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Abstract. Passive source localization is a well known inverse problem in which we convert
the observed measurements into information about the direction of arrivals. In this paper we
focus on the optimal resolution of such problem. More precisely, we propose in this contribution
to derive and analyze the Angular Resolution Limit (ARL) for the scenario of mixed Near-
Field (NF) and Far-Field (FF) Sources. This scenario is relevant to some realistic situations.
We base our analysis on the Smith’s equation which involves the Cramér-Rao Bound (CRB).
This equation provides the theoretical ARL which is independent of a specific estimator. Our
methodology is the following: first, we derive a closed-form expression of the CRB for the
considered problem. Using these expressions, we can rewrite the Smith’s equation as a 4-th order
polynomial by assuming a small separation of the sources. Finally, we derive in closed-form the
analytic ARL under or not the assumption of low noise variance. The obtained expression is
compact and can provide useful qualitative informations on the behavior of the ARL.

1. Introduction
Very few works are related to the study of the realistic situation where there exists coexisting far-
field (FF) and near-field (NF) sources [2] such as speaker localization using microphone arrays
and guidance (homing) systems. At the contrary, we can find a plethora of contributions on
the localization of far-field sources [1]. More recently, the problem of localization of near-field
sources has been tackled in reference [4, 5] for instance. In the context of the problem of source
localization, one can see three contributions: (1) propose new efficient algorithms/estimators
[1], (2) study the estimation performance independently of a specific algorithm thanks to the
lower bound on the Mean Square error (MSE) [3, 5] and (3) derive and study the theoretical
resolution, i.e., the minimal angular distance to resolve/discriminate two closely spaced emitted
signals in terms of their direction of arrivals. Our contribution belongs to the third point. More
precisely, based on the Smith’s equation [6, 8, 9] which involves the Cramér-Rao Bound (CRB)
[3], we derive and analyze the Angular Resolution Limit (ARL) for the realistic scenario where
we have two sources, one located in the far-field of the array and another in the near-field of the
array.



2. Model setup
We consider some practical applications where the signals s1(t) and s2(t) with t ∈ [1 : T ] in
which T is the number of snapshots received by an uniform linear array composed by L sensors
are the mixture of near-field and far-field sources. More precisely, the (TL) × 1 observation
vector is defined as y = ȳ + e where e is the complex centered circular additive white Gaussian

noise of variance σ2 and the (TL)×1 noise-free signal is ȳ =

As(1)
...

As(T )

 with s(t) = [s1(t) s2(t)]
T

and A =
[
a(ω1) b(ω2, φ)

]
where the signal sources sm(t) are viewed as deterministic known

signals and the steering vectors are defined by [a(ω1)]` = eiω1` and [b(ω2, φ)]` = ei(ω2`+φ`2) with
` ∈ [0 : L− 1]. In addition, we assume ω1 6= ω2. We define the determinist non-zero separation
by δ = ω2 − ω1. We focus our attention on the electric parameters but these parameters
can be linked to the physical parameters, namely the DOA θm and the range r, according to
ωm = −2πd/λ sin(θm) and φ = πd2/(λr) cos(θ2)

2 where d is the distance inter-sensor and λ is
the wavelength.

3. Analytic ARL in the Smith’s sense
3.1. Analytical expression of the Cramer-Rao Bound
The Cramer-Rao Bound (CRB) verifies the covariance inequality principle [3]. This bound is
largely used in the signal processing community since it gives the best performance in term of
Mean Square Error (MSE) at high Signal to Noise Ratio (SNR). Let ω̂m be an unbiased estimate
of ωm, then

E{(ωm − ω̂m)2} ≥ [C]mm
def
= [J−1]mm (1)

where E{.} is the mathematical expectation and J is the Fisher Information Matrix (FIM)
defined by the Slepian-Bangs formula for a complex circular Gaussian observation y ∼
CN (ȳ, σ2I):

[J]ij =
2

σ2
<

{(
∂ȳ

∂ωi

)H ∂ȳ

∂ωj

}
=

2

σ2

T∑
t=1

<

{
s(t)H

(
∂A

∂ωi

)H ∂A

∂ωj
s(t)

}
(2)

where ∂A
∂ω1

=
[
ȧ(ω1) 0

]
, ∂A
∂ω2

=
[
0 ḃ(ω2, φ)

]
, ∂A
∂φ =

[
0 b̈(ω2, φ)

]
where ȧ(ω1) (resp. ḃ(ω2, φ))

is the first-order derivative of a(ω1) (resp. b(ω2, φ)) w.r.t. the parameters ω1, ω2, respectively

and b̈(ω2, φ) is the first-order derivative w.r.t. the parameter φ. After some algebra, one obtains
the CRB for the parameters of interest and the coupling term:

CRB(ω1) =
σ2

2

β

Q
, (3)

