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Abstract

Reducing the number of secondary data used to estimate the Covariance Matrix
(CM) for Space Time Adaptive Processing (STAP) techniques is still an active
research topic. Within this framework, the Low-Rank (LR) structure of the clutter
is well-known and the corresponding LR STAP filters have been shown to exhibit
a smaller Signal Interference plus Noise Ratio (SINR) loss than classical STAP
filters, only 2r secondary data (where r is the clutter rank) instead of 2m (where
m is the data size) are required to reach the classical 3dB SNR loss. By using other
features of the radar system, other properties of the CM can be exploited to further
reduce the number of secondary data: this is the case for active systems using a
symmetrically spaced linear array with constant pulse repetition interval, which
results in a persymmetric structure of the noise CM. In this context, we propose
to combine this property of the CM and the LR structure of the clutter to perform
CM estimation. In this paper, the resulting STAP filter is shown, both theoretically
and experimentally, to exhibit good performance with fewer secondary data: 3dB
SINR loss is achieved with only r secondary data.
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1. Introduction

Space Time Adaptive Processing (STAP) is a technique used in airborne phased
array radar to detect moving target embedded in an interference background such
as jamming or strong clutter [1]. While conventional radars are capable of detect-
ing targets both in the time domain related to target range and in the frequency
domain related to target velocity, STAP uses an additional domain (space) related
to the target angular localization. The consequence is a two-dimensional adaptive
filtering technique which uses jointly temporal and spatial dimensions to cancel
interference and to improve target detection. In most works on radar, the clutter
is assumed to be a simple Gaussian process. However, the increase of the radar
resolution leads to a higher scene heterogeneity where the clutter can be no longer
modeled by a Gaussian process [2, 3]. To take this heterogeneity into account,
one can use the so-called Spherically Invariant Random Vector (SIRV) product
model, first introduced by Yao [4] in the information theory community. This is a
compound-Gaussian model, well-known for its good statistical properties and for
its good fit to several real data sets [5, 6]. Secondly in side-looking STAP (as con-
sidered in this paper), the ground clutter can be shown to have a Low Rank (LR)
structure from Brennan’s rule [7]. Therefore, we decide to use the same distur-
bance model as in [8]: the disturbance is assumed to be the sum of a LR-SIRV
clutter and a zero-mean white Gaussian noise.

In practice, the disturbance Covariance Matrix (CM) is generally unknown
and an estimate is required to perform the STAP processing. This estimation
procedure is currently performed by the Sample Covariance Matrix (SCM) built
from the so-called secondary data, i.e. independent signal-free observations of
the noise sharing the same distribution as the observation under test. In a STAP
framework, the dimension of the CM can be important (the number of sensors
times the number of pulses). Commonly, the number of secondary data has to
be more than twice this dimension to ensure the classical 3dB loss on the per-
formance results [9]. Several methods, denoted as reduced-rank, are proposed in
STAP to reduce this number of secondary data. The first one, denoted LR-STAP
filter, is based on a Singular Value Decomposition (SVD) of the SCM which is
known to preserve such a performance of 3 dB loss [10, 11, 12, 13] for few sec-
ondary data. Moreover, in the context of a LR-SIRV clutter plus white Gaussian
noise, results of [14] shows that the LR-STAP filer built from SCM allows to
reach the same performance than in a Gaussian context1. To avoid the compu-

1LR-STAP filters built from other estimators (like for instance Normalized SCM) are less per-
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tation of the SVD and to limit the computational time, some algorithms [15, 16]
based on subspace tracking has been proposed. Similarly, to fill these gaps, new
STAP algorithms based on a projection received data onto a lower dimensional
Krylov subspace [17, 18, 19, 20] or based on joint iterative optimization of adap-
tive filters [21, 22] have been recently developed 2. In this paper, we derive a new
STAP filter from the SVD of a new estimator of the CM in order to still reduce
the number of secondary data by reaching the same performance. Indeed, it is
well known in array processing and particularly in radar systems (and STAP) to
have a symmetrically spaced linear array for spatial domain processing, and/or
symmetrically spaced pulse train for temporal domain processing [25, 26, 27]
which leads to a particular structure of the disturbance CM: the persymmetric
structure. It is well known that this persymmetric structure could be exploited to
improve the estimation accuracy (or to reduce the number of secondary data to
reach equivalent performance). In particular, the persymmetric Maximum Likeli-
hood Estimate (MLE) of the disturbance CM is used instead of the SCM [28, 29]
to improve the performance of adaptive detectors. But in a Low-Rank context,
this persymmetric structure is not used in detectors or STAP filters.

