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Abstract – Emergy evaluation (EME) is an environmental assessment method which is gain-
ing international recognition and has increasingly been applied during the last decade.
Emergy represents the memory of the geobiosphere exergy (environmental work) – mea-
sured in solar emjoules (seJ) – that has been used in the past or accumulated over time to
make a natural resource available. The rationale behind the concept of Emergy is the con-
sideration that all different forms of energy can be sorted under a hierarchy and measured
with the common metric of the seJ, which is then the yardstick through which all energy
inputs and outputs can be compared with each other. For this reason EME is suggested to
be a suitable method of environmental accounting for a wide set of natural resources, and
can be used to define guidelines for sustainable consumption of resources. Despite those
interesting features, EME is still affected by several drawbacks in its calculation procedures
and in its general methodological background, which prevent it from being accepted by a
wider community. The main operational hurdle lays in the set of mathematical rules (known
as Emergy algebra rules) governing EME, which do not follow logic of conservation and
make their automatic implementation very difficult. This work presents an open source
code specifically created for allowing a rigorous Emergy calculation (complying with all
the Emergy algebra rules). We modeled the Emergy values circulating in multi-component
systems with an oriented graph, formalized the problem in a matrix-based structure and de-
veloped a variant of the well-known track summing algorithm to obtain the total Emergy
flow associated with the investigated product. The calculation routine (written in C++) im-
plements the Depth First Search (DFS) strategy for graph searches. The most important fea-
tures of the calculation routine are: (1) its ability to read the input in matrix form without
the need of drawing a graph; (2) its rigorous implementation of the Emergy rules; (3) its
low running time, which makes the algorithm applicable to any system described at the
level of detail nowadays made possible by the use of the available life cycle inventory (LCI)
databases. A version of the Emergy calculation routine based on the DFS algorithm has
been completed and is being tested on case studies involving matrices of thousands of rows
and columns, describing real product production systems.

L ife Cycle Assessment (LCA) repre-
sents one of the most accepted and
used tools for the environmental as-

sessment of goods and services [1, 2]. The
Ecoinvent database [3] is the largest world-
wide data repository to provide Life Cy-
cle Inventory (LCI) models for thousands
of products (i.e. energy generation, materi-
als and agri-food production, infrastructure
and transportation), which can be used as

the background system to build LCAs. The
organization of the data in Ecoinvent per-
fectly fits with the framework required by
the matrix method for the solution of the in-
ventory problem in LCA [4].

In terms of natural resource protection,
LCA takes an anthropocentric perspective,
since the value of resources is related to their
scarcity or to their usefulness for human sys-
tems. Therefore, from the LCA standpoint
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the resources to be protected are the ones
requested by economic production activities
(via market mechanisms) and the stocks of
which are scarce. Renewable resources and
ecosystem services are often excluded from
LCA, although their importance to human
activities and their increasing depletion have
been recognized [5].

Stemming from the work by Odum [6],
a new paradigm, which is based on the con-
cept of Emergy (spelled with an “m”) and
aims at quantifying resources from a nature-
centred point of view, has emerged in the
scientific community. In its traditional defi-
nition Emergy quantifies the amount of avail-
able energy (usually expressed as solar en-
ergy and measured in solar emjoules (seJ), or
its multiples) previously directly and indi-
rectly required to generate a product and/or
to support a system and its level of organi-
zation [7]. In so doing, Emergy Evaluation
(EME) aims at accounting for the memory
of the geobiosphere available energy (also
called exergy) provision (i.e. environmental
work) supporting economic systems (e.g. to
make a product or service) via the use of
natural resources.

However, conventional EME has been
strongly criticized due to the lack of accu-
racy and completeness in its calculation pro-
cedures. Indeed EME is very often based
on simplified and non-transparent models,
as well as incomplete data inventories [8].
This lack of a rigorous analytical and ac-
counting basis has hampered Emergy ac-
ceptance and use by environmental policy
authorities [8–12].

