flow that satisfies physical constraints required by a
flood scenario and the optimization method manage-
ment parameters. In order to improve this manage-
ment method, we have studied the impact of time
delay on an expanded temporized transportation net-
work model [9], [11]. In this study [14], we focused on
the evolution of the state of our flood-diversion area
system at each kTc, k = 0, · · · , n, in the horizon Hf ,
with Hf = n× Tc, n ∈ N

+.
The use of such a model requires that transfer

times are static between two view points on the river
while they depend on the flow-rate, which changes
over time. Moreover, this kind of model, depend-
ing on the size of the time horizon Hf and the pe-
riod Tc, can lead to an oversize transportation net-
work. Herein, in order to overcome these two points
we propose a dynamic RGTM mechanism (see Figure
2), which allows enhancing the temporized network:
more dynamic and suitable for various river sections
with variable transfer time.
This mechanism is composed of a reduced trans-

portation network RG and a Temporization Matrix
(TM). The transportation network RG enables wa-
ter storage and draw-off and communicates with this
matrix in order to store and to get the values of de-
layed flow. TM is a n× 2nG matrix where each col-
umn represents the evolution of the gate or FDA dis-
charges, and each line represents an instant of the
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Figure 2. Dynamic RGTM mechanism

evolution of the state of our flood-diversion area sys-
tem. RG = {RN ,RA} where RN is a set of 3nG+2
nodes defined as follows:

• Gr represents the gate, with r = 1, · · · , nG ;

• SNr is a bifurcation node, with r = 1, · · · , nG ;

• FDAr represents the flood lamination area with
r = 1, · · · , nG;

• S0 is a source node corresponding to the fictive
entry point of our FDAs system;

• P0 is a sink node corresponding to the fictive exit
point of our FDAs system.

These nodes are associated to the set of valued arcs
RA, describing the following connections:

• Between nodes S0 and SNr, r = 1, . . . , nG, it rep-
resents the water volume already stored in the
FDAr linked to it.

• Between nodes SNr and Gr, r = 1, . . . , nG, it
represents the draw-off flow leaving the FDAr

towards the gate Gr at the concerned period.

• Between nodes SNr and FDAr, r = 1, . . . , nG,
it represents the water volume remaining in the
FDAr at the end of the concerned period.



• Between nodes S0 and Gr, with r = 2, · · · , nG,
takes into account at initialization the discharge
upstream the gate Gr in the FDAs system.

• Between nodes Gr and FDAr, connects each
gate with its FDA, and represents the flow cross-
ing the gate Gr towards the FDAr at the end of
each period k.

• Between Gr and P0, with r = 1, · · · , nG − 1, it
represents the flow transferred to following gate
Gr+1. This discharge is stored in the column
associated to gate Gr+1 at line k + kr with τr =
krTc

• Between GnG
and P0, the flow-rate downstream

the exit point of our FDAs system when this dis-
charge is not stored in the FDAnG

• Between nodes FDAr and P0, it takes into ac-
count the available water volume stored in the
FDAr at the end of the concerned period

In Figure 2, for each arc, its maximum capacity
is written in blue, its minimum capacity is written
in red and its cost is written in black. All these arc
values are used by the Flood-Lamination algorithm
described in algorithm 1 in order to derive the gate
opening set-point values. In the Flood-Lamination
algorithm, after an initialization phase, at each k ,
the network is actualized (see algorithm 2), the opti-
mal flow is computed and the temporization matrix
is actualized (see algorithm 3). In order to compute
the optimal flow, the Min cost Max flow problem res-
olution for this reduced size temporized network is
done, using a Linear Programming formulation (as
described in [13]), according to our management ob-
jectives. In the algorithms:

• Q(k) is the flow-rate entering the network at kTc.
At k, it corresponds to the sum of flows entering
the gates added to the sum of the water volumes
stocked in all FDAs turned into discharges.

• Qpeak is the maximum peak flow-rate of flood
scenario.

• Max FDAr is the maximum storage capacity of
FDAr, it depends on Qpeak.