We propose in this paper to build the projector onto the clutter subspace from
this MLE which results in a new LR-STAP filter. We expect to achieve the clas-
sical 3dB loss for the performance results for a number of secondary data smaller
than in classical LR-STAP filters. For this purpose, we investigate the theoretical
Signal Interference plus Noise Ratio (SINR) Loss of this new LR-STAP filter in
a LR-SIRV clutter plus white Gaussian noise context. Under the two hypotheses
of LR-Gaussian clutter plus noise and orthogonality between the target signal and
the clutter subspace, the theoretical analysis of LR-STAP filters has been con-
ducted in the seminal works [10, 12, 13]. In [14], the first hypothesis has been
relaxed and consequently the much more realistic case of a LR-SIRV clutter plus
white Gaussian noise is considered. However, for mathematical tractability the
second hypothesis was kept. In this paper, we extend these results by integrating
the persymmetric property of the disturbance CM to investigate the theoretical
SINR Loss of the new LR-STAP filter. Numerical simulations validate our results.
Moreover for the theoretical SINR Loss computed from the proposed LR-STAP
filter and the one in [14], several simulations that show the limits of validity are
presented in this paper for various parameters:

formant.
2It is also possible to develop STAP algorithms robust to outliers as in [23, 24]
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• hypothesis of orthogonality between the target signal and the clutter sub-
space,

• the texture distribution,

• the Clutter to Noise Ratio (CNR).

These simulations show that theoretical results of this paper and the ones of [14]
are still valid for large values of texture, CNR and even when the assumption of
orthogonality is not true anymore. Finally, these results show the interest of the
combination of LR techniques and persymmetric property: the new STAP filter
requires twice less secondary data than the classical LR-STAP filter for achieving
equivalent performance. Moreover, the good performance of the new LR STAP
filter is illustrated on STAP data composed of a real clutter and synthetic targets.

This paper is an extension of [30] with the details of the proof to obtain the
theoretical SINR Loss. Moreover, several new simulations on simulated and real
data have been done.

The paper is organized as follows: section 2 gives the problem statement and
the definition of the Low-Rank STAP filter, section 3 contains the derivation of the
corresponding theoretical SINR Loss and finally section 4 shows STAP simula-
tions which illustrate the theoretical results. The following convention is adopted:
italic indicates a scalar quantity, lower case boldface indicates a vector quantity
and upper case boldface a matrix. T denotes the transpose operator, H the trans-
pose conjugate and ∗ the conjugate operator. E [ ] is the expected value operator.
C N (a,M) is a complex Gaussian vector of mean a and of covariance matrix M.
Im is the m × m-identity matrix. χ2(n) is a Chi-square random variable with n
degrees of freedom.

2. Low-Rank STAP filter

2.1. Signal Model
STAP [1] is applied to airborne radar in order to detect moving targets. Typi-

cally, the radar receiver consists in an uniform linear array of N antenna elements
processing M pulses in a coherent processing interval. In the following, let us
set m = NM . In this framework, we assume that a known complex signal d
corrupted by an additive disturbance n is in x ∈ Cm:

x = αd + n, (1)

4



where α is a complex attenuation. We assume to have K secondary data xk which
only contain the disturbance:

xk = nk k = 1, . . . , K (2)

Moreover, it is assumed that n and nk are independent and share the same sta-
tistical distribution and are modeled as the sum of a clutter, c or ck, and a white
Gaussian noise, b or bk:

n = c + b
nk = ck + bk k = 1, . . . , K

(3)