In recent years, complementarities be-
tween EME and LCA have been empha-
sized within the Emergy community [13]. As
acknowledged by Rugani and Benetto [14],
EME could benefit from the use of existing
LCI databases, which account for hundreds
of environmental interventions in thousands
of common industrial processes. On the
other hand, through the LCI databases,
Emergy might bring into LCA a complemen-
tary concept to assess impacts from ecosys-
tem services’ use. Moreover, it is rather
widely recognized that this new way of pro-
ceeding to Emergy accounting underpinned
by the LCA matrix-based structure (very
well described in Heijungs and Suh [4])

may potentially contribute to significantly
improve the accuracy and completeness of
Emergy accounting [15–17]. However, a full
integration of the two methods has been
hampered so far by a number of method-
ological issues, such as the different system
boundaries and allocation criteria [14, 15]
and the different mathematical frameworks
of the two methodologies, due to a differ-
ent logical perspective. Indeed, Emergy holds
a logic of memorization, i.e. it aims at cal-
culating how much solar exergy has sup-
ported, through natural resources and re-
lated ecosystem services, the life cycle of a
product. While LCA holds a logic of conser-
vation, i.e. it aims at evaluating the amount
of resources required by the life cycle of a
product and assessing the potential impacts
at the level of component/process.

In particular, EME requires compliance
with a set of algebraic rules that are com-
pletely different from those applied in
LCA [6,15,18]. For the sake of completeness
the list of Emergy algebra rules taken from
Brown and Herendeen [18] is reported be-
low:

1. all source Emergy to a process is assigned
to the process’ output;

2. byproducts from a process have the total
Emergy assigned to each pathway;

3. when a pathway splits, the Emergy is as-
signed to each “leg” of the split based on
its percent of the total energy flow on the
pathway;

4. Emergy cannot be counted twice within
a system: (a) Emergy in feedbacks can-
not be double counted; (b) byproducts,
when reunited, cannot be added to equal
a sum greater than the source Emergy
from which they were derived.

Rule 4(b) implies that, when summing
Emergy of inflows or outflows that are by-
products, only the largest one has to be ac-
counted for.

The aim of this paper is to provide a new
insight for calculating Emergy through an
LCI scheme. We present a novel algorithm
which is able to quantify the seJ value of ev-
ery kind of product and process (provided
its LCI is known) through a rigorous imple-
mentation of the Emergy algebra rules. The al-
gorithm treats the system of interconnected
processes delivering the product at stake
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Fig. 1. Example of a simple system with a source S and two delivered outputs C and G. The numbers
on each connection represent the (energy or mass) flows exchanged by the nodes of the system
(each representing a man-made or an ecosystem production process). (a) graph representing the
system; (b) corresponding matrix.

as a graph. It uses the Depth First Search
(DFS) strategy [19], memorizes the paths go-
ing from each input node (Emergy sources)
to the output node(s) and finally records the
output Emergy associated with each of the
fully explored paths.

1 Graph search formulation
of the problem

Let us consider the simple system depicted
in Figure 1a and described by the matrix
showed in Figure 1b. The convention used
for the signs of the matrix’s entries is the
same adopted in Heijungs and Suh [4]: the
entry at the generic position (i, j) of the ma-
trix is negative if the process represented by
column j requires as an input the flow com-
ing from the process represented by row i.
Positive entries can only lie on the main di-
agonal of the matrix and represent the out-
puts delivered by the concerned process. It
is worth noting that the values showed in
Figure 1 are not Emergy values, but mass or
energy values, and they do not respect mass
and energy conservation principles, because
the system is represented in its non-scaled
form. The values of mass and energy flows
respecting conservation laws are obtained
after the system is solved, i.e. suitable scal-
ing factors are determined using the ma-
trix method, as described in Heijungs and
Suh [4].

Furthermore, the first row of the matrix
showed in Figure 1b can be interpreted as

the environmental intervention matrix in the
LCA jargon (see [4]). In this simple example
only one resource (S) is used by the system,
so the environmental intervention matrix is
represented by a row vector.

