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Abstract. We study the problem of achieving uniform and fresh peer
sampling in large scale dynamic systems under adversarial behaviors.
Briefly, uniform and fresh peer sampling guarantees that any node in the
system is equally likely to appear as a sample at any non malicious node
in the system and that infinitely often any node has a non-null probability
to appear as a sample of honest nodes. This sample is built locally out of a
stream of node identifiers received at each node. An important issue that
seriously hampers the feasibility of node sampling in open and large scale
systems is the unavoidable presence of malicious nodes. The objective
of malicious nodes mainly consists in continuously and largely biasing
the input data stream out of which samples are obtained, to prevent
(honest) nodes from being selected as samples. First, we demonstrate
that restricting the number of requests that malicious nodes can issue and
providing a full knowledge of the composition of the system is a necessary
and sufficient condition to guarantee uniform and fresh sampling. We
also define and study two types of adversary models: (1) an omniscient
adversary that has the capacity to eavesdrop on all the messages that are
exchanged within the system, and (2) a blind adversary that can only
observe messages that have been sent or received by nodes it controls.
The former model allows us to derive lower bounds on the impact that
the adversary has on the sampling functionality while the latter one
corresponds to a more realistic setting. Given any sampling strategy,
we quantify the minimum effort exerted by both types of adversary on
any input stream to prevent this sampling strategy from outputting a
uniform and fresh sample.

Keywords: Data Stream; Kullback-Leibler Divergence; Uniform sampling; Fresh-
ness; Byzantine adversary

1 Introduction

We tackle the problem of achieving node sampling in large scale open systems in
presence of adversarial (Byzantine) nodes. Uniform sampling is a fundamental
primitive guaranteeing that any node in a population has the same probability
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to be selected as sample. This property is of utmost importance in systems in
which both the population is continuously evolving and it is impossible to cap-
ture the full complexity of the network through global snapshots. By collecting
random subsets of information over the network, one can infer at almost no cost
global characteristics of the whole population such as its size, its topological
organization or its resources. Providing at any time randomly chosen identifiers
of nodes in the system is an essential building block to construct large scale dis-
tributed applications. Uniform sampling finds its root in many problems such as
data collection, dissemination, load balancing, and data-caching. A typical ex-
ample is load balancing in cluster-based applications, in which choosing a host
at random among the available ones is often a choice that provides performance
close to that offered by more complex selection criteria [1]. Another example is
epidemic-based applications, in which periodically selecting a few random nodes
as neighbors, preserve the connectivity in large-scale environments despite the
dynamical aspect of these systems [2,3,4,5,6].

Providing unbiased (i.e., uniform) sampling in these open systems is a chal-
lenging issue. First, this primitive must cope with the continuous change of the
network structure caused by nodes departures and arrivals. Furthermore, an im-
portant issue that seriously hampers the feasibility of uniform sampling in open
and large scale systems is the unavoidable presence of malicious nodes. Malicious
(also called Byzantine) nodes typically try to manipulate the system by exhibit-
ing undesirable behaviors [7]. In our context, they try to subvert the system
by launching targeting attacks against nodes in the aim of biasing uniformity
by isolating honest nodes within the system. This can be quickly achieved by
poisoning local views of honest nodes with malicious node ids (cf. Section 3.2).
For instance in unstructured graphs, a number of push operations logarithmic
in the size of local views is sufficient to fully eclipse honest nodes from the local
view of a node [8], while in structured graphs, a linear number of join operations
is required [9].

Recent works have been proposed to detect and exclude these adversarial
behaviors [10,11] by observing that malicious nodes try to get an in-degree much
higher than honest nodes in order to isolate them. Extensive simulations [10]
have shown that this approach is only highly effective for a very small number
of malicious nodes (i.e., in O(log |S|) where |S| is the size of the network S).
Otherwise detection mechanisms can display a high rate of false positives (i.e.,
detect honest nodes as faulty ones).

When the system is harmed by a large number of malicious nodes (e.g, a
linear proportion of the nodes of the system), which is definitively a realistic
assumption in peer-to-peer systems [7,12], additional mechanisms are required to
prevent targeted attacks from succeeding. Specifically, in structured peer-to-peer
systems, analytical studies have shown that artificially inducing churn allows
to defend the system against adversarial behaviors, either through competitive
induced churn strategies [13], or through global induced churn [14]. Briefly, the
“induced churn” principle states that, by forcing nodes to periodically change
their position in the graph, malicious nodes cannot predict the evolution of the
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state of the system after a given sequence of join and leave operations. By taking
advantage of the properties of structured graphs, the authors of both papers have
shown that, with high probability, any node is equally likely to appear in the
local view of each other honest node after a number of rounds polynomial in the
size of the system.

Unfortunately, in unstructured peer-to-peer systems, nodes cannot rely on
the topological nature of structured graphs to reject new node ids that do
not conform to the imposed distance function in contrast to structured net-
works [13,15]. To circumvent this issue, Bortnikov et al. [8] rely on the properties
of min-wise independent permutations to eventually converge towards uniform
sampling on the node ids. However by construction, this convergence is definitive
in the sense that once a random sample has been locally observed it is kept for-
ever as the local sample, thus making this solution static. Intuitively, this lack
of adaptivity seems to be the only defense against adversarial behavior when
considering bounded resources (i.e., memory and bandwidth).

In this paper we propose a solution that guarantees that each node id re-
ceived infinitely often has a non-null probability to locally appear as a sample.
We coin this property as the freshness sampling property, which we formally
define later in the paper. We present a formal analysis of the conditions under
which uniform and fresh sampling is feasible. More precisely, the first contri-
bution of this paper is to show necessary and sufficient conditions under which
uniform and fresh sampling is achievable in unstructured peer-to-peer systems
potentially populated with a large proportion of Byzantine nodes. Let S repre-
sent the collection of nodes in the system, and k < 1 the proportion of malicious
nodes in S. Let δ be the number of (not necessarily unique) malicious node ids
gossiped by malicious nodes during a time interval Ts, and Γvi

denotes the local
memory of any honest node vi in S. We prove the following assertions.

– If the number δ of (non-unique) malicious ids received at node vi during a
given period of time Ts is strictly greater than Ts − |S|(1− k) then, neither
uniform sampling nor fresh sampling can be achieved.

– If δ ≤ Ts−|S|(1−k) and the size of the memory Γvi
is greater than or equal

to |S| then, both uniform and fresh sampling can be achieved.
– If δ ≤ Ts−|S|(1−k), and |Γvi

| < |S| then, both uniform and fresh sampling
cannot be achieved.

Briefly, these conditions show that if the system cannot limit the number of
messages an adversary can periodically send, then solving either uniform sam-
pling or fresh sampling is impossible. On the other hand, if this assumption holds
and if all honest nodes in the system have access to a very large memory (i.e.,
linear in the size of the network), then the sampling problem becomes trivially
solvable. Unfortunately, we show that both conditions are necessary and suffi-
cient to solve the uniform and fresh sampling problem. As a consequence, these
strong conditions highlight the possible damages that adversarial behaviors can
cause in large-scale unstructured systems.