The processes b and bk are modeled as zero-mean complex Gaussian noises, de-
noted by b , bk ∼ C N (0, λIm) (Im is the identity matrix of sizem). Concerning
the clutter c and ck, we consider that their power in each cell k and the cell under
test is different. In such a situation, it is common to model this kind of clutter by a
SIRV [31]. A SIRV is a non-homogeneous Gaussian random vector with random
power: its randomness is induced by spatial variation in the radar backscattering.
The SIRV [4] c (resp. ck) is the product of a positive random variable τ (resp. τk),
called the texture, and a m-dimensional independent complex Gaussian vector g
(resp. gk), called the speckle, denoted by g , gk ∼ C N (0,C) with zero-mean
and CM C = E(ggH) = E(gkg

H
k ):

c =
√
τg

ck =
√
τ kgk k = 1, . . . , K

(4)

In classical STAP context, we are able to evaluate the clutter rank thanks to the
Brennan’s rule [7] which leads to a low rank structure for the STAP clutter c and
ck, e.g. rank (C) = r � m. The speckle CM, C, can be thus decomposed as:

C =
r∑
i=1

λiuiu
H
i (5)

where λ1 > λ2 > . . . > λr > λr+1 = . . . = λNM = 0 are the eigenvalues of C
and {u1, . . . ,ur,ur+1, . . . ,uNM} are the associated eigenvectors. The CM of n
and nk is then given by:

Σ = E[τ ]C + λIm (6)

Furthermore, many applications can result in a CM that exhibits some partic-
ular structure. For radar systems using a symmetrically spaced linear array for

5



spatial domain processing, and/or symmetrically spaced pulse train for temporal
domain processing [25, 26, 27], the CM Σ has the persymmetric property which
can be written as follows:

Σ = JmΣ∗Jm, (7)

where Jm is the m-dimensional antidiagonal matrix having 1 as non-zero ele-
ments. Since the signal vector is also persymmetric, one has:

d = Jmd∗ (8)

One way to take advantage of the persymmetric property is to transform the com-
plex primary data (1) and secondary data (2) into real data. The persymmetric
operation can be characterized by an unitary matrix T defined as:

T =


1√
2

(
Im/2 Jm/2
iIm/2 −iJm/2

)
for m even

1√
2

 I(m−1)/2 0 J(m−1)/2

0
√

2 0
iI(m−1)/2 0 −iJ(m−1)/2

 for m odd
(9)

By applying the transformation T to all the quantities, one obtains:

x′ = Tx
x′k = Txk
d′ = Td
c′ = Tc
c′k = Tck
b′ = Tb
b′k = Tbk

(10)

Let us remind that the transformed data are denoted thanks to a ′ and, more im-
portantly, that they are all real-valued, contrary to the original data which are
complex-valued. The primary and the secondary data (1), (2) become after trans-
formation by T :

x′ = αd′ + c′ + b′

x′k = c′k + b′k k = 1, . . . , K
(11)

The CM of data (11) is thus Σ′ = TΣTH and its eigendecomposition is given by:

Σ′ =
r∑
i=1

E[τ ]λiu
′
iu
′H
i + λ

m∑
i=1

u′iu
′H
i

= S′Σ + λIm

(12)
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where
{
u′1, . . . ,u

′
r,u

′
r+1, . . . ,u

′
m

}
are the eigenvectors of Σ′. Let us notice that

the matrix covariance rank and the eigenvalues are unchanged by the operator T.
Let us now define the projector onto the clutter subspace Π′c and the projector

onto the orthogonal of the clutter subspace Π′⊥c [10, 12]:

Π′c =
r∑
i=1

u′iu
′H
i

Π′⊥c = Im −Π′c

(13)

2.2. Optimal and Sub-optimal STAP filters
The optimal STAP filter is known to be defined as [1]:

w′opt = Σ′−1d′, (14)

whereas in LR assumption, it is expressed as [10, 12]:

w′lropt = Π′⊥c d′ (15)

In practical cases, since the CM Σ′ (and therefore also Π′c) is unknown, it is
necessary to estimate them from the secondary data x′k (11).

