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Smart grids have initiated a radical reappraisal of distribution networks function where the integration of renewable energy sources, load demand control, and effective use of the network are indexed as the most important keys for smart grid expansion and deployment regardless each country policies. One of the most efficient ways of effective use of these grids would be to continuously monitor their conditions. This allows for early detection of power quality degeneration facilitating therefore a proactive response, prevent a fault ride-through the renewable power sources, minimizing downtime, and maximizing productivity.

In this smart grid context, this paper proposes the evaluation and comparison of advanced signal processing tools, namely the Hilbert transform and the ensemble empirical mode decomposition method for the detection of voltage sags as they are the most commonly encountered power quality disturbances.

I. INTRODUCTION

Renewable energy conversion systems are the fastestgrowing sources of new electric generation in the world and it is expected to remain so for sometimes. These systems offer an alternative and emerging solution by deploying hybrid power plant offshore or onshore, where there are substantial renewable resources, leading to a best electricity generating opportunities. With the deployment of distributed renewable power generation; the electricity networks are undergoing wholesale changes both from generation and users sides because the power flow is becoming bidirectional and the users are playing an active role in managing their demand for electricity [START_REF] Brown | Smart grid policies: an international review[END_REF]. Despite accumulated experienced in the conventional electric distribution networks, the task of distributed networks is still an art. It has become more challenging as far as the generation system is moved nearby the distribution level and this is achieved by using a set of micro grids and energy islands based on renewable sources, connected to the main grid as illustrated in Fig. 1 [START_REF] Simões | A comparison of smart grid technologies and progresses in Europe and the US[END_REF][START_REF] Glinkowski | Advances in wind energy technologies in the context of smart grid[END_REF].

The philosophy of smart grids is giving the distribution network more flexibility by rending it able to meet the power demand needs and have islanding fast capabilities when a fault occurs such as voltage sags or power outage. So, key considerations when deploying smart grids are their availability, reliability, and profitability; in order to fulfill power demand according to PQ standards. In this context, voltage sags automated detection is indexed as an essential requirement for a condition monitoring system in order to meet PQ standards [START_REF] Gómez-Lázaro | Characterization and visualization of voltage dips in wind power installations[END_REF][START_REF] Ignatova | Space vector method for voltage dips and swells analysis[END_REF]. Since smart grids are a collection of diverse set of power generation sources, including large power plants and distributed generation sources, energy storage systems, it is then difficult to deal with such a complex system through conventional procedures used in classical distribution networks particularly during faults and system emergencies.

It is therefore obvious that real-time monitoring and remote control is a key issue that needs to be addressed to make a grid more intelligent and self-healing. This requires much more sophisticated computer-oriented monitoring than in a classical grid [START_REF] Simões | A comparison of smart grid technologies and progresses in Europe and the US[END_REF]. In this context, signal processing is certain to play a significant role in dealing with the complexity and uncertainty associated with a smart grid [START_REF] Xia | Adaptative frequency estimation in smart grid applications[END_REF].

For voltage sag detection, there is a wide range of technology and methods derived from contemporary power systems [START_REF] Fitzer | Voltage sag detection technique for a dynamic voltage restorer[END_REF][START_REF] Mcbee | Utilizing a smart grid monitoring system to improve voltage quality of customers[END_REF][START_REF] Milioudis | Enhanced protection scheme for smart grids using power line communications techniques-Part I: Detection of high impedance fault occurrence[END_REF][START_REF] Milioudis | Enhanced protection scheme for smart grids using power line communications techniques-Part II: Location of high impedance fault position[END_REF]. These methods are based on electrical quantity signatures analysis (current, voltage, power, etc.). Indeed, those quantities are easily accessible or evaluated during operation. Electrical quantities analysis usually involves the use of reference frame transformations such as Park's vector [START_REF] Orcajo | Diagnosis of electrical distribution network short circuits based on voltage Park's vector[END_REF] or three-phase system symmetrical components or space vector [START_REF] Ignatova | Space vector method for voltage dips and swells analysis[END_REF], and other techniques based upon them. These techniques however assume that voltage and current quantities are pure sine waves, while in real-world the electrical quantities are polluted by harmonics produced by power electronic devices in both sides of the smart grid, and transient spikes due to grid apparatus maneuvers. It is therefore obvious the Fast Fourier Transform (FFT), and other techniques based upon it, are no longer valid even they has been used in some cases [START_REF] Fitzer | Voltage sag detection technique for a dynamic voltage restorer[END_REF]. Advanced signal processing techniques are therefore required to deal with the complexity and uncertainty associated with a smart grid. In [START_REF] Kamwa | Robust Detection and analysis of power system oscillation using Teager-Kaiser energy Operator[END_REF], a Teager-Kaiser energy operator has been proposed for power system oscillations detection and analysis. However, this operator is highly affected by noises. In [START_REF] Labos | Application of wavelets and Prony method for disturbance detection in fixed speed wind farms[END_REF], wavelets and Prony method were used. Wavelets however require properly windowed disturbing events, to ensure accurate computations. Moreover, Prony method highly depends on the system parameters and operating modes. As voltage sags lead to transient phenomena (voltage unbalance and voltage/current waveform disturbances) [START_REF] Muscas | Power quality monitoring in modern electric distribution systems[END_REF], it seems that the focus should be on transient signal processing techniques. In this disturbing and transient context, it is therefore proposed to assess and to compare two advanced non stationary signal processing techniques: Hilbert transform and the ensemble empirical mode decomposition method. In particular, distinct features will be extracted from the instantaneous power for voltage sags detection and characterization [START_REF] Ozgonenel | A new classification for power quality events in distribution systems[END_REF][START_REF] Amirat | A smart grid voltage sag detector using an EEMD-based approach[END_REF].

