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Removal of volatile organic compounds by heterogeneous

ozonation on microporous synthetic alumina silicate

Nicolas Brodu, Hicham Zaitan, Marie-Hélène Manero

and Jean-Stéphane Pic
ABSTRACT
A hybrid process combining adsorption and ozonation was examined as an alternative treatment for

odorous volatile organic compounds (VOCs). Methyl ethyl ketone (MEK) was chosen to study the

influence of operating parameters. Two synthetic aluminosilicates (faujasite-Y and ZSM-5) were

tested for adsorption and reactivity with ozone. The adsorption equilibrium measurement on both

adsorbents showed that adsorption performance depends on temperature but is not sensitive to

relative humidity, due to the hydrophobic properties of the materials. Adsorbed VOCs were oxidized

at low temperature when ozonated flow was sent to the reactor. Regeneration of the fixed bed was

achieved at the same time, releasing mainly CO2 and H2O. Intermediates of oxidation, such as

2,3-butanedione and acetic acid, were identified, leading to incomplete mineralization. The influence

of concentration and humidity are discussed. Four successive cycles were tested: after the first

adsorption/ozonation cycle, the adsorption efficiency was not affected during subsequent cycles.

These results show that the same sample of adsorbent can be used in the treatment process for a

long time. Ozonation regeneration is a promising process for VOC removal.
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INTRODUCTION
Among many techniques available for controlling volatile

organic compound (VOC) emissions, adsorption on acti-
vated carbon (AC) has been found to be effective at low
concentration levels (Zhao et al. ). However, the regen-
eration of AC remains a problem because the regeneration

process is slow, expensive and may cause irreversible
damages to AC (Alvarez et al. ). The crystalline and
mineral structures of aluminosilicate adsorbents give

them strong thermal and chemical stability, and new
ways of regeneration, such as oxidation with powerful oxi-
dants like ozone (Sagehashi et al. ; Monneyron et al.
), have been explored recently. Oxidation using
ozone, and supported by catalysts, has already been used
for the treatment of air polluted with hazardous com-

pounds (Konova et al. ; Einaga & Ogata ). Very
few studies focused on the coupling of ozone and alumino-
silicates to remove VOCs (Monneyron et al. ; Kwong
et al. ; Valdes et al. ; Einaga et al. ). In the
present work, methyl ethyl ketone (MEK; butan-2-one)

was chosen as a common odorous pollutant. This com-
pound was also chosen for its very weak reactivity with
ozone in the gaseous phase.
METHODS

Adsorbents and adsorbate

Two types of aluminosilicate were used, supplied by
TOSOH Corp. in the form of pellets: a de-aluminated
faujasite Y (Fau-Y) and a silicalite ZSM-5. The main charac-

teristics of the adsorbents are given in Table 1. Prior to
experimentation, the adsorbents were heated in a drying
oven at 500 K for 24 h and kept in a desiccator. The VOC

used in this study was MEK (purity >99%), purchased
from Aldrich.
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Table 1 | Characteristics of the adsorbents

Type (symbol) Faujasite ZSM-5

Crystalline framework α-cages Interconnected channels

Pore diameter (Å) 7.4(aperture) - 13(cage Ø) (5.7 × 5.1) and 5.4

SiO2/Al2O3 (mol mol�1) 360 1,880

Active porous volume (cm3 g�1) 0.24 0.18

BETa surface area (m2 g�1) 650 300

Granular diameter (mm) 3 1.5

aBrunauer–Emmett–Teller.
Laboratory-scale pilot

Adsorption isotherms were performed using a static volu-
metric apparatus, described in a previous study (Brosillon
et al. ). Adsorbed quantities were normalized for pure

zeolite material, assuming that the inert clay binder mass
does not participate in the adsorption phenomena. The
experimental fixed bed is shown in Figure 1. It is composed

of a polluted air generator, an ozonated air generator (5LO
Trailigaz model) and a glass reactor (internal diameter (ID):
8 cm, length: 20 cm) in which adsorbents are introduced

(from 100 g to 200 g). Experimental conditions were: air
flow rate 5 m3 h–1, VOC concentration 1.35 g m–3 and ozo-
nated air flow fixed between 0.1 and 0.25 m3 h�1. Ozone

concentration was 18 g m�3. The adsorption and ozonation
occurred at room temperature (24 WC± 2 WC).