This estimation is classically performed by using the SCM, but the persym-
metric structure of Σ could be exploited to improve the estimation quality. The
persymmetric MLE of the CM could be used instead of the SCM. The MLE, de-
noted R̂′, has been derived in [28, 29] and is given by:

R̂′ = Re(TR̂SCMTH) (16)

where R̂SCM is the SCM computed from the original data (2) as follows: R̂SCM =
1

K

∑K
k=1 xkx

H
k . From the eigenvectors {û′1, . . . , û′m} of R̂′, the estimates of the

projectors (onto the subspace clutter and its complement) by using the persym-
metric structure of the CM are defined as [10, 12]:

Π̂′c =
r∑
i=1

û′iû
′H
i

Π̂′⊥c = Im − Π̂′c

(17)

Finally, the adaptive filter ŵ′ studied in this paper is:

ŵ′ = Π̂′⊥c d′ (18)

The next section is devoted to the derivation of its theoretical performance.
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3. Theoretical SINR Loss

3.1. Definition of the SINR Loss
As in previous works on LR-STAP theoretical performance analysis [12], the

following usual assumption is made for mathematical tractability: the projection
of the steering vector on the true interference subspace is negligible, i.e. u′Hi d′ ≈
0 for i = 1, . . . , r. This just means that the target is not fully embedded in the
clutter ridge. In the next section, simulations will show that the theoretical result
is still valid in the case of non orthogonality between the target signal and the
clutter subspace. From this assumption and from the structure of Σ′, one has:

S′Σd′ = Π′cd
′ = 0 (19)

It follows from (12) and (13) that

Σ′d′ = λd′

Σ′−1d′ = 1
λ
d′

Π
′⊥
c d′ = d′

(20)

The generic STAP filter output is given by:

w′Hx′ = αw′Hd′ + w′Hn′ (21)

The SINR at the filter output SINRout is:

SINRout =
|α|2|w′Hd′|2

E [w′Hn′n′Hw′]
=
|α|2|w′Hd′|2

w′HΣ′w′
(22)

SINRout is maximum when w′ = w′opt and its value is:

SINRmax = |α|2d′HΣ′−1d′ (23)

The SINR loss, denoted by ρ, is the loss of performance when w′ = ŵ′ and it can
be written as:

ρ =
SINRout

SINRmax

=
|ŵ′Hd′|2(

ŵ′HΣ′ŵ′
) (

d′HΣ′−1d′
) . (24)

From Eqs. (18), (19) and (20) the SINR loss, ρ can be rewritten as follows:

ρ =
SINRout

SINRmax

= λ

(
d′HΠ̂′⊥c d′

)2

d′HΠ̂′⊥c Σ′Π̂′⊥c d′
(25)

The next subsection is devoted to the derivation of the SINR Loss by using a
perturbation analysis, known to be valid for large K.
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3.2. Perturbation Analysis
The main result is given by the following proposition.

Proposition 3.1.

E [ρ] = 1− 1

K ′

r∑
i=1

(
E [τ ]λi + λ

E [τ ]λi

)2

, (26)

with K ′ = 2K.

PROOF.
Since all considered estimators have been shown to be consistent, the SINR

loss is evaluated for large K by means of a perturbation analysis [32]. Starting
from the perturbations on R̂′, Π̂′c and Π̂⊥′c , the SINR loss ρ of Eq. (25) is reduced
in a compact form thanks to a second order approximation.

First, let us introduce the pseudo-inverse, M′, of S′Σ (see Eq. (12)):

M′ =
r∑
i=1

1

E[τ ]λi
u′iu

′H
i (27)

Let ∆Σ′ = R̂′−Σ′ be the covariance estimation error on Σ′. This estimation
error induces an error on the estimates Π̂′c and Π̂⊥′c . It is shown in [32] that the
projector estimates are given up to the second order with respect to ∆Σ′ by:

Π̂′c ≈ Π′c + δΠ′c + δ2Π′c
Π̂⊥′c ≈ Π⊥′c − δΠ′c − δ2Π′c

, (28)

where δΠ′c and δ2Π′c are equal to:

δΠ′c = Π′⊥c ∆Σ′M′ + M′∆Σ′Π′⊥c
δ2Π′c = Π′⊥c ΓM′ + M′Γ∗Π′⊥c + Π′cΦΠ′c + Π′⊥c ∆Σ′M′2∆Σ′Π′⊥c

(29)

and where matrices Γ and Φ are second order terms with respect to ∆Σ′. In the
following, all equalities are valid up to the second order with respect to ∆Σ′.