A graph is defined as a set of vertices
(points) and a set of edges (alternatively
called arcs): each edge joins one vertex to an-
other, or starts and ends at the same vertex.
In particular, the graph showed in Figure 1a
is a directed graph, because the edges have a
direction associated with them. For example,
the energy or mass flow sprouting from S
goes from S to A and from S to B, but not vice
versa. When there is no direction associated
with the edges, one deals with undirected
graphs.

As far as we are concerned in this context,
the problem we deal with can be formulated
as follows: suppose the product for which
we want to calculate the Emergy is repre-
sented by node G; then the goal G has to be
reached starting from the root S through a
set of actions, i.e. of moves from one node
to another in the graph. The possible ac-
tion sequences starting at the root node form
a search tree, with the branches as actions.
Each time we pass from one node to the
other in the search tree, there is an Emergy
value associated to the branch, which is ul-
timately linked to the energy or mass flow
exchanged between the two nodes delimit-
ing the branch.

An approach based on graph theory has
recently been applied to EME by Le Corre
and Truffet [20], where Emergy circulating
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Fig. 2. (a) Depth-First search (DFS) algorithm and (b) Breadth-First search (BFS) algorithm: the left
hand side of each picture shows an oriented graph and the right hand side shows the corresponding
search tree. The red arrows show the visiting path and the numbers represent the order in which
the nodes are visited starting from the source node S until the destination node G.

in a multi-component system is modeled as
an oriented graph. However, in their ap-
proach a preliminary analysis (called “fac-
torization”) of the whole graph is required
before starting the actual Emergy accounting.
It is based on the expression of Emergy paths
as strings and requires a set of computations
on strings. This is certainly time consuming
and likely to be impractical for very large
networks. Furthermore the algorithm needs
the relations between the arcs to be stored in
an array, which is a computationally expen-
sive operation, requiring extensive memory
usage. However, in [20] the authors assume
the Emergy paths to be known, anticipating
that the computation of Emergy paths is the
subject of a companion paper.

Finding a path between nodes or find-
ing the shortest path between two nodes is
a very common problem in computer sci-
ence. Two well-known algorithms are used
in computer science for graph search, which
essentially differ for the order in which the
nodes are visited during the search [19]. In
the DFS the search starts at the root and ex-
plores as far as possible along each branch
before backtracking, i.e. before going back

to the last explored node from which it
was possible to visit a new branch of the
tree. BreadthFirst Search (BFS) begins at the
root node and explores all the neighbour-
ing nodes. Then for each of those nearest
nodes, it explores their unexplored neigh-
bour nodes, and so on, until it finds the goal.
The two search algorithms are illustrated in
Figure 2, using the same graph showed in
Figure 1.

If one wants to comply with Emergy al-
gebra No. 4, the problem is complicated by
the fact that we have to keep memory of the
Emergy value propagated along the path and
we have to detect the presence of a feedback
every time we encounter one (which is not
the case for the graphs showed in Figures 1
and 2, since there are no feedback connec-
tions in them).

The algorithm we devised to solve the
problem (which was coded in C++), essen-
tially follows three steps:
1. it reads the mass and energy flows asso-

ciated with a given system, in its matrix
form. This implies that the user does not
need to draw the network describing the
system;
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2. it performs a graph search and memo-
rizes the paths going from each input
node (Emergy sources) until the output
node, provided that: (a) the path does
not have a feedback, i.e. it hits a node
in the same path which was visited pre-
viously; (b) the Emergy value along this
path never goes below a fixed threshold
(henceforth called minflow). If one of the
two above mentioned conditions occurs,
the algorithm stops propagating Emergy
values downstream. The choice of a suit-
able threshold can significantly speed up
calculation without increasing too much
the information loss;

3. as a last step, it finally records the output
Emergy associated with each of the fully
explored paths.

In practice the algorithm tracks Emergy val-
ues for each Emergy independent source1,
spinning off new paths as they are encoun-
tered and maintaining the set of previously
visited elements to prevent cycles; it finally
sums up the results independently.