We also propose a characterization of the adversarial power towards biasing
uniform and fresh sampling. By adopting a statistical view of the input stream
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and by comparing distributions using metrics such as information divergence,
we derive lower bounds on the work that the adversary has to exert to bias
this input stream so that uniform and fresh sampling do not hold. We define
and study two models of adversary: (1) the omniscient adversary, which has the
capacity to eavesdrop on all the messages that are exchanged within the system,
and (2) the blind adversary, which can only observe messages that have been sent
or received by malicious nodes. To the best of our knowledge, we are not aware
of any previous work that has characterized the minimum effort an adversary
has to exert to prevent the uniform and fresh sampling to be achievable.

The outline of this paper is the following. First in Section 2, we give an
overview of the existing related work on uniform sampling before describing in
Section 3, the system model and the assumptions that we make. In Section 4, we
present the functionalities of a sampling component and the properties that it
should guarantee. Afterwards in Section 5, we identify the two conditions under
which uniform and fresh sampling is achievable, while in Section 6 we review
some background on information divergence of data streams. The omniscient and
blind adversary models, as well as the characterization of the minimum effort the
adversary has to exert to bias the sampling properties, are respectively studied
in Sections 7 and 8. Finally, we conclude in Section 9 with some open issues.

2 Related Work

In absence of malicious behaviors, uniform sampling can be achieved through
gossip-based algorithms [16,17,18] or through random walks [3,5,6,19]. Gossip-
based algorithms mainly consist, for each node vi in the system, in periodically
selecting some other node vj in vi’s local view and exchanging information.
Information can either be pushed to or pulled from other nodes. Over time,
information spreads over the system in an epidemic fashion allowing each node
to continuously update its local view with fresh node ids. On the other hand,
a random walk on a network is a sequential process, starting from an initial
node vi, which consists in visiting a node in vi’s neighborhood according to
some randomized order. In its simpler form, the next visited node is chosen
uniformly at random among the neighbors, while more sophisticated choices are
implemented to cope with the bias introduced by topology, specifically towards
high degree nodes (for instance, through the Metropolis-Hastings algorithm [20]).
In the literature, different approaches have been proposed to deal with malicious
behaviors, each one focusing on a particular adversarial strategy. In this section,
we provide a brief overview of these techniques.

In presence of malicious behaviors, different approaches have been proposed
according to the considered attacks. Specifically, with respect to eclipse attacks a
very common technique, called constrained routing table, relies on the uniqueness
and impossibility of forging nodes identifiers. This technique selects as neighbors
only the nodes whose identifiers are close to some particular points in the identi-
fier space [21]. Such an approach has been successfully implemented into several
overlays (e.g., CAN [22], Chord [23] or Pastry [24]). More generally, to pre-
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vent messages from being misrouted or dropped, the seminal works of Castro et
al. [21] and Sit and Moris [7] on Distributed Hash Tables (DHT)-based overlays
combine routing failure tests and redundant routing to ensure robust routing.
Their approach has then been successfully implemented in different structured-
based overlays (e.g., [25,26,27]). In all these previous works, it is assumed that
at any time and anywhere in the overlay, the proportion of malicious nodes is
bounded and known, allowing powerful building blocks such as Byzantine toler-
ant agreement protocols to be used among subsets of nodes [26,27].

When such an assumption fails, additional mechanisms are needed. For in-
stance, Scheideler et al. [13] propose the Cuckoo&flip strategy, which consists
in introducing local induced churn (i.e., forcing a subset of nodes to leave the
overlay) upon each join and leave operations. This strategy prevents malicious
nodes from predicting the exact shape of the overlay after a given sequence of
join and leave operations. Subsequently to this theoretical work, experiments
have been conducted to verify the practical feasibility of global induced churn,
which consists in having all the nodes of the overlay periodically leaving their
positions [28]. For instance, researchers [15] have analyzed several adversarial
strategies, and have shown that an adversary can very quickly subvert DHT-
based overlays by simply never triggering leave operations.

Jesi et al. [10] propose a random sampling algorithm taking explicitly into
account malicious nodes. Their solution assumes that the ultimate goal of the
malicious nodes is to mutate the random graph into a hub-based graph, hub for
which malicious nodes gain the lead. Once this goal is reached, malicious nodes
can very quickly and easily subvert the whole overlay by performing denial-of-
service attacks. Conducting a hub attack mainly consists for malicious nodes in
increasing their in-degree. Jesi et al. [10] propose to detect highly popular nodes
by extending classic peer sampling services with a module that identifies and
blacklists nodes that have an in-degree much higher than the other peers of the
overlay. This approach, also adopted in several structured based systems [11]
through auditing mechanisms, or in sensor networks [29], is effective only if the
number of malicious nodes is very small with respect to the size of the system
(i.e., typically of O(log |S|)).

Bortnikov et al. [8] have recently proposed a uniform but non-fresh node
sampling algorithm tolerating up to a linear number of malicious nodes. This
sampling mechanism exploits the properties offered by min-wise permutations.
Specifically, the sampling component is fed with the stream of node identifiers
periodically gossiped by nodes, and outputs the node identifier whose image value
under the randomly chosen permutation is the smallest value ever encountered.
Thus eventually, by the property of min-wise permutation, the sampler converges
towards a random sample. By limiting the number of requests malicious nodes
can periodically issue, their solution requires a single node id to be stored in the
local memory. Nevertheless, this approach does not satisfy the freshness property
as convergence toward a random sample is definitive.

In previous papers whose results form the basis of this article, Anceaume,
Busnel and Gambs [30,31] have shown that imposing strict restrictions on the
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number of messages sent by malicious nodes during a given period of time and
providing each honest node with a very large memory (i.e., proportional to the
size of the system) are necessary and sufficient conditions to obtain uniform and
fresh (i.e., non definitive) sampling. These findings complement two previous
results [32,33], in which an analysis of the class of uniform and fresh sampling
protocols is presented. Both previous works provide a complete analytical proof
of a gossip-based protocol achieving both uniformity and freshness. However, in
contrast to the present work, adversarial behaviors were not considered.

Finally, taking a completely different approach from the previously mentioned
papers based on gossip algorithms or on properties on distance functions, the
techniques presented in [34,35] rely on social network topologies to guard against
Sybil attacks. Both protocols take advantage of the fact that Sybil attacks try to
alter the fast mixing property of social networks to defend against these attacks.
However, in presence of malicious nodes with a high degree, the performance of
both protocols degrade drastically. Note that the analysis presented in this paper
is independent from the way the stream of node ids at each node vi has been
generated. For instance, it may result from the propagation of node ids through
gossip-based algorithms (namely through push, pull or push-pull mechanisms
initiated by vi and its neighbors), from the node ids received during random
walks initiated at vi, or even from the induced churn imposed in structured-
based overlays.