The second-order approximation of the denominator of Eq. (25) yields:

d′HΠ̂⊥′c Σ′Π̂⊥′c d′ =
d′HΠ⊥′c Σ′Π⊥′c d′ − d′HΠ⊥′c Σ′δΠ′cd

′ − d′HδΠ′cΣ
′Π⊥′c d′+

d′HδΠ′cΣ
′δΠ′cd

′ − d′Hδ2Π′cΣ
′Π⊥′c d′ − d′HΠ⊥′c Σ′δ2Π′cd

′
(30)
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From Eq. (20), the first term is equal to λ. The second and the third terms are
equal to 0 since Π⊥′c Σ′M′ = 0 and M′d = 0. Therefore:

d′HΠ̂⊥′c Σ′Π̂⊥′c d′ = λ+ d′HδΠ′cΣ
′δΠ′cd

′ − 2λd′Hδ2Π′cd
′

= λ+ d′H∆Σ′M′Σ′M′∆Σ′d′ − 2λd′H∆Σ′M′2∆Σ′d′.
(31)

Then Eq. (12) and Eq. (27) lead to:

M′Σ′M′ = M′(S′Σ + λIm)M′ = M′ + λM′2. (32)

Now, using the previous equation, Eq. (31) becomes:

d′HΠ̂⊥′c Σ′Π̂⊥′c d′ = λ+ d′H∆Σ′
(
M′ − λM′2)∆Σ′d′. (33)

Secondly, let us compute the numerator of Eq. (25). We have:

d′HΠ̂⊥′c d′ = d′HΠ⊥′c d′ − d′HδΠ′cd
′ − d′Hδ2Π′cd

′. (34)

Since Π⊥′c d′ = d′ and M′d′ = 0, Eq. (34) is equivalent to:

d′HΠ̂⊥′c d′ = 1− d′H∆Σ′M′2∆Σ′d′. (35)

and thus: (
d′HΠ̂⊥′c d′

)2

= 1− 2d′H∆Σ′M′2∆Σ′d′. (36)

Finally, the second order expression of the SINR loss of Eq. (25) is:

ρ = λ

(
d′HΠ̂⊥′c d′

)2

d′HΠ̂⊥′c Σ′Π̂⊥′c d′
= 1− d′H∆Σ′

(
1

λ
M′ + M′2

)
∆Σ′d′. (37)

As M′Σ′d′ = 0 (since u′Hi d′ ≈ 0 for i ≤ r), we can substitute R̂′ instead of
∆Σ′ in Eq. (37):

ρ = 1− d′HR̂′
(
1
λM′ + M′2) R̂′d′

= 1− ‖
(
1
λM′ + M′2)1/2 R̂′d′‖2

(38)

Let us set: (
1

λ
M′ + M′2

)1/2

=

r∑
i=1

aiu
′
iu
′H
i with ai =

1

E [τ ]λi

√
E [τ ]λi + λ

λ
(39)

and
zk =

(
1
λ
M′ + M′2)1/2

x′kx
′H
k d′

z =
(

1
λ
M′ + M′2)1/2

R̂′d′ = 1
K′

∑K′

k=1 zk
, (40)
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with K ′ = 2K. One has:
ρ = 1− ‖z‖2 (41)

For large K ′, as assumed in this paper, the central limit theorem ensures that
z is Gaussian distributed. Its first and second order moments follow from those of
zk and will be now investigated. The SINR loss distribution will be obtained from
these results. The first order moment of zk is:

E [zk] = Re
((

1
λM′ + M′2)1/2E [x′kx′Hk ]d′)

= Re
((

1
λM′ + M′2)1/2 Σ′d′

)
= 0,

(42)

since u′Hi d′ = 0 for i ≤ r. Let us derive the second order moments of zk. By
setting:

yk = [u′1 . . .u
′
r d′]

H
x′k. (43)

Conditionally to τk, x′k is complex zero-mean Gaussian and its covariance eigen-
system is τkλ1 + λ > τkλ2 + λ > . . . > τkλr + λ > λ = . . . = λ and{
u′1, . . . ,u