On-line gas analysis was performed using a Varian 3800
gas chromatograph (GC) equipped with flame ionization

(FID) and thermal conductivity (TCD) detectors. VOCs
were analysed with a CP-SIL 8 capillary column (30 m ×
0.53 mm ID) with a 1.0 μm film thickness, and CO2

with a Hayesep Q 60/80 column (1 m × 3 mm). Ozone
concentration was determined by a UV BMT 964 Ozone
Analyzer.
RESULTS AND DISCUSSION

Adsorption equilibrium isotherms of MEK

Adsorption isotherms were determined for both
adsorbents at a low partial relative pressure range,

corresponding to P/P0� 0.1 or C� 35 g m�3. As previous
research seemed to prove that temperature could enhance
adsorption capacity of aluminosilicates (Wang et al. ),
the influence of temperature (T) on isotherms was investi-
gated. Furthermore, the influence of moisture (relative
humidity) was studied on the adsorption capacity of

these adsorbents.
The experimental adsorption isotherms are presented

in Figure 2(a) (influence of T) and 2(b) (influence of rela-
tive humidity; RH). A sharp increase in capacity is

observed at low partial pressures for ZSM-5, corresponding
to micropore filling, followed by a flat plateau region at
relatively high partial pressures indicating good adsorption

affinity. The isotherm curves are of type I of the IUPAC
classification (Sing et al. ) and can be modelled by
the Langmuir equation as expected for this kind of micro-

porous adsorbent (Monneyron et al. ). For Fau-Y
adsorption, a weaker increase can be observed at low par-
tial pressures but stabilization is found at higher values

than for ZSM-5. This result is explained by a greater
porous volume for Fau-Y than for ZSM-5: 0.24 cm3 g�1

versus 0.18 cm3 g�1.
The increase in temperature of adsorption decreases the

quantity of MEK adsorbed on ZSM-5 and Fau-Y. Using the
assumption that the adsorbed phase is comparable with a
liquid state, micropore filling was calculated at this plateau

region. The volumes of MEK adsorbed on ZSM-5 at this pla-
teau are 0.148 cm3 g�1 at 298 K and 0.141 cm3 g�1 at 333 K,
corresponding to filling rates of 82% and 78%, respectively.

On Fau-Y, the filling rate of MEK is 87% (298 K) and 51%
(333 K), indicating a higher loss of adsorption capacity
with temperature. These differences can be explained by

the pore structure and pore diameter. The pores of ZSM-5
(5.5 Å) are narrower than Fau-Y (7.4 Å). The MEK mol-
ecules with a kinetic diameter of 5.2 Å interact strongly
with the channel walls of ZSM-5, whereas this interaction

is much smaller in large pore aluminosilicates, such as
Fau-Y (Meininghaus et al. ).

Regarding the influence of humidity, results presented in

Figure 2(b) showed that the adsorption capacity was not sig-
nificantly affected by moisture content. The hydrophobicity
of both materials is proven.



Figure 1 | (a) Scheme illustration for the experimental set-up of adsorption/ozonation. (1) air supply; (2) mass flow controller; (3) saturators; (4) thermostatic bath; (5) ozone generator;

(6) mixing volume; (7) 3-way valve; (8) temperature control fluid; (9) reactor; (10) GC/FID/TCD and (11) ozone analyser; (b) Schematic diagram of the reactor designed for this

application.
The adsorption/ozonation treatment

The treatment of polluted air was carried out in the labora-
tory-scale pilot by a sequential process: adsorption then
ozonation. The typical course of an experiment is rep-
resented in Figure 3 for one cycle of adsorption/ozonation

of MEK at room temperature.