II. VOLTAGE SAGS CHARACTERIZATION

Voltage sags are indexed as the most important power quality issue. They are a transient deviation of the RMS supply voltage from a reference value with typical dip depths ranging from 0.9 to 0.5 pu of a 1 pu nominal [START_REF] Fitzer | Voltage sag detection technique for a dynamic voltage restorer[END_REF]; lasting from few milliseconds to few cycles; caused by abrupt increases in loads such as phase to phase or phase to ground short circuits, they are also caused by abrupt increases in source impedance, typically caused by a loose connection [START_REF] Muscas | Power quality monitoring in modern electric distribution systems[END_REF].

The most usual voltage sags signatures are depicted in Fig. 2 [START_REF] Ignatova | Space vector method for voltage dips and swells analysis[END_REF]. During a voltage sag three-phase system balanced conditions are no longer valid leading to possible disastrous consequences on the user end-loads and on the smart grid itself.

Voltage sag characterization concerns events quantification through a limited number of parameters. These parameters depend on the field of study. However, main characterization methods use two parameters to determine the severity of a voltage sag: magnitude (or "remaining voltage") and duration [START_REF] Glinkowski | Advances in wind energy technologies in the context of smart grid[END_REF]. In the context of a smart grid, it is therefore important to know whether voltage sag exists and afterward estimate its duration. Figure 3 depicts the acquired voltage and currents when a fault occurs on a transmission line during a thunderstorm causing SARFI-70 sag [START_REF] Leborgne | Differences in voltage dip exposure depending upon phase-to-phase and phase-toneutral monitoring connections[END_REF].

Since voltage sags effect arises in voltages and currents, it seems more relevant to use the three-phase instantaneous power given by Fig. 3. Phase voltages, currents, and the total instantaneous power before, during and after voltage sag.
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The instantaneous power depicted in Fig. 3 clearly show that, for voltage sags detection (occurrence time), it is more convenient to track the power Instantaneous Amplitude (IA). Estimating IA will therefore allow extracting statistical features for the fault characterization. In this context, there exist many IA estimation techniques in the literature and the most popular include Hilbert Transform (HT) [START_REF] Oppenheim | Discrete-Time Signal Processing[END_REF][START_REF] Amirat | Hilbert transform-based bearing failure detection in DFIG-based wind turbines[END_REF]. Furthermore for non stationary signals the Empirical Mode Decomposition (EMD) can be investigated as it is considered as one of the emerging methods for transient signal processing [START_REF] Lei | A review on empirical mode decomposition in fault diagnosis of rotating machinery[END_REF][START_REF] Amirat | Wind turbine bearing failure detection using generator stator current homopolar component ensemble empirical mode decomposition[END_REF].

Figure 4 is given to illustrate the adopted approach for feature extraction and therefore comparison of the two chosen techniques. 

A. Hilbert Transform

Hilbert transform is used to estimate the instantaneous amplitude since it is usually more robust against noise than the Teager energy operator. The instantaneous power p(t) Discrete Hilbert Transform (DHT) is given by
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where F{.} and F -1 {.} correspond to the FFT and Inverse FFT, respectively, and u(n) is defined as
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and N is the data sample number.