′
r,u

′
r+1, . . . ,u

′
m

}
. Consequently, each component of yk, conditioned

on τk, can be written as follows:

(yk)i =
√

(τkλi + λ)χ1
k,i exp (jθk,i) i = 1, . . . , r

(yk)r+1 =
√
λχ1

k,r+1 exp (jθk,r+1)
, (44)

where χ1
k,i and χ1

k,r+1 are respectively two independent Chi-square-distributed
random variables with 1 degree of freedom and where θk,i is uniformly distributed
on [0, 2π]. All random variables are mutually independent. Therefore, we obtain:

zk = Re

(
r∑
i=1

ai(u
′H
i x′k)(x

′H
k d′)u′i

)

= Re

(
r∑
i=1

ai(yk)i(yk)
∗
r+1u

′
i

) (45)

The second order moments of zk are easily computed from Eqs. (44) and (45):
E
(
zkz

T
k

)
= 0 and

E
[
zkz

H
k

]
=

r∑
i=1

a2
iE
[
(τkλi + λ)λχ1

iχ
1
r+1

]
u′iu

′H
i , (46)
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where χ1
i and χ1

r+1 are respectively two independent Chi-square variables with 1
degree of freedom. The SINR loss distribution follows from Eq. (41), (46) and the
central limit theorem:

ρ = 1− 1
K′

r∑
i=1

(
E [τ ]λi + λ

E [τ ]λi

)2

χ1
i , (47)

with K ′ = 2K. Taking the expectation of Eq. (47) completes the proof for E [ρ].
�

Remark. In STAP context, the hypothesis of a strong clutter in comparison to
the white Gaussian noise is often valid. In this particular case, the SINR loss of
proposition 3.1 admits the simplified expression:

E [ρ] ≈ 1− r

2K
(48)

Indeed, one has E [τ ]λi � λ for i = 1, . . . , r in the case of a strong clutter. By
comparing this result to the classical result of [10, 12], one can notice that a 3dB
SINR Loss is reached for K = r, instead of K = 2r when the persymmetric
structure is not taken into account (E [ρ] ≈ 1 − r

K
for a classic LR-STAP filter).

Moreover, let us notice that the final result does not depend on the texture τ .
The result of proposition 3.1 has been obtained by an asymptotical analysis

which means that this result is valid for high values of K. In the next section,
the validity of this result is investigated for small values of K by means of two
SAP simulations on synthetic and real data (containing a real clutter and synthetic
targets).

4. Numerical Simulations

4.1. Validation of Theoretical SINR Loss
We consider the following STAP configuration to check the theoretical SINR

Loss of Eq. (26). The number of sensors is N = 8 and the number of coherent
pulses is also M = 8. The center frequency and the bandwidth are respectively
equal to f0 = 450 MHz and B = 4 MHz. The radar velocity is 100 m/s. The
inter-element spacing is d = c

2f0
(c is the speed of light) and the pulse repetition

frequency is fr = 600 Hz. The clutter rank is computed from Brennan’s rule [7]
and is equal to r = 15. Therefore, the clutter has a low-rank structure since
r = 15 < NM = 64.
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The CM of the Gaussian clutter, C, is computed using the model presented
in [1]. To simulate the SIRV clutter, we choose for the texture τ a Gamma distribu-
tion with shape parameter ν and scale parameter 1/ν (which results in E [τ ] = 1).
In most simulations, the CNR is 25 dB. Then, we obtain Σ′ of Eq. (12) by using
the transformation matrix T. The eigendecomposition of this last matrix allows
to obtain eigenvalues λ1, . . . , λr, λ and therefore the theoretical SINR Loss of
Eq. (26).

In the same STAP configuration,K secondary data have been simulated. These
secondary data allow us to compute the SCM R̂SCM and its persymmetric coun-
terpart R̂′ given Eq. (16). From its eigendecomposition, the sub-optimal STAP
filter ŵ′ of Eq. (18) has been computed and the SINR Loss of Eq. (25) has been
evaluated using 1000 trials.