3 System Model

3.1 Model of the Network

We consider a dynamic system S populated by a large collection of nodes in
which each node is assigned a unique and permanent random identifier from
an l-bits identifier space. Node identifiers (simply denoted ids in the following)
are derived by applying some standard strong cryptographic hash functions on
some intrinsic characteristics of nodes. The value of l (e.g., 160 for the standard
SHA-1 hash function) is chosen to be large enough to make the probability of
identifiers collision negligible. The system is subject to churn, which is classically
defined as the rate of nodes’ turnover in the system [36]. Each node knows only
a small set of nodes existing within the system and this knowledge generally
varies according to the activity of the system. The particular algorithm used
by nodes to update this small set and to route messages induces the resulting
overlay topology. In this work, we consider only unstructured overlays, which are
assumed to conform with random graphs, in the sense that relationships among
nodes are mostly set according to a random process.

3.2 Model of the Adversary and Security Mechanisms

A fundamental issue faced by any practical open system is the inevitable pres-
ence of nodes that try to manipulate the system by exhibiting undesirable be-
haviors [7,21]. Such nodes are called malicious or Byzantine nodes. In contrast, a
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node that always follows the prescribed protocols is called honest. Honest nodes
cannot a priori distinguish honest nodes from malicious ones, which would other-
wise render the problem trivial. In our context, manipulating the system amounts
to dropping messages that should normally be relayed by malicious nodes to-
wards honest ones and injecting new messages. Injecting new messages does not
mean that malicious nodes have the ability to impersonate honest nodes. Rather,
their objective is to judiciously increase the frequency of chosen ids to bias the
sample list maintained by nodes. We model malicious behaviors through a strong
adversary that fully controls these malicious nodes. More precisely, the adver-
sary model that we consider follows the lines of [8,10]. However, we distinguish
between two types of adversary: the omniscient adversary that is able to eaves-
drop all messages exchanged within the system, and the blind adversary that
can only observe messages sent or received by malicious nodes.

For both models, we assume that the adversary cannot control more than
a fraction k < 1 of malicious nodes in the overlay. We also suppose that the
adversary can neither drop a message exchanged between two honest nodes nor
tamper with its content without being detected. This is achieved by assuming
the existence of a signature scheme (and the corresponding public-key infrastruc-
ture) ensuring the authenticity and integrity of messages. The signature scheme
enables to verify the validity of a signature on a message (i.e., the authenticity
and integrity of this message with respect to a particular node). Recipients of a
message ignore any message that is not signed properly. Nodes ids and keys (pri-
vate and public) are acquired via a registration authority [21] and it is assumed
that honest nodes never reveal their private keys to other nodes. We also as-
sume the existence of private channels (obtained through cryptographic means)
between each pair of nodes preventing an adversary from eavesdropping and
unnoticeably tampering with the content of a message exchanged between two
honest nodes through this channel. A malicious node has complete control over
the messages it sends and receives. Finally, we do not consider Sybil attacks [12],
which mainly consist in flooding the system with numerous fake identifiers. We
assume the existence of some external mechanism for solving this problem such
as an off-line certification authority.

3.3 Sampling Assumptions

Similarly to Bortnikov et al. [8], we assume that there exists a time T0 such that
after that moment, the churn of the system ceases. This assumption is necessary
to make the notion of uniform sample meaningful. Thus from T0 onwards, the
population of the system S is composed of n ≪ 2l nodes, such that at least
(1 − k)n of them are honest and no more than kn of them are malicious, and
thus are controlled by the adversary. The subset of honest nodes in the overlay is
denoted by N . Finally, we assume that all the nodes in S are weakly connected
from time T0 onwards, which means that there exists a path between any pair
of nodes in S in the underlying undirected graph whose vertices represent the
nodes of S and edges are the communication links between these nodes.
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Notation Meaning

S The dynamic system

n Number of nodes in S
v1, . . . vn Nodes identifiers

N Subset of honest nodes in S
k Proportion of malicious nodes in S
σ Input stream

m Size of the input stream σ

δ Number of identifiers injected by the malicious nodes in σ

mu Number of occurrences of node identifiers u in σ

T0 Time after which the churn ceases

U Uniformity property

F Freshness property

s Sampling strategy

Ts Expecting time required for strategy s to converge

Ss
vi

Sampling component run at node vi implementing strategy s

Ss
vi
(t) Output of the sampling component Ss

vi
at time t

Γvi Local memory of node vi

p, q Probability distributions

p(U) Uniform distribution

H(p) Entropy of p

H(p, q) Cross entropy of p relative to q

D(p||q) Kullback-Leibler divergence of p relative to q

Dmax Maximum value of D(q||p(U))

τs Robustness threshold of strategy s

Table 1. List of symbols and notations

3.4 Notations

The main symbols and notations used in this article are summarized in Table 1.
Most of these notations are formally defined in the following.

4 Sampling Component

4.1 Assumptions and Terminology

Each node vi ∈ N has locally access to a sampling component4 as illustrated
in Figure 1. The sampling component implements a strategy s and has uniquely
access to a local data structure Γvi

, referred to as the sampling memory. The size
of the sampling memory Γvi is bounded and is denoted by |Γvi |. The sampling
component Ss

vi
is fed with an infinite stream < v1, v2, . . . > of (possibly non

unique) node ids that correspond to the node ids periodically received by node

4 Although malicious nodes have also access to a sampling component, we cannot
impose any assumptions on how they feed it or use it as their behavior can be
totally arbitrary.
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vi ∈ N . This stream results either from the propagation of node ids through
gossip-based algorithms (namely through push, or pull or push-pull mechanisms
initiated by vi and its neighbors), or from the node ids received during random
walks initiated at vi, or even resulting from induced churn. The fingerprint of an
input stream is a collection of weighted points in which each node id is weighted
by the number of times it appears in the stream. Specifically, a stream of node
ids can be summarized by < (v1,mv1

), . . . , (vn,mvn) >, where vi denotes the
identifier of a node in S and mvi

∈ N represents the number of times vi appears
in the stream. At each time t, the following three steps are atomically executed.
To begin with, the first element of the stream, say node id vj , is given as input
to the sampling component. Then, the sampling component Ss

vi
reads vj and

removes it from the stream. Finally, according to its strategy s, Ss
vi

may store
or not vj in Γvi

and outputs at most one node id.

ids stream Ss
vi
(t)Ss

vi

Γ vi

Fig. 1. Sampling component of node vi ∈ N .

For example, the strategy s may consist in storing vj if Γvi is not full, or in
substituting vj for a randomly chosen node id that belongs to Γvi , or simply in
dropping vj . The output of the sampling component at time t, denoted Ss

vi
(t),

is chosen among the node ids in Γvi
according to strategy s. For instance, strat-

egy s may consist in choosing a random node id in Γvi
[32,33] or the smallest

node id under a given min-wise permutation [8]. The maximum finite hitting
time needed for the sampling component Ss

vi
to reach a uniform sample is de-

noted by Ts. Clearly, Ts depends on the strategy s implemented by the sampling
component and also on the stream of node ids the sampling component is fed
with. We assume that the sampling strategy is known by the adversary in the
sense that the algorithm used is public knowledge. However, if the algorithm is
a randomized one, the adversary does not have access to the local random coins
used by the honest nodes.