The addition of the check condition
based on the Emergy threshold was neces-
sary when we applied the algorithm to sys-
tems entailing large matrices (with thou-
sands of rows and columns). In these cases
the running time to explore all the paths rises
exponentially, but the Emergy value propa-
gated downstream the feedback is generally
very little.

The algorithm is in practice a variant
of the track summing algorithm originally
due to Tennenbaum [21]. The track summing
method follows each path in the network
of Emergy values associated to the energy
and mass flows from the sources to the out-
put and divides the total Emergy input to a
process by the corresponding Emergy out-
put to obtain the so-called transformity of the
process.

In a previous attempt [22], a differ-
ent instantiation of the algorithm using a
multithreaded BFS strategy [19] had been
explored. The BFS algorithm exploits con-
currency, i.e. allows parallel processing of
different paths at the same time, thus
allowing a lower running time. It was

1 In the case showed in Figures 1 and 2 there is
only one source, but systems are usually fed by
multiple Emergy sources.

implemented in the programming envi-
ronment Scala [23], which has a power-
ful concurrency model and is thus particu-
larly suited for exploiting parallelization (on
multi-core processors). However, although
the running time is lower than for its DFS
version, the memory requirement for the
BFS instantiation of the algorithm is quite
high and does not justify a desktop utiliza-
tion. On the other hand, this multithreaded
BFS instantiation will be very amenable to
a cluster application of the calculation rou-
tine, in case the large scale of the systems
dealt with in the future will make the prob-
lem untreatable in a singlethreaded fashion.

The pseudo-codes of the two different al-
gorithms are showed in Figures 3 and 4.

The code has already been applied for the
solution of a problem involving a simplified
system for the production of flat glass [22]
and it is currently being tested on problems
involving much larger system matrices (with
several hundreds of rows and columns).

For the solution of these latter case stud-
ies we are using the inventory data con-
tained in the Ecoinvent database [3]. This
confronted us with the solution of an ad-
ditional problem, which is discussed in the
following section.

1.1 Dealing with multi-output
processes

The Ecoinvent database (version 2.2) con-
tains 227 multioutput processes, each de-
livering two (in a few cases three) valu-
able outputs. However, the inventoried
values contained in the database always
refer to already allocated processes. In-
deed, inputs of resources and commodi-
ties have already been apportioned to each
byproduct (derived from a multi-output
process) according to predefined allocation
criteria. These, which obviously infringe the
Emergy algebra rule No. 2, can be deduced
for each multioutput process by reading the
Ecoinvent documentation.

In order to comply with rule No. 2 it is
necessary to equally assign the full amount
of the inventoried resources to each by-
product of every multi-output process. To
solve this problem we are devising a script
in C++ which allows the extraction of text
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 Define : Graph G, Stack S, List Inputs, List OutFlows, Parameter 

MinFraction 

Initialize: G for system with nodes containing tuples defined 
(child = node, weight = fraction of emergy flowing to child) 
Require: child weights sum to 1.0 

Initialize: Inputs for system with tuples (node, flow) 

Initialize: MinFraction as minimum fraction of each input to pass 
to child process nodes 

Initialize: S as empty LIFO stack, Outflows as empty List 

For input (node, flow) in Inputs: 
  Define : Set P 
  Add: node to P 
  Define : MinFlow = MinFraction * flow 
  Define : Task T = (node, flow, P, MinFlow) 
  Push: T to S 

While S has elements: 
  Pop: Task U = (node, flow, path, minflow)  
  If node has no children: 
    Define : Output O = (node, flow) 
    Add: O to OutFlows 

  For child in node (child, weight): 
    Define : childflow = weight * flow 
    If childflow >= minflow AND child NOT IN path: 
      Add: child to path 
      Add: Task (child, childflow, path, minflow) to S 

Collect: Sum outputs (node, flow) in Outflows by node 

Fig. 3. Pseudo-code of the DFS algorithm.

and numerical data directly from the .xml
files downloaded from the Ecoinvent web-
site, and containing the information about
the multi-output processes. The script will
allow an automatic 100% re-allocation of the
full input inventory to each of the process
outputs delivered by each of the 227 multi-
output processes.