The same steps are used to evaluate the numerical and theoretical SINR Loss
computed from the classical LR-STAP filter based on the SCM. Theoretical result
for Gaussian clutter is well known [12] and the result for SIRV clutter can be
found in [14].

Figure 1 shows the numerical and the theoretical SINR losses obtained from
LR-STAP filters based on SCM and persymmetric SCM for different values of K
and for a shape parameter of the K-distribution ν = 1. Firstly, one can notice that
the numerical SINR losses are very close to the theoretical ones which validates
the theoretical formula of Eq. (25). Secondly, we conclude that the LR-STAP fil-
ter based on the persymmetric SCM yields better performance than the classical
LR one: since two times less secondary data are required to achieve the same
performance, the Persymmetric LR-STAP filter will perform better than the clas-
sical one for the same number of secondary data. Thirdly, the simulation shows
that the theoretical SINR losses are still valid in a realistic context. On Fig. 1(a),
the target is far from the clutter ridge and therefore the hypothesis u′Hi d′ ≈ 0 for
i = 1, . . . , r is valid (maxi∈{1,r}(|u′Hi d′|) = 0.1). For Fig. 1(b), the target is very
close of the clutter ridge and therefore the assumption to obtain the theoretical re-
sult is not valid anymore (maxi∈{1,r}(|u′Hi d′|) = 0.5). This allows to conclude that
theoretical results are close to the numerical ones in both cases which encourages
the use of our result in realistic scenarios. Moreover, the LR-STAP filter based on
the persymmetric SCM yields again better performance than the classical LR one:
two times less of secondary data are needed to reach the same performance.

Now, let us study the SINR Losses as a function of the heterogeneity of the
LR-SIRV clutter. This is the purpose of the simulation plotted on Fig. 2. A strong
heterogeneity is reached for small values of ν. We show in both sub-figures that
the results of the numerical and theoretical SINR Losses are close and almost
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constant until a value of ν which corresponds to a very strong heterogeneity of the
LR-SIRV clutter. This value depends of the number of secondary data used for the
estimation of the projector. In this context of strong heterogeneity, the number of
effective cells for the subspace estimation is smaller than for a homogeneous clut-
ter which explains that the numerical SINR loss decreases with the heterogeneity
of the clutter.

On Fig. 3, the shape parameter for τ is ν = 1, the number of secondary data
is K = 4r for LR STAP built from SCM and K = 2r for LR STAP built from
Persymmetric SCM. On Fig. 3(a), we study the SINR losses versus the speed of
the target. We show that our theoretical result is valid until a target speed of around
2 m/s (7 km/h), which is a very small value for ground targets. Fig. 3(b) shows
the evolution of the SINR losses as a function of the CNR. The limit of validity is
around CNR = 2 dB.

4.2. Real Clutter Data
The STAP data are provided by the French agency DGA/MI: the clutter is

real while the targets are synthetic. The number of sensors is N = 4 and the
number of coherent pulses is M = 64. The center frequency and the bandwidth
are respectively equal to f0 = 10 GHz and B = 5 MHz. The radar velocity is
given by V = 100 m/s. The inter-element spacing is d = 0.3 m and the pulse
repetition frequency is fr = 1 kHz. For this particular STAP datacube, the clutter
is fitted by our clutter data model of Eq. (3) since its statistic is shown slightly non-
homogeneous [33]. The CNR is equal to 20 dB. The total number of secondary
data available is K = 408. The clutter rank obtained from the Brennan’s rule [7]
is equal to r = 45. This value is small in comparison to the full size of clutter CM,
MN = 256. The outputs of adaptive LR-STAP filters, Λ̂LR−SCM = |dHΠ̂⊥c x|2
and Λ̂′LR−SCM = |d′HΠ̂′⊥c x′|2 (new LR-STAP filter proposed in this paper), are
used.

In a first scenario, a target with a signal to clutter ratio of -5 dB is present at
(4 m/s, 0 deg, cell 256). Figures 4 and 5 show results of Λ̂LR−SCM and Λ̂′LR−SCM
for respectively 100 (almost 2r) and 50 (almost r) secondary data. As expected in
the theoretical section, we notice that the persymmetry property allows to reduce
the number of secondary data. On Fig. 5-(a), the target is embedded in a noise for
which the level is around -130 dB while on Fig. 5-(b), the target is easily detected
because the noise level has been strongly reduced, around-136 dB.