Finally, δ represents the number of node ids injected by the adversary in the
input stream of node u during the time interval Ts. Note that it does not matter
whether the injected node ids correspond to the node ids of malicious nodes or
not. Indeed, the unique objective of the adversary is to bias the input stream in
such a way that whatever the strategy s of the sampler component, its output
Ss
vi
(t) cannot guarantee both the uniform and freshness properties.
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4.2 Sampling Properties

We consider the problem of achieving an unbiased (uniform) and fresh sampling
in large scale unstructured peer-to-peer systems subject to adversarial attacks.
A strategy s that solves this problem has to meet the following two properties:
i) Uniformity, which states that any node in the overlay should have the same
probability to appear in the sample of honest nodes in the overlay, and ii) Fresh-
ness, which states that any node should have a non-null probability to appear
infinitely often in the sample of any honest node in the overlay. More formally,
the sampling strategy s should guarantee the following two properties.

Property 1 (Uniformity). Let N be a weakly connected graph from time T0

onwards, then for any time t ≥ Ts, for any node vj ∈ S, and for any node
vi ∈ N ,

P[vj ∈ Ss
vi
(t)] =

1

|S|
.

Property 2 (Freshness). Let N be a weakly connected graph from time T0 on-
wards, then for any time t ≥ Ts, for any node vj ∈ S, and for any node vi ∈ N ,

{t′ > t | Ss
vi
(t′) = vj} 6= ∅ with probability 1.

Note that uniformity by itself does not imply freshness, and vice versa. In-
deed, the former does not impose any restriction on the freshness of output node
ids, while the latter one does not provide any guarantee regarding the equiprob-
ability of node ids to be chosen as samples. Moreover, as each node vj in S has
a non-null probability to be returned by Ss

vi
at time t, vj must appear at least

once in the input stream. Thus, ∀vj ∈ S, starting from time Ts, mvj
> 0. Note

that, as previously mentioned, the model and analysis presented in this paper are
independent from the way the stream of node ids at each node vi is generated.

5 Characterization of the Uniform and Fresh Sampling

Problem

We start our characterization by showing that the adversary can bias the input
stream in such a way that neither uniform nor freshness properties can be met.
This is achieved by flooding the input stream with sufficiently many chosen node
ids. Specifically, Lemma 1 states that for any strategy s, if the number δ of non
unique node ids that appear in the input stream of node vi ∈ N during Ts time
units exceeds a given threshold then it is impossible for any node in the overlay
to equally likely appear as a sample of node vi, and this holds forever. Let C1 be
a condition on the value of δ:

δ ≤ Ts − (1− k)|S|. (C1)

Condition C1 characterizes the fact that for any honest node vi ∈ N , during the
time interval Ts, vi has a non-null probability to appear in the input stream. We
have the following lemma.
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Lemma 1.
¬(C1) =⇒ ¬U ∧ ¬F .

Proof. Let vi ∈ N . Suppose that Condition C1 does not hold, namely it exists
an adversarial behavior such that

δ > Ts − (1− k)|S|.

In this case, the number of honest node ids in the input stream at vi (i.e., Ts−δ)
is strictly lower than (1− k)|S|, which means formally that

Ts − δ < (1− k)|S|.

By assumption (cf. Section 4.1), the overlay is populated by (1 − k)|S| honest
nodes. Thus, as the adversary manages to flood the input stream at vi, there
exists at least one node id vj ∈ S that will never appear in the stream. Therefore,
whatever the strategy s, vi’s sampling component can never output vj . Thus,

∀t > T0, P[vj ∈ Svi
(t)] = 0, (1)

which clearly violates Property U .
Equation (1) can be rewritten as ∃t > T0, ∃vj ∈ S, ∀t′ > t,P[vj ∈ Svi

(t′)] = 0,
which has for consequence that the set of instants t′ for which vj can be sampled
by vi is empty. Formally,

P[{t′|t′ > T0 ∧ vj ∈ Svi
(t′)} = ∅] > 0,

which violates Property F , and completes the proof of the lemma. ⊓⊔

We now assume that Condition C1 holds. The second lemma states that if
the size of the sampling memory is large enough, then whatever the constrained
adversarial behavior, the sampling component succeeds in exhibiting uniform
and fresh samples. This results in a sufficient condition to solve our problem.
Specifically, let C2 be defined as follows

|Γvi
| < |S|. (C2)

Condition C2 characterizes the fact that nodes cannot maintain the full knowl-
edge of the population overlay essentially due to scalability reasons. We can now
prove the following lemma.

Lemma 2.
(C1) ∧ ¬(C2) =⇒ U ∧ F .

Proof. Proof of the lemma is straightforward. By Condition C1, any node vj ∈ S
has a non-null probability to appear in the input stream of any node vi ∈ N .
By assumption of the lemma, |Γvi

| ≥ |S|. Consider the basic strategy s of vi’s
sampling component that consists in storing into Γvi , any new id read from the
input stream. Then eventually, all the node ids will be present into Γvi

, and
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thus, according to an uniform selection strategy, any node vj is equally likely to
be chosen in Γvi , which guarantees Property U .

Moreover, vi has the possibility to return infinitely often any node id vj
present in Γvi

. Thus for any time t, the set of times t′ with t′ > t at which vj has
been chosen in Γvi

has a zero probability to be empty, which ensure Property F
and completes the proof. ⊓⊔

The following Lemma completes the characterization of the problem.

Lemma 3.
(C1) ∧ (C2) =⇒ ¬(U ∧ F).

Proof. Suppose that both Conditions C1 and C2 hold. Proving that ¬(U ∧ F) is
equivalent to showing that (¬F ∨¬U) holds, and thus, that (F =⇒ ¬U) is true.
Suppose that (C1) ∧ (C2) ∧ F is met, we now show that U cannot hold.

Consider any node vi ∈ N (the set of honest nodes) and let Γvi(t) denote
the content of vi’s sampling memory at the instant t. From Condition C2,

∀t′ ≥ T0, ∃vj ∈ S, vj 6∈ Γvi
(t′). (2)

In particular, Equation (2) is true for t′ = Ts. Let node vj ∈ S be such that
vj /∈ Γvi

(Ts), then by assumption Property F holds. Thus

∃t > Ts, vj /∈ Γvi
(Ts) ∧ vj ∈ Γvi(t). (3)

vj 2 vi vj /2 vi

d

a

b cΓΓ

Fig. 2. Markov chain representing the evolution of vj ’s presence in the sampling mem-
ory Γvi of node vi ∈ N .

The presence of a node id in the local memory of the sampling component
can be represented as a Markov chain. Figure 2 depicts the evolution of vj ∈ Γvi

as a function of time. Labels a, b, c and d on the edges represent the probability
of transitions from both states such that we have a + c = b + d = 1. From
Equation (3), we have a > 0 and thus, c < 1. We prove by contradiction that
d > 0.