CRB(ω2) =
σ2

2

L2||s1||2 − η2(δ)
L3||s2||2

Q
, (4)

CRB(ω1, ω2) = −σ
2

2

ζ(δ)− η(δ)L3

L4

Q
. (5)

where β = ||s2||2
(
L2 −

L2
3

L4

)
, Q = β

(
L2||s1||2 − η2(δ)

L3||s2||2

)
−
(
ζ(δ)− η(δ)L2

L3

)2
, Lr =

∑L−1
`=0 `

r

and η(δ) = <
{
h
∑L−1

`=0 `
2ei(δ`+φ`

2)
}

and η(δ) = <
{
h
∑L−1

`=0 `
3ei(δ`+φ`

2)
}

with h = sH1 s2.



3.2. Derivation of the analytic ARL
3.2.1. The Smith’s equation: The Smith’s methodology [6] provides the ARL as the solution
of the following equation:

CRB(δ) = δ2. (6)

Expanding CRB(δ) w.r.t. the localization parameters and the coupling term, we have [7]:

CRB(δ) = CRB(ω1) + CRB(ω2)− 2CRB(ω1, ω2) (7)

where the CRBs are given by expressions (3)-(5).

3.2.2. Polynomial resolution of the linearized problem: Solving analytically equation (6) with
(7) and (3)-(5) seems an intractable problem. Recalling that we assume that the separation δ is
small then a first-order Taylor expansions of ζ(δ) and η(δ) lead to the following approximations:

η(δ) ≈ <{h(v(φ) + jδr(φ))} , ζ(δ) ≈ <{h(u(φ) + jδv(φ))} (8)

in which u(φ) =
∑L−1

`=0 `
2eiφ`

2
, v(φ) =

∑L−1
`=0 `

3eiφ`
2

and r(φ) =
∑L−1

`=0 `
4eiφ`

2
. The above relation

can be rewritten in a linear form w.r.t. the separation according to

<{h(v(φ) + jδr(φ))} = P − δQ, <{h(u(φ) + jδv(φ))} = P ′ − δQ′ (9)

where P = <{hv(φ)}, Q = −={hr(φ)}, P ′ = <{hu(φ)} and Q′ = −={hv(φ)}. Using these
approximations, one can rewrite the CRB as

C = J−1
def
=

σ2

2

[
Q−1 ×
× ×

]
, (10)

where, the Schur complement can be approximated as follow Q ≈
[
P2(δ) P1(δ)
P1(δ) β

]
in which we

have introduced the two following polynomials P2(δ) = α1δ + α0 and P2(δ) = a2δ
2 + a1δ + a0

where a2 = − Q2

L4||s2||2 , a1 = − 2PQ
L4||s2||2 , a0 = L2||s1||2− P 2

L4||s2||2 , α1 = Q′− L3
L4
Q and α0 = P ′− L3

L4
P .

The linearized CRB expressions are now given by

CRB(ω1) ≈
σ2

2

β

Q(δ)
, (11)

CRB(ω2) ≈
σ2

2

P2(δ)

Q(δ)
, (12)

CRB(ω1, ω2) ≈ −
σ2

2

P1(δ)

Q(δ)
, (13)

where Q(δ) = P2(α)β−P 2
1 (δ) = (βa2−α2

1)δ
2+(βa1−2α0α1)δ+βa0−α2

0. Consequently from (6)

and (11)-(13), the Smith’s equation becomes δ2 = Q′(δ)
Q(δ) where Q′(δ) = σ2

2 (β+P2(δ)+2P1(δ))
def
=

c2δ
2 + c1δ + c0 with c2 = σ2

2 a2, c1 = σ2

2 (a1 + 2α1) and c0 = σ2

2 (β + a0 + 2α0). So, it is easy
to see that the Smith’s equation provides the ARL as the solution of a 4-th order polynomial
according to

R(x) = Q(x)x2 −Q′(x)
def
= x4 + g3x

3 + g2x
2 + g1x+ g0 (14)

where x is a free variable with g0 = − c0
βa2−α2

1
, g1 = − c1

βa2−α2
1
, g2 =

βa0−α2
0−c2

βa2−α2
1
, g3 = βa1−2α0α1

βa2−α2
1

where we assume βa2 6= α2
1.