In a second scenario, 10 targets with a signal to clutter ratio of -5 dB are
present at (0 deg, cell 252) for different speeds before and after the clutter ridge.
Figures 6 and 7 show results of Λ̂LR−SCM and Λ̂′LR−SCM for respectively 100
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(almost 2r) and 50 (almost r) secondary data. As previously, the persymmetry
property strongly enhances the performance of the LR-STAP filters. As shown
the noise (clutter plus white Gaussian noise) is strongly reduced by using the
persymmetry property in the derivations. There is a reduction of the level noise of
almost 6 dB for some parts of the ridge clutter. Moreover, one can notice that it is
more difficult to distinguish the ten targets on Fig. 7-(a) than on Fig. 7-(b).

5. Conclusion

In this paper, a new LR-STAP filter has been proposed by taking into account
the persymmetry property of the CM. This filter has been derived by using both
data transformed by a unitary matrix T and the persymmetric MLE of the CM
derived in [28, 29]. Then, this filter has been theoretically analyzed through the
derivation of its SINR loss. Finally, in a context of a LR-SIRV clutter, the result-
ing STAP filter is shown, both theoretically and experimentally, to exhibit good
performance with fewer secondary data: 3dB SINR loss is achieved with only r
secondary data.
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(a) SINR Loss for a target at (40 m/s, −20 deg) (b) SINR Loss for a target at (5 m/s, 0 deg)

Figure 1: Theoretical SINR Loss of LR STAP built from SCM (solid line black), Numerical SINR
Loss of LR STAP built from SCM (dashed line * black), Theoretical SINR Loss of LR STAP
built from Persymmetric SCM (solid line red), Numerical SINR Loss of LR STAP built from
Persymmetric SCM (dashed line * red) as a function of K. The shape parameter for τ is ν = 1.

(a) SINR Losses of LR STAP built from SCM
for K = 4r and LR STAP built from Persym-
metric SCM for K = 2r

(b) SINR Losses of LR STAP built from SCM
for K = 2r and LR STAP built from Persym-
metric SCM for K = r

Figure 2: Theoretical SINR Loss of LR STAP built from SCM (solid line black), Numerical SINR
Loss of LR STAP built from SCM (dashed line * black), Theoretical SINR Loss of LR STAP
built from Persymmetric SCM (solid line red), Numerical SINR Loss of LR STAP built from
Persymmetric SCM (dashed line * red) as a function of the shape parameter for τ , ν. The target is
at (40 m/s, −20 deg).
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(a) SINR Loss as a function of V t. The CNR is
25 dB.

(b) SINR Loss as a function of CNR. The target
is at (40 m/s, −20 deg).

Figure 3: Theoretical SINR Loss of LR STAP built from SCM (solid line black), Numerical SINR
Loss of LR STAP built from SCM (dashed line * black), Theoretical SINR Loss of LR STAP
built from Persymmetric SCM (solid line red), Numerical SINR Loss of LR STAP built from
Persymmetric SCM (dashed line * red). The shape parameter for τ is ν = 1. K = 4r for LR
STAP built from SCM. K = 2r for LR STAP built from Persymmetric SCM.

(a) Λ̂LR−SCM (b) Λ̂′LR−SCM

Figure 4: LR-STAP outputs with 100 cells to estimate the CM. Cell under test contains a target at
(4 m/s, 0 deg)
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(a) Λ̂LR−SCM (b) Λ̂′LR−SCM

Figure 5: LR-STAP outputs with 50 cells to estimate the CM. Cell under test contains a target at
(4 m/s, 0 deg)

(a) Λ̂LR−SCM (b) Λ̂′LR−SCM

Figure 6: LR-STAP outputs with 100 cells to estimate the CM. Cell under test contains ten targets
at (0 deg)
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(a) Λ̂LR−SCM (b) Λ̂′LR−SCM

Figure 7: LR-STAP outputs with 50 cells to estimate the CM. Cell under test contains 10 targets
at (0 deg)
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