Suppose that d = 0, then ∀t′′ ≥ t, vj ∈ Γvi
(t′′), the state (vj ∈ Γvi

) is
absorbing. Consider an overlay that contains only two nodes, vi and vj . By
assumption, at least one of the two nodes is honest (k < 1). Let us assume that
vi is honest (the proof is similar for vj). Then, by Condition C2, we have |Γvi

| = 1
(the case |Γvi | = 0 trivially leads to an impossibility). By assumption, we have



On the Power of the Adversary to Solve the Node Sampling Problem 13

∀t′′ ≥ t, vj ∈ Γvi
(t′′) and as |Γvi

| = 1, we also have ∀t′′ ≥ t, Γvi
(t′′) = {vj}.

Consequently, whatever the strategy s implemented in vi’s sampling component,

∀t′′ ≥ t, P[vi ∈ Ss
vi
(t′′)] = 0 =⇒ P[{t′′|t′′ > t ∧ vi ∈ Ss

vi
(t′′)} = ∅] > 0,

which contradicts F and also the assumption of the lemma. Thus d > 0 and, a
fortiori, b < 1, and no state is absorbing.

Suppose now that U holds, we now prove the lemma by contradiction. Con-
sider once again the situation in which the overlay is populated by only two
nodes, vi and vj . As previously, suppose that node vi is honest and that |Γvi

| = 1.
The evolution of the sampling memory at node vi can be modeled by a Markov
chain as represented in Figure 3. By assumption, F holds, and thus infinitely
often and successively, both vi and vj appear in Γv. Moreover by assumption,
U also holds, that is, ∀t ≥ Ts,P[vj ∈ Ss

vi
(t)] = P[vi ∈ Ss

vi
(t)] = 1

2 . As a conse-
quence, vj has the same probability as vi to be in Γv, whatever the number of
times vj and vi appear in the stream before time Ts.

   vi
= {vi}    vi

= {vj}ΓΓ

Fig. 3. Markov chain representing the state of the local memory Γvi of vi.

Suppose now that node vj is malicious. By Condition C1, node id vj can
appear in vi’s stream no more than Ts − 1 times during any sliding window of
Ts time units. As |Γvi | = 1, only a single node id can be stored, and beyond this
node id, no other additional information can be stored. We now demonstrate
that whatever the strategies s implemented by vi’s sampling component, they
all lead to a contradiction.

Blind replacement. At any time t, the sampling component reads the first
node id in the stream, and stores it in Γvi in place of the previous one.
By construction, any strategy has to select its output among the elements
stored in Γvi

, thus the output of the sampling component follows the same
probability distribution as the one observed in the stream. As the adversary
can flood the stream with up to Ts − 1 malicious node ids, this means that
Property U cannot be met.

No replacement. Similarly to the blind replacement strategy, node ids are
read from the stream and stored in Γvi

up to time t, in which t is the first
time at which a specific node id is read. From time t onwards, this specific
node id is kept in Γvi

, independently from the node ids read from the stream
after t, leading to an absorbing state of the Markov chain. For instance, this
specific node id can be the smallest image value under a random min-wise
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independent function such as the min-wise permutation [8]. Clearly, this
strategy violates Property F .

Probabilistic replacement. This strategy consists in substituting the current
node id in Γvi

with the next one read from the stream according to a given
probability law. To guarantee that ∀t,P[vj ∈ Ss

vi
(t)] = P[vi ∈ Ss

vi
(t)] = 1

2 ,
then either both vi and vj have an equal probability to appear in the stream
or the sampling component must be able to remember the node ids it has
seen in the past to guarantee that, at any time t, each node id has the same
probability to be chosen as sample. The former case does not hold as by
assumption, the adversary can flood the stream with up to Ts − 1 malicious
ids. Moreover, the latter case is impossible as by assumption |Γvi

= 1|.
Therefore, only a single information can be stored (e.g., it is impossible to
store both a node id and a counter), and as consequence Property U cannot
hold.

Thus (C1)∧ (C2) =⇒ ¬(U ∧F), which concludes the proof of the lemma. ⊓⊔

The last lemma, described below, reformulates the necessary condition of the
problem characterization by combining Lemmata 1 and 3.

Lemma 4.
U ∧ F =⇒ (C1) ∧ ¬(C2).

Proof. The contrapositive form of writing Lemma 3 is U ∧F =⇒ ¬((C1)∧ (C2)),
and thus by distribution,

U ∧ F =⇒ ¬(C1) ∨ ¬(C2). (4)

On the other hand, the contraposition of Lemma 1 leads to U ∨ F =⇒ (C1). As
(U ∧ F ⇒ U ∨ F), we have

U ∧ F =⇒ (C1). (5)

By combining Equations 4 and 5, the following relation holds

U ∧ F =⇒ (C1) ∧ (¬(C1) ∨ ¬(C2)),

which is equivalent to

U ∧ F =⇒ ((C1) ∧ ¬(C1)) ∨ ((C1) ∧ ¬(C2)) .

By contradiction, (C1) ∧ ¬(C1) cannot hold, leading to

U ∧ F =⇒ (C1) ∧ ¬(C2),

which completes the proof. ⊓⊔

The uniform and fresh sampling problem defined in Sections 3 and 4 is com-
pletely characterized by the following theorem.

Theorem 1. (C1)∧¬(C2) is a necessary and sufficient condition for the uniform
and freshness properties to hold.
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Proof. This result follows directly from the statements of Lemma 2 and 4. ⊓⊔

Given this coarse-grained characterization, it appears to be unreasonable to
ensure such conditions in real life applications. To address this issue, the follow-
ing sections provide some finer-grained characterization of sampling strategies.
These strategies are capable of unbiasing an input stream according to the value
of norm of the entropy of this stream.

6 Information Divergence of Data Streams

A natural approach to detect changes on data streams is to model it as a distri-
bution and to compute the distance between the observed stream and the ideal
one. The metric we use in our context is the Kullback-Leibler (KL) divergence,
also sometimes called the relative entropy [37].

Definition 1 (Kullback-Leibler divergence).
Given two probability distributions p = {p1, . . . , pn} and q = {q1, . . . , qn}, the
Kullback-Leibler divergence of pi relative to qi is defined as the expected value of
the likelihood ratio with respect to qi. Specifically,

D(p||q) =
n
∑

i=1

pi log2
pi
qi

= H(p, q)−H(p), (6)

where H(p) = −
∑

pi log2 pi is the (Shannon) entropy of p and H(p, q) =
−
∑

pi log2 qi is the cross entropy of p and q (by convention, 0 log2 0 = 0).