• νr is the maximal capacity on the arc between
the gate Gr and the FDAr.

• λr is the maximal capacity on the arc between
the node SNr and the gate Gr.

• The storage phase and release phase cannot oc-
cur at the same time for one gate. This is govern

by the use of µr and γr coefficients with


















γr = 1, µr = 0 storage in FDAr

µr = 1, γr = 0 release from FDAr

γr = 0 no storage in FDAr

µr = 0 no release from FDAr

• Qlam is the lamination flow-rate chosen by the
river system manager and defined as the flow
level at which the river flow-rate must be lam-
inate, i.e. the hydraulic set point over the fore-
seen horizon Hf .

• Qdo is the discharge level under which the FDA
draw-off is done.

• Stock FDAr is the minimum capacity on the arc
between the source S0 and the FDAr. It corre-
sponds to the amount of water already present
in the FDAr.

During the phase one of the initialization of the
Flood-Lamination algorithm, the first column of TM
matrix is set to the value of the flow-rate upstream
the river at each kTc (k = 1, · · · , n), which is the
flow-rate upstream the first gate G1. The initializa-
tion phase two allows to introduce discharge values
upstream all the gates Gr(r = 2, · · · , nG) during the
non stationary phase i. e. before k = knG−1, with
τnG−1 = knG−1Tc. We choose in this case to set
these upstream discharges to the flow-rate upstream
the river except when it is higher than the lamination
flow-rate. In the Actualization Network algorithm de-
scribed in algorithm 2 , the network RG is updated
at each kTc (k = 1, · · · , n). The network parameters
values at k − 1 such as adjacency matrix, costs and
constraint vector (arc minimum and maximum val-
ues) are provided as input parameters. The strategy
parameters, γr and µr are set depending on the dis-
charge values in the matrix TM . The flow entering
the network is updated with the sum of the line k of
the TM matrix. In order to take into account the
transfer time between gates, the maximum flow-rate
upstream each gate Gr (r = 2, · · · , nG), αr, is set to
the TM matrix stored value at previous time. The
maximum capacity of the arc (Gr,FDAr), νr, is set
to the amount of flow-rate overtaking Qlam(k) lower
than the remaining FDAr capacity (only if the FDAr

can be used i. e. γr = 1. The value of Stock FDAr is
set to its previous value stored in the TM matrix. Fi-
nally, the maximum capacity of the arc (SNr,Gr), λr,
is set to the amount of flow-rate overtaking Qlam(k)
lower than the remaining FDAr capacity (only if the
FDAr can be used i. e. γr = 1. In the Actual-
ization Temporization Matrix algorithm described in
algorithm 3 , the matrix TM is updated at each kTc
(k = 1, · · · , n). In this matrix, the temporized flow
values are stored and actualized such that transfer
times can be introduced in the network. In order to



Algorithm 1: Flood lamination

input :

RG the reduced transportation network

n = E(
Hf

Tc
) + 1 the number of samples

nG the numbers of gates and FDA in the river
system

kr such that τr = krTc, r = 1, · · · , nG − 1

Qinput(k) the flow of flood scenario at kTc for
k = 1 · · ·n

Qlam the lamination flow

output:

RG the reduced transportation network

TM the n× 2nG temporization matrix

ϕ the optimal flow for each arc in the network
RG

begin
% Initialization phase one
for k = 1 to n do

TM(k, 1)← Qinput(k)
for r = 2 to 2nG do

TM(k, r)← 0
end

end

% Initialization phase two
for r = 1 to nG − 1 do

for k = 1 to kr do
TM(k, r + 1)←
min(Qinput(1), Qlam)

end

end

k ← 1
while (k ≤ n) do

Actualize Network(RG, k, TM)
ϕ(k)←
Compute Optimal Flow(RG, k)
Actualize Temporization Matrix(ϕ(k), k, TM)
k ← k + 1

end

end

take into account the transfer time between gates, the
optimal flow from each gate Gr (r = 1, · · · , nG − 1)
to the sink P0, ϕ(Gr,P0)(k), is stored in the TM ma-
trix as the future discharge upstream the following
gate Gr+1 at k + kr. The flow feeding each FDAr

