
HAL Id: hal-00926525
https://hal.science/hal-00926525v1

Submitted on 9 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust by ”Let it Crash”
Christoph Woskowski, Mikolaj Trzeciecki, Florian Schwedes

To cite this version:
Christoph Woskowski, Mikolaj Trzeciecki, Florian Schwedes. Robust by ”Let it Crash”. Safecomp
2013 FastAbstract, Sep 2013, Toulouse, France. pp.NC. �hal-00926525�

https://hal.science/hal-00926525v1
https://hal.archives-ouvertes.fr

Robust by „Let it Crash“

Christoph Woskowski, Mikolaj Trzeciecki, Florian Schwedes
Zühlke Engineering GmbH

Landshuter Allee 12
80637 Munich, Germany

{christoph.woskowski,mikolaj.trzeciecki,
florian.schwedes}@zuehlke.com

Keywords— safety-related; fault-tolerance; supervisor
hierarchies; let-it-crash; Erlang

A. Introduction

Critical software systems are bound to perform extensive
error detection and exception handling. The corresponding
source code is typically implemented in a defensive
programming style. Typical strategies to ensure robustness
include elaborate exception handling and error-code returning
routines. Most often, error handling code fragments are often
not separable from the source code realizing the core
functionality, and they are prone to errors themselves. For
extending exception handling in order to further improve fault-
tolerance, even more source code is necessary. However some
leftover vulnerability always remains, especially in complex,
multithtreading, and distributed systems. Producing more code
ultimately results in more complexity while reducing
readability and maintainability. This in turn inevitably leads to
programming errors.

The programming language Erlang breaks a new ground for
handling fault-tolerance problems. Very light-weight processes
in separate memory areas enable straightforward concurrency
with communication solely based on message passing.
Processes are able to monitor and – in case of a process
termination – restart each other very swiftly. The exception
handling method of choice for a worker process is to terminate
itself (“let it crash” – LiC), if it is unable to handle the situation
locally. Dedicated supervisor hierarchies ensure appropriate
error responses by starting a different process or by restarting a
new instance of the terminated one.

This work presented in this abstract investigates, whether
the let-it-crash paradigm for fault-tolerant systems may also be
applicable to safety-related software projects. The scenario
chosen for this demonstration approximates (and simplifies) a
project within the medical device control software domain.

B. ModelProject

Although often a necessity, long term hospitalization is
expensive and can even pose a health threat to hospitalized
people. For reducing these costs and risks, a number of patients
are treated at home. In such a case, an appropriate and reliable
monitoring system must be used. In our (fictional) project, such
a monitoring system is developed which uses so called
“functional clothing”. This clothing is a kind of garment

incorporating wireless sensors, which allows the patient to
move freely around without being restricted, even while their
vital signs keep being monitored. The signals from the sensors
arrive wirelessly at a base station located in the same house or
room as the patient. This device employs a constant connection
with all active sensors, is able to power them on and off and
switches to an alternative measurement location if need arises
(failure, implausible data). The base station establishes a
connection with the hospital and transfers the data for
evaluation.

Fig. 1. Proof of concept scenario

The subject matter of the LiC proof-of-concept is the
software development for the base station. The project focusses
a high reliability of measurement data acquisition and transfer
of the patient’s vital signs to the hospital. A maximum number
of currently active sensors is set to limit power usage. At the
same time a minimum coverage of the vital signs has to be
guaranteed: for every point in time at least two out of three
critical values (heart rate, breathing rate and blood pressure)
have to be available.

The safe state of the house station is a complete shutdown,
since the hospital system gets alarmed about the missing data.

C. Implementation and testing

Our prototypical implementation in Erlang makes use of
the supervisor hierarchies and allows for deployment of worker
processes and supervisors as well as the evaluation of
separating business logic from error handling. The

development concentrates on the software of the base station
and just simulates the external sensors on the one side and the
hospital system on the other. The diagram [Fig. 2] depicts the
example setup, showing the runtime view of the processes and
dependencies.