Adsorption step

A classical breakthrough curve can be observed, with

different curve shapes for the two adsorbents. The weak
slope of the ZSM-5 curve can be explained by a wide mass
transfer zone and a probable limitation by the internal resist-
ance to transfer. The Fau-Y curve slope is slightly greater

(702 mg m�3 h�1 versus 440 mg m�3 h�1) and the mass-
transfer zone is smaller, representative of better affinity
with MEK.

The total amount of MEK adsorbed was obtained by inte-

gration of the breakthrough curve (hatched part on Figure 3).
The results obtained for extrapolation to total saturation
(0.103 and 0.043 g g�1 for ZSM-5 and Fau-Y respectively)

are in quite good agreement with the static adsorption
equilibrium. For a concentration of MEK of 1.35 g m�3,
the adsorption capacity from isotherm experiments was

0.108 g g�1 for ZSM-5 and 0.062 g g�1 for Fau-Y.



Figure 3 | (a) VOC concentration profiles during a discontinuous adsorption/ozonation cycle of

increase in ZSM-5 during ozonation. (B2) Temperature increase in Fau-Y during ozo

Figure 2 | (a) Adsorption isotherms of MEK on two high-silica zeolites: influence of T:

ZSM-5: ○ 298 K; □ 333 K ; Fau-Y: • 298 K; ▪ 333 K. (b) Adsorption isotherms of

MEK on two high-silica zeolites: Influence of humidity (333 K): ZSM-5:○ dry air;

□ RH¼ 50%; Fau-Y: • dry air; ▪ RH¼ 80%.
Ozonation step

When a given partial saturation rate (Cout/Cin¼ 0.50) is
reached, inlet polluted air is stopped and ozonated air

(18 g m�3 under a flow of 0.25 m3 h�1) is sent through the
reactor. A very high peak is observed (Figure 3) as soon as
the ozonation begins, an indication of strong desorption of
MEK. This thermal desorption is probably caused by the

local heating induced by the oxidation. During this phase,
very high temperature increases are seen (Figure 3B1 &
Figure 3B2): ΔT¼ 106 WC for ZSM-5 and 145 WC for Fau-Y.

The desorbed amount was determined by integration of
the curve. The desorbed quantity is about 2.03 g of MEK for
Fau-Y and 2.42 g for ZSM-5, which accounts for 26%

and 15% of the initially adsorbed quantity for Fau-Y and
ZSM-5 respectively. In an industrial situation, the adsorp-
tion step would be stopped before 50% saturation, and the
thermal desorbed VOCs would be less important and

could be adsorbed in the bed zone free of adsorbate or
could be recycled.

The regeneration of adsorption capacity was estimated

by comparing the adsorbed quantities of MEK before and
after each ozonation. The regeneration is very weak for
ZSM-5 (22%) whereas it is much stronger for Fau-Y (79%).

The structure of this channelled adsorbent may explain
this result. If molecular ozone is not able to diffuse easily
to meet adsorbed MEK, oxidation cannot take place,

whereas the large cage structure of Fau-Y allows easy
MEK (1.35 g m�3) on two adsorbents: ZSM-5 (202 g) and Fau-Y (205 g). (b) (B1) Temperature

nation
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Mass balance during ozonation step

Using measurements of concentrations versus time the mass
balance was determined for carbonated compounds and for
ozone, and is presented in Table 2 for the experiment on

ZSM-5. A comparison is made between the theoretical min-
eralization reaction (Equation (1)) and the real oxidation
reaction due to stoichiometry coefficients:

C4H8Oþ 11=3O3 ! 4CO2 þ 4H2O (1)

It can be seen that the mass balances of carbon and
oxygen are incomplete and hence experimental and theor-

etical coefficients values are quite different. The lack of
CO2 production and the weak ozone consumption are
indicative of incomplete oxidation, with the formation of

sub-products. These components are probably oxidation
reaction intermediates, such as aldehydes, organic acids,
ketones and alcohol. Indeed, the formation of other peaks
was observed, showing the presence of sub-products such

as acetone and ethanol. 2,3-butanedione and acetic acid
were identified and their production was quantified
(Table 2); traces of other sub-products were also detected.
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Successive cycles of adsorption/ozonation