As an example, let us suppose in Ecoin-
vent one finds a multi-output process
producing Y kg of a PRODUCT #1 and Z kg
of a PRODUCT #2, using an input of X MJ
of energy. Let us assume an allocation crite-
rion (e.g. based on the economic value of the
by-products) has been chosen by the Ecoin-
vent team and allocation factors of 80% and
20% have been assigned to the PRODUCT
#1 and the PRODUCT #2, respectively2. In

2 These allocation factors can be found in the
Ecoinvent report where the multi-output process
at stake is documented, and their values can be

the Ecoinvent database one will find the en-
ergy allocated to the unit amount of PROD-
UCT #1 as (X · 0.8)/Y and to the unit amount
of PRODUCT #2 as (X · 0.2)/Z. The specific
C++ algorithm will allow compliance with
Emergy algebra rule No. 2 by retrieving the
allocation factors from the corresponding
.xml file describing the multi-output process
at stake. Then, from those values it will cal-
culate the total amount X of the inventory
item (in this case energy) that had been allo-
cated, so that it can be totally reassigned to
both products. This sort of “un-allocation”
process assigns to the unit amount of PROD-
UCT #1 an amount of energy equal to X/Y MJ
and to the unit amount of PRODUCT #2 an
amount of energy equal to X/Z MJ.

found within the .xml file containing the informa-
tion about the multi-output process. The .xml files
can be downloaded from the Ecoinvent website
upon licence purchase for the database.
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 Define : Graph G, Queue Q, List Inputs, List OutFlows, Parameter 

MinFraction 

Initialize: G for system with nodes containing tuples defined 
(child = node, weight = fraction of emergy flowing to child) 
Require: child weights sum to 1.0 

Initialize: Inputs for system with tuples (node, flow) 

Initialize: MinFraction as minimum fraction of each input to pass 
to child process nodes 

Initialize: Q as empty FIFO queue, Outflows as empty List 

For input (node, flow) in Inputs: 
  Define : Set P 
  Add: node to P 
  Define : MinFlow = MinFraction * flow 
  Define : Task T = (node, flow, P, MinFlow) 
  Push: T to Q 

While Q has elements: 
  Pop: Task U = (node, flow, path, minflow)  
  If node has no children: 
    Define : Output O = (node, flow) 
    Add: O to OutFlows 

  For child in node (child, weight): 
    Define : childflow = weight * flow 
    If childflow >= minflow AND child NOT IN path: 
      Add: child to path 
      Add: Task (child, childflow, path, minflow) to Q 

Collect: Sum outputs (node, flow) in Outflows by node 

Fig. 4. Pseudo-code of the BFS algorithm (from [22]).

2 Conclusions and future work

The paper describes an algorithm specifi-
cally devised to calculate the Emergy asso-
ciated to a product/process using a matrix-
based framework. This allows the use of the
life cycle data contained in LCI databases,
thus supplying an operational tool toward
an integration of EME and LCA.

The algorithm implements a vari-
ant (based on graph search) of the
track summing algorithm originally due to
Tennenbaum [21].

A different instantiation of the algorithm
using a multi-threaded BFS strategy has
been previously applied to a simplified case
study of flat glass production (7 × 7 matrix)
in Marvuglia et al. [22], yielding consistent
results with a very short calculation time (as
small as 1.37 s).

The newest (more memory efficient) ver-
sion of the Emergy calculation routine based
on the DFS algorithm has been already com-
pleted and is being tested on case studies

involving matrices of thousands of rows and
columns, describing real product production
systems.

The final version of the algorithm will
be included in an Emergy calculation soft-
ware which is currently under development.
The software will then be applied case by
case to several specific product’s life cycles
modeled using conventional LCA software
tools, thus allowing an exact calculation of
their Emergy and the creation of an inventory
of Emergy values. In the integrated combi-
nation of EME and LCA, the use of LCA
frameworks is expected to greatly improve
the quality and consistency of the Emergy
results.
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