The KL-divergence is a member of a larger class of distances known as the Ali-
Silvey distances [38]. For the sake of clarity, we will use the notation log to denote
the logarithm in base 2. Let p(U) be the uniform distribution corresponding

to a uniform stream (i.e., ∀i ∈ [1. . n], p
(U)
i = 1

n
), and q be the probability

distribution corresponding to the input stream. Following the classical use of
the KL-divergence, we consider D(q||p(U)) as a measure of the divergence of the
stream from the ideal one. Note that a probabilistic algorithm computing on
the fly the KL divergence of any stream with respect to an ideal one has been
proposed in [39]. Experimental results have shown that the estimation provided
by this algorithm remains accurate even for different adversarial settings in which
the quality of other methods dramatically decreases.

Definition 2 (τ-closeness). A stream of node ids σ is τ -close if the KL-
divergence between the probability distribution q corresponding to σ and the uni-
form probability distribution p(U) is below or equal to a given value τ called the
robustness threshold, in whch τ is a positive real value.

Finally given probability distributions, the Earth Mover’s Distance (EMD) [40]
measures the minimal amount of work needed to transform one distribution to
another by moving the probability mass between events. We rely on this metric
to quantify the effort that an adversary exerts to bias the input stream. In our
context, a unit of work corresponds to dropping one id and to pushing another
id instead in the input stream.
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7 Omniscient Adversary Model

In this section, we study the behavior of an omniscient adversary, which has the
capacity to eavesdrop on all the messages sent and received by all the nodes in S.
We demonstrate that the strategy pushing all the probability mass over a single
id is the one maximizing the bias of the input stream so that it becomes far from
the uniform distribution. We also describe an optimal strategy achieving it.

In the following, the analysis of infinite input stream is restricted to any
window of length Ts observed from time t ≥ T0. As previously said, Ts depends
on the sampling strategy and thus can be arbitrarily large. For the sake of
simplicity, the term “stream” will denote in the remaining of the paper the
stream restricted to any such window of length Ts.

Let σ be a stream such that the id of each node in S appears exactly once
in the stream, except for a unique id that appears in all the remaining slots.
Therefore, there exists a unique vi ∈ S such that mvi

= Ts − (n− 1) and ∀vj 6=
vi ∈ S,mvj

= 1. The following theorem states that the probability distribution
associated to this particular stream is the one that has the maximal divergence
from the uniform distribution.

Theorem 2. (Maximal divergence from the uniform distribution)
Let p(U) be the uniform distribution corresponding to a uniform stream, that

is, ∀i ∈ [1. . n], p
(U)
i = 1

n
, and q be the probability distribution corresponding to

σ ( i.e., it exists a unique vi ∈ S, qvi
= Ts−(n−1)

Ts
and ∀vj ∈ S, vj 6= vi ⇒ qvj

=

1
Ts

)

. Then, for any possible probability distribution q,

D(q||p(U)) ≤ D(q||p(U)).

Proof. Let q be the probability distribution representing any valid input stream
on (T0, Ts]. We have ∀vi ∈ S, qvi

=
mvi

Ts
, where mvi is the number of times vi is

present in the input stream. It follows that

D(q||p(U)) = H(q, p(U))−H(q)

= −
n
∑

i=1

qi log
(

p
(U)
i

)

−H(q) = log(n)−H(q).

Therefore, maximizing D(q||p(U)) amounts to minimizing H(q), which is equiv-

alent to maximize
∑n

i=1 mvi log
(

mvi

Ts

)

. We characterize the stream that mini-

mizes H(q) under the following constraints:











1 ≤ mvi
≤ Ts with 1 ≤ i ≤ n,

n
∑

i=1

mvi = Ts.
(7)
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From these constraints, we immediately have 1 ≤ mvi
≤ Ts − (n − 1). To relax

the second constraint, we pose mvn
= Ts −

n−1
∑

i=1

mvi . Let function f be such that

f(mv1 , . . . ,mvn−1
) =

n−1
∑

i=1

mvi log

(

mvi

Ts

)

+

(

Ts −
n−1
∑

i=1

mvi

)

log

(

1−
n−1
∑

i=1

mvi

Ts

)

.

Function f is differentiable on its domain Is = [1. . Ts − n+ 1]n−1, thus we get

df

dmvj

(mv1
, . . . ,mvn−1

) = log

(

mvj

Ts

)

+mvj

Ts

mvj

+ log

(

1−
n−1
∑

i=1

mvi

Ts

)

+
Ts −

∑n−1
i=1 mvi

1−
∑n−1

i=1
mvi

Ts

= log
(

mvj

)

+ log

(

Ts −
n−1
∑

i=1

mvj

)

+ 2(Ts − log(Ts)).

According to Equation 7, we have

log
(

mvj

)

+ log

(

Ts −
n−1
∑

i=1

mvj

)

≥ 0

and, as Ts ≫ 1, this implies Ts − log(Ts) > 0. Then, we obtain that df
dmvj

> 0,

leading to the fact that f is strictly increasing according to mvj
. The maximum

is then reach for mvj = Ts − n+ 1 as f is a Schur-convex function.

From this set of constraints (cf. Equation 7), if the maximum of D(q||p(U))
is reached for mvj = Ts − n + 1 then

∑n

i=1,i 6=j mvi = n − 1 implies that ∀i ∈
[1..n], i 6= j,mvi

= 1, which concludes the proof. ⊓⊔

Theorem 2 enables us to formulate an upper-boundDmax on the KL-divergence
between the uniform stream and any other stream:

Dmax = D(q||p(U)) = log(n) + log(Ts)−

(

1−
n− 1

Ts

)

log (Ts − n+ 1) . (8)

As a consequence, any input stream σ is Dmax-close (cf. Definition 2).
To determine the minimal effort that the adversary has to exert to bias the

input stream so that both uniformity and freshness properties do not hold, we
use the Earth Mover’s Distance (EMD) between the uniform distribution and
the target one. In the following, when we say that the adversary replaces node id
vi by node id vj , we mean that he drops vi from the input stream and injects vj
instead. Recall that the adversary is able to drop and inject node ids only from
the nodes it controls. However, as mention in the introduction, the adversary
may succeed in surrounding a honest node with malicious nodes so that it may
shape by itself the input stream of this honest node.
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Lemma 5. (Optimal strategy to maximize the divergence)
Given an input stream σ, replacing the less frequent node id in σ with the most
frequent one maximizes the gain in KL-divergence with respect to the uniform
distribution for the same amount of work as measured by the EMD distance.

Proof. Given an input stream σ represented by the probability distribution q,
we construct the input stream σ′ from σ by substituting one occurrence of node
id vi with node id vj so that D(q′||p(U)) is maximized after this replacement
(in which q′ denotes the probability distribution representing σ′). This amounts
to maximize

[

D(q′||p(U))−D(q||p(U))
]

. Recall that all node ids in S must be
present in σ′. Therefore, we search for the node id pair (vi, vj) such that



















m′
vj

= mvj
+ 1

m′
vi

= mvi
− 1

vj = argmaxvj∈S

(

q′vj log
(

q′vj

)

− qvj
log
(

qvj
)

)

vi = argmaxvi∈S

(

q′vi
log
(

q′vi
)

− qvi log (qvi)
)

Consider the function f : x 7→ x log(x), which is strictly increasing. For any
k ∈ S, we have qvk

= mvk/Ts. Thus,







vj = argmaxvj∈S

(

f
(

mvj
+1

Ts

)

− f
(

mvj

Ts

))

vi = argmaxvi∈S

(

f
(

mvi
−1

Ts

)

− f
(

mvi

Ts

))

=⇒

{

vj = argmaxvj∈S mvj

vi = argminvi∈S mvi

This derives from the fact that the function g1 : x 7→ f(x+1
Ts

)−f( x
Ts
) (respectively

g2 : x 7→ f(x−1
Ts

)− f( x
Ts
)) is strictly increasing (respectively strictly decreasing).