In order to evaluate the stability of the adsorbent during the

cycle of adsorption and regeneration by O3, the reuse exper-
iment was carried out. The operating conditions for the
adsorption and ozonation steps were the same as described

above. Tests of adsorption were carried out on a mass of
200 g of ZSM-5 and 205 g of Fau-Y, with a concentration of
MEK of 1.35 g m�3 in the air for a total flow of 5 m3h�1.

The ozonation phase was carried out after each step of adsorp-
tion (50% partial saturation) with a concentration of O3/air of
about 18 g Nm�3 for a flow of 0.25 m3 h�1. Figures 4 and 5

show the changing MEK concentration on Fau-Y and ZSM-5.
The quantities of MEK adsorbed after the first phase of

adsorption (cycle 1) are 15.4 g MEK on ZSM-5 and 7.18 g
MEK on Fau-Y, confirming the better adsorption of ZSM-5

in the low concentration range. The breakthrough time of
the second cycle of adsorption–ozonation is lower than
the first, especially for ZSM-5, from 86 min to 8 min for

ZSM-5 and from 30 min to 18 min for Fau-Y. This seems
to indicate a decrease of the adsorption capacities of the



Figure 5 | Cyclic study of adsorption/ozonation of MEK on ZSM-5. ○: adsorption of MEK

(1.35 g m�3) on ZSM-5, ▪: O3 on ZSM-5.

Figure 4 | Cyclic study of adsorption/ozonation of MEK on Fau-Y. ○: adsorption of MEK

(1.35 g m�3) on Fau-Y, ▪: O3 on Fau-Y.

Figure 6 | Evolution of adsorption capacity during the adsorption/ozonation process.

•: adsorbed amount on Fau-Y, ▴: adsorbed amount on ZSM-5; ○: regeneration

rate of Fau-Y, Δ: regeneration rate of ZSM-5.
material, probably caused by some remaining adsorbed by-
products. A change in the physical or chemical surface of
aluminosilicate is also possible (Valdes et al. ) and

could be the origin of the decrease of adsorption.
The regeneration of adsorption capacity was estimated

by comparing the adsorbed quantities of MEK on the two

adsorbents before and after each ozonation. Results are
reported in Figure 6.

Stabilization was observed after the first adsorption/

ozonation cycle, showing a constant regeneration rate.
Fau-Y has better results than ZSM-5, with a constant regen-
eration rate of about 75–83%. For ZSM-5, the regeneration

rate is weaker (28–32%) but the interesting point is that it
is stable. Strong heating of the ZSM-5 (500 WC), showed
that the adsorbed compounds could be desorbed. The re-

adsorbed quantity of MEK was 14.3 g, corresponding to
93% of the adsorbed quantity at the first cycle of adsorp-
tion–ozonation for the ZSM-5. Thus, it can be deduced
that no real irreversible poisoning of catalysts occurred

during ozonation.
CONCLUSIONS

Experimental results of static adsorption and those con-
ducted in the laboratory-scale pilot showed the feasibility
of this treatment, coupling adsorption on microporous syn-
thetic aluminosilicate and oxidation with ozone.

Good capture of MEK in dry or wet conditions was
found and a good regeneration of the adsorbent occurred
at ambient temperature and pressure, with better results for

Fau-Y. The main products of oxidation were CO2 and
H2O. Intermediates of oxidation such as 2,3-butanedione
and acetic acid were identified, leading to incomplete miner-

alization. The adsorbents’ efficiency was not highly affected
after four consecutive cycles of MEK adsorption–ozonation.
These results show that the same sample of adsorbent can be
used in the treatment process for a long time. Ozonation

regeneration is a promising process for VOC removal.
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