Fig. 2. Runtime view of processes and dependencies

The generic supervisor hierarchy is solely responsible for
creating the worker processes (sensor drivers and data
collector) and for handling errors by restarting or replacing
terminated processes.

The sensor drivers and the data collector on the other hand
contain the core functionality (business logic) and no error
handling at all. In case of missing sensor values, for example,
the sensor driver just terminates and gets replaced. The same
happens if there is data available but outside of valid limits.

In connection with regulatory requirements concerning
medical devices (e.g., IEC 60812), we test the prototype
depicted above for the following failure situations: Failure to perform the desired function Performing a function that was not desired Performing a function at a wrong time Incorrect timing or order of executions Recognition and handling of critical

conditions by the system

A simple and effective variant of testing fault-tolerance is
based upon a so called “Chaos Monkey” - a process injected
into the system under test with the sole task of randomly
terminating other system processes. In traditional systems with
a small number of complex tasks, this typically leads to
complete failure within a very short period of time.

In our system following the LiC philosophy this only
triggers the process monitoring and thus a fast replacement of
the terminated software part. This has been tested in a
simulated uninterrupted Base Station run of multiple days. In
spite of the chaos monkey killing random components, our
system is able to maintain basic functionality.

Further, we tested the concurrency behavior of the system
by adding the necessity of the sensors to calibrate themselves.
The calibration functionality opposes the normal sensor
activity, as the abovementioned limitations to the maximum

and minimum count of the active sensors remain in place. In
our prototype, a sensor performing calibration at undesired
moment gets “crashed” by a dedicated supervisor, following
the LiC approach consequently.

D. Conclusion

Considering the LiC application hypotheses proposed
above, the following can be stated about the patient monitoring
scenario implemented in Erlang:

1. Ensure the execution of critical functionalities. Ill-
performing tasks are stopped and restarted, no matter the cause.
For instance, a malfunctioning sensor driver gets terminated
and replaced by another one.

2. Prevent the unintended execution of a function. When a
functional monitor detects a worker executing an unintended
function, this worker gets terminated and replaced, thereby
preventing the execution. For instance, a sensor calibration is
aborted when there is another calibration request of higher
priority.

3. Define and monitor the conditions for carrying out a
critical function. Workers and functional monitors can control
task execution and results given distinct validation checks. This
excludes any measures to correct the situation besides
restarting affected processes. A sensor driver validates the data
received from its sensor before forwarding it to the collector. If
a violation is detected, the driver terminates itself so the
supervisor can start another driver which in turn can connect to
another physical sensor. The driver does however not attempt
to correct the invalid values in any way.

4. Ensure carrying out critical functions at a specific time
and in specific order. Conflicts within task sequences can be
resolved by terminating blocking processes which violate the
order or a time constraint, as illustrated by the sensor
calibration functionality. Thus lifelocks in calibration
concurrency can be prevented – allowing only one sensor to
calibrate at a time – and calibration of any sensor type is
guaranteed within a given time-interval.

5. Unexpected failures have no influence or result in a safe
state. Malfunctioning processes are immediately replaced by
new ones, thus ensuring their functionality is not lost. Fatal
function loss immediately results in system shutdown. For
instance, the patient controlling system is robust with regard to
sporadic process crashes as well as to the complete loss of one
sensor data type.

E. Future work

The missing hard real-time abilities of Erlang pose a
problem when it comes to time-critical safety applications.
There are strategies to solve this issue, e.g. using external low-
level libraries written in C/C++. These solutions have to be
analyzed and developed further. For the applicability of LiC
for safety critical systems, the underlying Erlang language
features have to be evaluated against safety standards like IEC
61508-3. Research is also necessary on whether it is possible to
apply LiC without Erlang. Analyzing the language features and
corresponding counterparts in other languages or frameworks
will provide the necessary information.