The optimal node id replacement maximizing the KL-divergence gain is reached
by replacing the less frequent node id vi with the most frequent one vj . ⊓⊔

Algorithm 1 (run by the adversary) shows an optimal implementation of
Lemma 5 with respect to the number of performed replacements. Specifically, the
inputs of the algorithm are an input stream σ and the robustness threshold τs.
Recall that τs is the robustness threshold of the sampling strategy s implemented
by Ss

u, which means that for any τs-close input stream σ, the sampling strategy s
is able to output a uniform and fresh sample. The goal of the greedy Algorithm 1
is to tamper with the input stream σ in order to increase its KL-divergence above
τs with a minimum effort.

By assumption, the adversary is omniscient and therefore has the capacity
to observe the entire input stream σ. From Section 4, the adversary knows the
strategy s of the sampler, and thus can compute the value of τs. The value of the
maximum divergence Dmax is computed using Relation (8). If Dmax is larger than
or equal to the robustness threshold, the algorithm returns “fail”. Otherwise at
each iteration, the adversary performs the optimal node id replacement until
the KL-divergence exceeds the robustness threshold. Remember however, that
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Algorithm 1: Adversary biasing strategy

Data: an input stream σ, the robustness threshold τs
Result: the number of replacements ℓ if it exists

1 if τs ≥ D
max then

2 return “fail”

3 else

4 ℓ← 0;
5 vj ← argmaxvj∈S mvj ;

6 while
(

D(qσ||p
(U)) ≤ τs

)

do

7 vi ← argmin{v∈S:mvi
6=1} mvi ;

8 let k be the index of an item in the part of the stream controlled by an
adversary such that σ[k] = vi ;

9 σ[k]← vj //one occurrence of vi is dropped and vj is injected instead ;
10 ℓ← ℓ+ 1;

11 return ℓ

the adversary cannot drop messages that have been sent or forwarded by nodes
it does not control (i.e., the honest ones). Note that at Lines (8) and (9) of
Algorithm 1 both mvi and mvj are updated. Counter ℓ returned by Algorithm 1
represents the number of replacements done by the adversary.

Consider a sampling strategy s, its robustness threshold τs, and an input
stream σ. Let ℓ be the number of replacements executed by Algorithm 1. If we
denote by qσ(ℓ) the probability distribution derived from σ after these ℓ optimal
replacements, we have the following corollary.

Corollary 1. (Lower bound on the effort exerted by an omniscient
adversary)
The minimum number of replacements an omniscient adversary has to apply to
exceed τs is

δ = inf
{

ℓ ∈ N : D(qσ(ℓ)||p
(U)) > τs

}

. (9)

8 Blind Adversary Model

In this section, we study the behavior of a blind adversary, that is an adversary
that only has the capacity to observe messages sent or received by the nodes
he controls. A strategy that the adversary might apply to bias the input stream
is to choose a node id (possibly one that belongs to a malicious node but not
necessarily) and to push it in the input stream as much as possible. We show
that this strategy is optimal with respect to the effort exerted by the adversary
and we derive a lower bound on the expected minimum amount of work a blind
adversary has to exert to bias the input stream.

Theorem 3. (Lower bound on the expected effort exerted by a
blind adversary)
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Let s be a sampling strategy, τs its robustness threshold and Ts its maximum
convergence time. The minimum number of replacements a blind adversary has
to apply in expectation to exceed τs is given when the input stream is the uniform
one. We have

δ̃ = inf {ℓ ∈ Is : Rℓ > τs} (10)

where Is =

[

0..Ts − n+ 1−

⌊

Ts

n

⌋]

Rℓ =
1

n

(⌊

ℓ− 1
⌊

Ts

n
− 1
⌋

⌋

log

(

Ts

n

)

+ log

(

T 2
s

Ts + nℓ

)

− log

(

Ts − n

(

1 + (ℓ− 1) mod

⌊

Ts

n
− 1

⌋)))

Proof. Let us consider the uniform node ids stream on a window of length Ts. For
any vi ∈ S, vi is present in the stream Ts/n times in average. The probability

distribution p(U) is such that ∀vi ∈ S, p
(U)
vi = 1/n. From Section 7, we have

seen that the optimal strategy for the adversary to bias an input stream is to
replace the less frequent node id in this stream with the most frequent one. By
assumption, the adversary is blind and cannot observe all the node ids of the
input stream. The strategy of the adversary consists in choosing a specific node
id vj and repeatedly pushing vj in the input stream. Let σ be an input stream
and σ′ be the stream obtained from σ after one step of this adversarial strategy
(i.e., replacing vi by vj for some vi ∈ S). We have

D(qσ′ ||p(U))−D(qσ||p
(U)) =

1

n

(

log

(

mvj

mvj + 1

)

+ log

(

mvi

mvi − 1

))

, (11)

in which qσ and qσ′ represent respectively the probability distributions of σ and
σ′. In the following, qσ(ℓ) denotes the probability distribution derived from σ
after ℓ replacements. Given a sampling strategy s, we prove by induction on
the number of optimal replacements ℓ that, starting from a uniform stream, the
maximum KL-divergence after ℓ replacements is given by D(qσ(ℓ)||p

(U)) = Rℓ,
in which

Rℓ =
1

n

(⌊

ℓ− 1
⌊

Ts

n
− 1
⌋

⌋

log

(

Ts

n

)

+ log

(

T 2
s

Ts + nℓ

)

(12)

− log

(

Ts − n

(

1 + (ℓ− 1) mod

⌊

Ts

n
− 1

⌋)))

.