(r = 1, · · · , nG) at k, ϕ(FDAr,P0)(k), is added to
the flow already stored in order to obtained the new
stored value. This value is written in the TM matrix
as the future FDAr stored value i. e. at k+1. A co-

Algorithm 2: Actualization network

input :

TM the n× 2nG temporization matrix

RG the reduced transportation network

nG the numbers of gates and FDA in the river
system

k the iteration number

γr the indicator for using or not FDAr

µr the indicator for release water or not from
FDAr

Qlam(k) the lamination flow at kTc

output:

RG the reduced transportation network

begin
Q(k)← 0
for r = 1 to nG do

if TM(k, r) >= Qlam(k) then
γr ← 1 ; µr ← 0

else

if (TM(k, r) < Qdo(k)) then
µr ← 1 ; γr ← 0

else
µr ← 0 ; γ1 ← 0

end

end

end

for r = 1 to 2nG do
Q(k)← Q(k) + TM(k, r)

end

for r = 2 to nG do
αr ← TM(k, r)

end

for r = 1 to nG do
νr ← γr ×min[max(0, TM(k, r)−
Qlam(k)),max(0,Max FDAr −
TM(k, nG + r))]
Stock FDAr ← TM(k, nG + r)
λr ←
min[Stock FDAr,max(0, Qlam −
TM(k, r)]× µr

end

end

operation has been established between the dynamic
RGTM mechanism and the 1D simulator (developed
by [7]), in order to update flow and water quantity
stocked with measured values. The scheme used is
given in Figure 3 and the algorithm for actualization
of temporized matrix is modified as given in algorithm
4.



Algorithm 3: Actualization temporization
matrix

input :

TM the n× 2nG temporization matrix

nG the numbers of gates and FDA in

the river system

k the iteration number

kr such that τr = krTc, r = 1, · · · , nG − 1

ϕ(k) the optimal flow in

the network RG at kTc

output:

TM the n× 2nG temporization matrix

begin

for r = 1 to nG − 1 do
TM(k + kr, r + 1)←
TM(k + kr − 1, r + 1) + ϕ(Gr,P0)(k)

end

for r = 1 to nG do
TM(k + 1, nG + r)←
TM(k, nG + r) + ϕ(FDAr,P0)(k)

end

end
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Figure 3. Dynamic RGTM mechanism and

1D simulator cooperation

4 COMPUTATIONAL RESULTS

We present some results obtained using the dy-
namic RGTM mechanism cooperating with the 1D

Algorithm 4: Actualization temporization
matrix linked to simulator

input :

nG the numbers of gates and FDA in

the river system, herein nG = 3

TM the n× 2nG temporization matrix

k the iteration number

kr such that the transfer time τr from

Gr to Gr+1 is τr = krTc, r = 1, · · · , nG − 1

V mes
FDAr

(k) the measured amount of water

stored in the FDAr at kTc

Qmes
(Gr,FDAr)

(k) the measured discharge from
gate Gr to FDAr at kTc

G the network

output:

TM the n× 2nG temporization matrix

begin

for r = 1 to nG − 1 do
TM(k + kr, r + 1)←
TM(k + kr − 1, r + 1) + ϕ(Gr,P0)(k) +
max(0, ϕ(Gr,FDAr)(k)−
Qmes

(Gr,FDAr)
(k))

end

for r = 1 to nG − 1 do
TM(k + 1, nG + r)←
TM(k, nG + r) + V mes

FDAr
(k)

end

end

hydraulic simulator as described in section 2. At each
Tc, an input hydrograph representing usual encoun-
tered cases is sent to the 1D simulator (see Figure 3).
The actual levels along the river and in the FDAs are
computed thanks to this hydraulic simulator and sent
to the RGTM program. It computes the flow to be
sent in each FDA. These values are transformed in
height by the gate opening computation block. The
gates opening values are then given as input to the
1D simulator. All values are registered and plotted
in the figures displayed in this section.

