
HAL Id: hal-00926410
https://hal.science/hal-00926410

Submitted on 9 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Assure-It: A Runtime Synchronization Tool of
Assurance Cases

Shunsuke Shida, Atsushi Uchida, Masaki Ishii, Masahiro Ide, Kimio
Kuramitsu

To cite this version:
Shunsuke Shida, Atsushi Uchida, Masaki Ishii, Masahiro Ide, Kimio Kuramitsu. Assure-It: A Runtime
Synchronization Tool of Assurance Cases. Safecomp 2013 FastAbstract, Sep 2013, Toulouse, France.
pp.NC. �hal-00926410�

https://hal.science/hal-00926410
https://hal.archives-ouvertes.fr

Assure-It: A Runtime Synchronization Tool of
Assurance Cases

Shunsuke Shida, Atsushi Uchida, Masaki Ishii, Masahiro Ide, and Kimio Kuramitsu
Yokohama National University

Yokohama, Japan
{shida-shunsuke-vn, uchida-atsushi-vt, ishii-masaki-cs}@ynu.ac.jp , imasahiro9@gmail.com, kimio@ynu.ac.jp

Abstract—More recently, the idea of runtime synchronization
of GSN has been proposed, where evidences are being collected
from logs that are produced by monitors and other software
components. By introducing the runtime synchronization, GSN
can be regarded as a program where its validity is checked by
applying runtime contexts. In this fast abstract, we introduce
Assure-It, a novel tool that enforces administration scripts with
assurance cases guidance and runtime synchronization.

Keywords—administration scripts; assurance cases; system
dependability; software engineering supports;

I. INTRODUCTION
Scripting languages such as Bourne shell and Perl have

been broadly used to perform system administration tasks,
including system maintenance, system diagnosis, and failure
response [1]. As these tasks are strongly related to the
realization of system dependability (reliability, availability,
etc.) requirements, software engineering supports for
administration scripts are practically significant. However,
most of these today’s scripts are written in an ad hoc manner,
unfortunately resulting in several causes of system failures.

Assure-It is a novel open source tool and developed in the
JST/DEOS project to provide the means of modularizing
scripting solutions for system administration under
dependability requirements. The key idea is the use of
assurance cases in order to associate dependability goals with
administration tasks, which will be composed in a final
executable script. Due to the specified association, the partial
failure of script execution can be detected as an error from the
associated dependability goals. In addition, Assure-It allows us
to argue an incremental analysis of failure-case, which enables
richer failure/error handling.

This fast abstract will show how Assure-It works with the
concept of assurance cases. Several dependability goals (such
as system and data availability, privacy and accountability) are
argued over assurance cases, by associating monitoring and
administration tasks. From the assurance cases, Assure-It can
generate an executable script, directly connected to the
realization of argued dependability goals.

The rest of this fast abstract proceeds as follows. Section 2
introduces Goal Structuring Notation, a standard notation of
assurance cases, used in Assure-It. Section 3 overviews how

Assure-It generates executable scripts from the arguments on
assurance cases. Section 4 briefly describes the summary of
this fast abstract.

II. GSN AND THE CONCEPT OF ASSURE-IT
Assure-It has adopted GSN[2] as a common notation

bridging existing assurance cases methodology. In addition, we
attempt to add dynamic properties in order to synchronize
assurance cases with runtime system through script executions.

A. Goal Structuring Notation
Goal Structuring Notation has four major elements, goal

(depicted in rectangle), strategy (parallelogram), evidence
(oval), and context (rounded rectangle). The goal element is a
claim that a system certainly has some desirable properties.
The evidence element is a fact supporting that the linked claim
is true. The goal without linked evidence is called undeveloped
goal and depicted with diamond. The strategy element is an
assumption or a pre-condition that linked goal holds. Fig. 1
shows an example of GSN.

B. Extended Functional Evidence
The functional GSN, we propose in this fast abstract, is an

extended one that accepts as one of valid evidence a program
that produces logs supporting the correctness of its
performance. Note that logging feedbacks are required for

Fig. 1 An Example of GSN.

Strategy(S1(
!Arguing!over!
a,ributes!

Goal(G2(
System!is!reliable!

Goal(G3(
System!is!available!

Goal(G1(
System!is!
dependable!

Context(C1((
System!runs!
on!AWS!!

Evidence(E1(
so7ware!is!
well!tested!

Evidence(E2(
Scale!out!
solu:on!

Context(C2((
Response!:me!
should!be!less!
than!200ms!

runtime synchronization as depicted in Fig 2. A typical
example of the program is a monitor notifying us of erroneous
situations. Another typical example can be a system
administration script that performs data backup and failure
handling tasks, which straightforwardly lead to the realization
of some dependability properties. From viewpoint of
programming, these monitors and tasks are regarded as a
function taking runtime contexts and then checking the validity
of the associated goal.

It is important to note that the absence of failures in the
functional element is not practical. Robin et al [3] proposes the
meta assurance cases method to argue failure-case analysis on
GSN. Using these methods, we can generate more reliable
script that includes richer failure/error handling. Due to the
space constrain, we are omitting the formalization of meta
GSN in this fast abstract.

III. TOOL DESCRIPTION
Assure-It allows arguing the strategic division of

dependability goals with assurance cases method. Fig. 3
describes the overview of Assure-It. It generates executable
scripts from GSN arguments, binding each of operational
solutions with strategy as control flows and deploys the
generated scripts on running systems, and execution results are
generated. Assure-It consists of two applications: a client and a
server. Users create assurance cases by using client application,
which is accessible through a mordern web browser.

A. Code Generation from Assurance Cases
As noted above, source code is generated from Assurance

Cases, which is created by Assure-It to get in touch with

runtime environment. In Assure-It evidence element consist of
static evidence such as test results and code snippets, short
length of shell scripts. The script that performs system
administration is generated by making code snippets
structured depending on rules described on strategy.

IV. SUMMARY
The assurance cases method provides the guidance to

modularize administration tasks from viewpoint of de-
pendability requirements. Assure-It is a tool that can generate
an executable administration script by combining modularized
tasks on assurance cases arguments. Running the generated
script is an evaluation of dynamic assurance cases, being
applied by runtime contexts.

REFERENCES
[1] Mario Tokoro. Open Systems Dependability: Dependability Engineering

for Ever-Changing Systems. CRC Press, 2012.
[2] Tim, K. and Rob, W.: The Goal Structuring Notation A Safety

Argument Notation, In Proc of DSN 2004 (2004).
[3] Robin E. Bloomfield, Peter Bishop: Safety and Assurance Cases: Past,

Present and Possible Future - an Adelard Perspective, in Making
Systems Safer: Proceedings of the Eighteenth Safety-Critical Systems
Symposium, pp. 51-67, (2010).

Fig. 2 Static Evidence and Runtime Synchronization

Fig. 3 An Overview of Assure-It