Note that ℓ cannot be greater than
(

Ts − n+ 1−
⌊

Ts

n

⌋)

. Indeed, all node ids

in the initial uniform stream are present at least
⌊

Ts

n

⌋

times and the maximum
number of times a unique id can appear in the stream is (Ts − n+ 1). For ℓ = 1,
the claim follows immediately from Equation 11. Now, assume that the claim also
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holds for all 1 ≤ j ≤ ℓ. We show that it holds for j = ℓ+ 1. The KL-divergence
with respect to the uniform stream after ℓ+ 1 steps is

D(qσ(ℓ+1)||p
(U)) = D(qσ(ℓ)||p

(U)) +D(qσ(ℓ+1)||p
(U))−D(qσ(ℓ)||p

(U)). (13)

The term D(qσ(ℓ+1)||p
(U)) − D(qσ(ℓ)||p

(U)) represents the gain of step (ℓ + 1),

and D(qσ(ℓ)||p
(U)) is given by Equation 12. Two sub-cases need to be considered:

(i) ℓ mod
⌊

Ts

n
− 1
⌋

6= 0 and (ii) ℓ mod
⌊

Ts

n
− 1
⌋

= 0. Case (i): the less frequent
node id vi in the stream at step ℓ + 1 is the same as the one removed at step
ℓ. After ℓ steps, mvj

= Ts

n
+ ℓ and mvi

= Ts

n
−
(

1 + (ℓ− 1) mod
⌊

Ts

n
− 1
⌋)

, the
right part of Equation 11 is equal to

1

n

(

log

(

Ts

n
+ ℓ

Ts

n
+ ℓ+ 1

)

+ log

(

Ts

n
−
(

1 + (ℓ− 1) mod
⌊

Ts

n
− 1
⌋)

Ts

n
−
(

1 + (ℓ− 1) mod
⌊

Ts

n
− 1
⌋)

− 1

))

=
1

n

(

log

(

Ts − n

(

1 + (ℓ− 1) mod

⌊

Ts

n
− 1

⌋))

+ log (Ts + nℓ)− log (Ts + n(ℓ+ 1))

− log

(

Ts − n

(

2 + (ℓ− 1) mod

⌊

Ts

n
− 1

⌋)))

.

By assumption (i), we have

⌊

ℓ−1

⌊Ts
n

−1⌋

⌋

=

⌊

ℓ

⌊Ts
n

−1⌋

⌋

and

(

1 + (ℓ− 1) mod

⌊

Ts

n
− 1

⌋)

=

(

ℓ mod

⌊

Ts

n
− 1

⌋)

.

From Equation 13, we get

D(qσ(ℓ+1)||p
(U)) =

1

n

(⌊

ℓ
⌊

Ts

n
− 1
⌋

⌋

log

(

Ts

n

)

+ log

(

T 2
s

Ts + n(ℓ+ 1)

)

− log

(

Ts − n

(

1 + ℓ mod

⌊

Ts

n
− 1

⌋)))

,

which ends Case (i). Case (ii). The argumentation is the same as above. However,
as ℓ mod

⌊

Ts

n
− 1
⌋

= 0, the node id that has been previously replaced is now
present exactly once in the stream. Thus, the adversary needs to randomly choose
another node id in the stream before processing the next step of his strategy.
Applying Equation 11 at step ℓ+ 1 gives

D(qσ(ℓ+1)||p
(U))−D(qσ(ℓ)||p

(U)) =

(

log
(

Ts
n

+ℓ
Ts
n

+ℓ+1

)

+ log
(

Ts
n

Ts
n

−1

))

n
. (14)

By assumption
(

(ℓ− 1) mod
⌊

Ts

n
− 1
⌋

=
⌊

Ts

n
− 1
⌋

− 1
)

, and by combining the
induction hypothesis (Equation 12) with the gain obtained at step ℓ+ 1 (Equa-
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tion 14), we get

D(qσ(ℓ+1)||p
(U)) =

1

n
(3 log (Ts) +

⌊

ℓ− 1
⌊

Ts

n
− 1
⌋

⌋

log

(

Ts

n

)

− log (Ts + n(ℓ+ 1))− log (Ts − n)− log (n)) .

By assumption of the case

⌊

ℓ

⌊Ts
n

−1⌋

⌋

=

⌊

ℓ−1

⌊Ts
n

−1⌋

⌋

+ 1, which proves the induc-

tion:

D(qσ(ℓ+1)||p
(U)) =

1

n

(⌊

ℓ
⌊

Ts

n
− 1
⌋

⌋

log

(

Ts

n

)

+ log

(

T 2
s

Ts + n(ℓ+ 1)

)

− log

(

Ts − n

(

1 + ℓ mod

⌊

Ts

n
− 1

⌋)))

.

As a conclusion, any value of ℓ that allows the adversary to exceed the ro-
bustness threshold τs defeats the sampling strategy. Thus, the minimum number
of replacement operations δ̃ is the lower bound of this set of values. ⊓⊔

We now evaluate the minimum amount of work a blind adversary has to exert
in the worst case to bias the input stream. In the worst case, the node id vi the
adversary has chosen to blindly flood might be initially present only once in the
input stream. In order to bias the input stream, the adversary needs to push id
vi sufficiently often so that the probability of appearance of id vi reaches the
uniform value, with respect to all the other node ids, and then to continue to
push this id δ̃ times so that the divergence between the resulting stream and the
uniform one is maximum.

Theorem 4. (Lower bound on the worst-case effort exerted by a
blind adversary)
Let s be a sampling strategy, τs its robustness threshold and Ts the maximum
convergence time of s. The minimum number of replacements the adversary has
to apply on a stream in the worst case to exceed τs is

δ̃ +

⌈

Ts

n

⌉

− 1.

Proof. The proof is immediate. First, the adversary has to raise the chosen id
at least up to the uniform value. In the worst case, this id is present only once
in the initial stream, which costs

⌈

Ts

n

⌉

− 1 replacements to reach a number of

occurrences equals to
⌈

Ts

n

⌉

. Moreover, once this id is present in the modified

stream
⌈

Ts

n

⌉

times, the adversary follows the same strategy as before, which

requires δ̃ more steps to guarantee that the robustness threshold τs is exceeded.
Note that this value is a worst-case bound and not the exact minimum value
with respect to τs because after the first (

⌈

Ts

n

⌉

− 1) steps, the modified stream
could be different from the uniform one. In this situation, the KL-divergence to
the uniform stream is strictly greater than 0, reducing accordingly the amount
of work of the adversary to exceed τs. ⊓⊔
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9 Conclusion and open issues

In this paper, we have focused on the problem of achieving uniform and fresh
node sampling in large scale open systems potentially populated with malicious
nodes. The node sampling problem consists in guaranteeing that each honest
node can maintain a uniform and fresh sample of the whole population of the
system. First, we have shown that if the system cannot limit the resources of the
adversary, then solving either uniform sampling or fresh sampling is impossible.
Then, we have demonstrated that, in the unrealistic setting in which honest
nodes have access to a very large memory (i.e., proportional to the size of the
system), then the problem becomes trivially solvable. Unfortunately, we have
proven that both conditions are necessary and sufficient ingredients to solve the
uniform and fresh sampling problem in adversarial environments. Clearly, these
strong conditions highlight the damage that adversarial behavior can cause in
large-scale unstructured systems.

By modeling input streams as probability distributions, we have also charac-
terized the minimum effort (measured in terms of node ids replacements) that an
omniscient and a blind adversary have to exert on the input stream of node iden-
tifiers to exceed the robustness threshold that quantifies the power of a sampling
strategy. We believe that uniform node sampling should be regarded as a nec-
essary building block to derive larger classes of sampling schemes. This building
block is of utmost importance in systems in which the population is continu-
ously evolving and in which it is impossible to capture the full complexity of the
network through global snapshots.
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