3.2.3. Analytic solutions of R(x): The resolution of a 4-th order polynomial is not
straightforward but we propose a solution to this problem. More precisely, as CRB(δ) =
CRB(−δ), it is easy to see that if δ is a solution of the Smith’s equation then −δ is also a
solution. This implies that if δ is a root of R(x) then −δ is also a root. So, R(x) has four roots,
namely {δ,−δ, r1, r2} and a decomposition of this polynomial into a product of monomial terms
is given by

R(x) = (x− δ)(x+ δ)(x− r1)(x− r2) (15)

= x4 − (r1 + r2)x
3 + (r1r2 − δ2)x2 (16)

+ δ2(r1 + r2)x− r1r2δ2. (17)

We can identify the coefficients of the polynomials (14) and (17) according to
−(r1 + r2) = βa1−2α0α1

βa2−α2
1
,

r1r2 − δ2 =
βa0−α2

0−c2
βa2−α2

1
,

δ2(r1 + r2) = − c1
βa2−α2

1
,

−r1r2δ2 = − c0
βa2−α2

1
.

(18)

Combining the second and the last equations, we have to solve the following polynomial:

R′(x) = (βa2 − α2
1)x

4 + (βa0 − α2
0 − c2)x2 − c0. (19)

Polynomial R′(x) can be reformulated as a 2-rd order polynomial according to

R′(z) = (βa2 − α2
1)z

2 + (βa0 − α2
0 − c2)z − c0. (20)

The discriminant is

∆ = (βa0 − α2
0 − c2)2

(
1 + 4

(βa2 − α2
1)c0

(βa0 − α2
0 − c2)2

)
. (21)

The study of the sign of the discriminant is not straightforward but observe that c0, c2
σ2→0−→ 0,

so if the noise variance is low then the discriminant is given by

∆
σ2→0−→ (βa0 − α2

0 − c2)2 ≥ 0. (22)

So, we know that if the noise variance is not too high, there exists two candidates for the
ARL (or a double solution if the discriminant is zero) which are given by

δ =

√
−(βa0 − α2

0 − c2)±
√

∆

2(βa2 − α2
1)

(23)

where
√

∆ is given by the square root of expression (21).

3.2.4. Analytic expression of the ARL: To discriminate the two possible solutions, we advocate

that δ
σ2→0−→ 0 is a reasonable property. Thus, note thanks to (22), the sign in (23) must be chosen

as positive to ensure δ
σ2→0−→ 0. If not (in case of negative sign in (23)) the chosen solution will

be meaningless. So, finally the ARL is given by

δ =

√
−(βa0 − α2

0 − c2) +
√

∆

2(βa2 − α2
1)

. (24)



To provide further simplifications, we can see that

√
∆ ≈ βa0 − α2

0 − c2 +
2(βa2 − α2

1)c0
βa0 − α2

0 − c2
(25)

thanks to a first-order Taylor expansion of the square root
√

1 + x ≈ 1+1/2x for small x. Using
the above approximation of

√
∆, the ARL takes the simple following expression:

δ ≈
√

c0
βa0 − α2

0 − c2
. (26)

So, we can see that δ ≈ O(σ).

4. Numerical illustrations
In this simulation part, we have considered an array constituted by L = 10 sensors. The sources
are chosen to be close where θFF = π/3 and θNF = π/3.1 and the range of this source belongs
to the interval [0.62(d3(L − 1)3/T )λ, 2d2(L − 1)2/λ] [5] where d = 0.0125 m and the carrier
frequency is f0 = 10 Mhz (the wavelength is λ = c/f0 where c is celerity of the light). The
modulus of the NF sources is fixed to ten times higher than the modulus of FF source. It is
normal to assume that the source which is the closest has a higher power than the one which
belongs to the FF. The number of snapshot is T = 100. On Fig. 1, we have reported the positive
roots of each polynomials R(x), R′(x) and the analytic ARL given in expression (24). As we can
see one root for polynomials R(x) and R′(x) are independent from the noise variance. These
two roots have to be ignored. In addition, we can see that the one root for R(x) and R′(x) are
equal and follow a decreasing function w.r.t. the inverse of the noise variance. Moreover, the
analytic ARL given in expression (24) is in good agreement with these roots and thus assess the
validity of the derivations given in the previous section. The ARL given in expression (24) and
the approximated ARL under the assumption of low noise variance given in expression (26) are
reported on Fig. 2. It is important to highlight the good accuracy of the proposed approximated
ARL.
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Figure 1. (a) Positive roots for polynomials R(x), R′(x) and analytic ARL given in expression
(24) vs. the inverse of the noise variance. (b) ARL given in expression (24) and the approximated
ARL under the assumption of low noise variance given in expression (26) vs. the inverse of the
noise variance.



5. Conclusion
In this paper, we have derived and analyzed the Angular Resolution Limit (ARL) based on the
resolution of the linearized Smith’s equation for the new and realistic scenario where far-field
and near-field sources are mixed. Generally speaking, the ARL is important and fundamental
since this quantity gives the limit in the resolvability/separation of two closely spaced signals
in term of their direction of arrivals. We show that for the chosen application, the resolution of
the Smith’s equation turns to be the selection of the ”right” root of a 4-th order polynomial.
This allows us to give a closed-form (analytic) expression of the ARL.
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