In figure 4 are given in red the Qinput value, in
green the Qouput value with gates always opened (un-
regulated reservoirs), in black the Qoutput value when
the strategy is applied with Qlam = 675m3/s and
Qdo = 600.6m3/s. The time delay values where set
to τ1 = 10Tc and τ2 = 9Tc, with Tc = 100s. For
these values, the discharge remains under the Qlam



Figure 4. Qinput and Qoutput for Qlam =
675m3/s, Qdo = 600.6m

3/s and open gates

value, and the draw-off begins at k = 432 when the
discharge is under the value of Qdo. On the contrary,
when gates are always opened it is not possible to
avoid flood dowstream, in fact the discharge overstep
the Qlam value. In figures 5, 6 and 7 are represented
in blue the gates opening height computed by the
algorithm, in black the water level inside the FDA
(backward the gate) and in red the water level in the
river forward the gates, for respectively gates 1, 2 and
3. The water levels are measured with regard to the
river bed. On each figure, the gate is firstly opened
in order to store water, thereafter, during the phase
when the discharge is between Qlam and Qdo the gate
is closed and finally, the gate is opened in order to
empty the FDA.

Figure 5. First gate opening and water levels

inside and outside FDA1

In order to show the benefits of our strategy com-
pared to strategy were all gates are always opened
during the concerned horizon, the water level inside
the FDA are superimposed in figures 8, 9 and 10

Figure 6. Second gate opening and water

levels inside and outside FDA2

Figure 7. Third gate opening and water lev-

els inside and outside FDA3



where our strategy is in black and the gates always
opened are in green. For the three gates, the green
curve is always upper the black one, that means that
the reservoirs capacity should be more important in
the always open gates cases. Furthermore the FDA
are filled earlier in the always open gates strategy.
The proposed RGTM strategy allows to better pre-
served the agricultural zones used as flood diversion
areas. If the slope of the water level is found to be
too important so that is can affect the fertility of the
flood diversion area, it should be considered as a new
decision criterion to include in the dynamic RGTM
method.
In figure 11 are compared results obtained with

two different Qdo values: in black Qdo = 600.6m3/s
and in blue Qdo = 500m

3/s. In the case where Qdo =
600.6m3/s, the FDA is emptied earlier. The choice of
the Qdo can be driven by the nature of the cultivation
done in the FDA. Moreover, it is possible to decide
to empty the FDA as soon as possible in order to be
able to absorb a further flood.

Figure 8. Water levels inside the FDA1 for

open and regulated gates. Qlam = 675m3/s,
Qdo = 600.6m

3/s, τ1 = 10Tc, τ2 = 9Tc

5 Conclusion

A water storage and release strategy was presented
in order to perform flood lamination of a river system
equipped with flood diversion areas. The strategy is
based on a dynamic mechanism combining a Reduced
Graph and a Temporization Matrix. It allows to ac-
count for time delay without using expanded graph
usually performed in this context. The results of the
collaboration between this mechanism and the 1D
simulator of river were given, highlighting the ben-
efits of the strategy. Namely, during storage phase,
the strategy allows for remaining under the lamina-
tion discharge level imposed: the flood is laminated,

Figure 9. Water levels inside the FDA2 for

open and regulated gates. Qlam = 675m3/s,
Qdo = 600.6m

3/s, τ1 = 10Tc, τ2 = 9Tc

Figure 10. Water levels inside the FDA3 for

open and regulated gates. Qlam = 675m3/s,
Qdo = 600.6m

3/s, τ1 = 10Tc, τ2 = 9Tc



Figure 11. Qinput and Qoutput for Qlam =
675m3/s, Qdo = 600.6m3/s and Qdo =
500m3/s

and during the draw-off phase, Flood Diversion Areas
are preserved. The strategy can be used in order to
estimate the capability of the river system equipped
with flood diversion areas to take over floods. Be-
yond a quantitative flood management an important
problem to address is the quality of water in the river
and in the FDAs. Future work will focus on the inte-
gration of pollution problems in the strategy.
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