Using (1), the instantaneous amplitude ˆ( ) p n is given by
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Figure 5 show therefore the instantaneous power and its instantaneous amplitude.

The shortest path to the IA information is the statistic variance σ 2 given by For voltage sags characterization, HT is carried-out during equal segments as depicted in Fig. 6. The achieved IAs for each segment are illustrated by Fig. 7 (for 70 samples of the instantaneous power). Since the 1 st segment is fault-free, all the other segments are therefore compared to it by computing the IA static variance ratio of each segment (i.e. 2, 3, …, 20) over the reference one. The achieved results are summarized in Table 1. 

B. Ensemble Empirical Modal Decomposition

The EMD is an adaptive time-frequency data analysis method for nonlinear and non-stationary signals, and has focused considerable attention and has been indexed recently for power system fault detection and analysis [START_REF] Kamwa | Robust Detection and analysis of power system oscillation using Teager-Kaiser energy Operator[END_REF], [START_REF] Ozgonenel | A new classification for power quality events in distribution systems[END_REF]. Indeed and contrary to well-known decomposition techniques, EMD is intuitive and direct, with the basic functions based on and derived from the data. It is used to decompose the multicomponent signal into a series of IMFs based on the signal time-scale local characteristics. However, one major drawback of the EMD is the mode mixing. This phenomenon means that the detail related to one scale can appear in two different intrinsic modes. To overcome this drawback, the EEMD was introduced [START_REF] Lei | A review on empirical mode decomposition in fault diagnosis of rotating machinery[END_REF][START_REF] Amirat | Wind turbine bearing failure detection using generator stator current homopolar component ensemble empirical mode decomposition[END_REF]. The EEMD is described as a new noiseadded method, which mitigate automatically the EMD modemixing. It is described in the flowchart given in Fig. 8.

After decomposing the instantaneous power according to the EEMD algorithm, several IMFs were obtained. The most energized is the 4 th one. Figure 9 depicts then the instantaneous power and its 4 th IMF. In particular, it is clearly shown that this IMF is very sensitive to the voltage sag occurrence and its duration. This is confirmed when intrinsic modes decomposition is carried-out during the same abovedescribed 20 segments (for the 70 samples of the instantaneous power).

After the EEMD processing, the same statistical criterion is computed for the 4 th IMF for each segment. The achieved results are summarized in Table 2.

In order to have more readable information for comparison purposes, Tables 1 and2 are results are summarized in Fig. 11. According to the electrical quantities waveforms (Fig. 3), from the 2 nd to the 4 th segment, normal operation is confirmed by the variance reduced value, for both techniques. At a voltage sag occurrence (5 th segment), the criterion increases to 85 times for HT and to 132 times for EEMD; this means that both HT and EEMD are able to detect voltage sag occurrence. It should be noted that the EEMD seems slightly more sensitive the fault occurrence. Moreover, and for estimation of the voltage sag duration, it seems obvious that EEMD remains sensitive to the voltage sag (from segments 6 to 18).

From this brief comparative analysis, it seems that EEMD, using the instantaneous power 4 th IMF, could be considered as a reliable technique for voltage sag detection and characterization (occurrence and duration), using instantaneous power segmentation and a reduced set of sample.

IV. CONCLUSION

This paper dealt a comparative analysis of advanced signal processing tools, namely the Hilbert transform and the ensemble empirical mode decomposition method, for the detection of voltage sags, in this smart grid context. It has been proposed a specific features extraction approach using the instantaneous power as the prime variable. Indeed, it has been first sample in regular segment.

Instantaneous features are afterwards extracted through the Hilbert transform and the EEMD. It was therefore found that EEMD, using the instantaneous power 4 th IMF, is more fault-sensitive and could be considered as a reliable technique for voltage sag detection and then smart grid monitoring. 
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 910 Fig. 9. Instantaneous power and its 4 th IMF before, during and after voltage sag.
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 11 Fig. 11. HT and EEMD voltage sag detection criterion comparison.

Table 1 .

 1 IA statistics for each segment.

	Segment	1	2	3	4	5
	2 2 1 th st σ i segment segment σ	1.000	0.903	0.925	0.978	85.223
	Segment	6	7	8	9	10
	2 2 1 th st σ i segment segment σ	5.210	0.604	0.538	0.241	0.451
	Segment	11	12	13	14	15
	2 2 1 th st σ i segment segment σ	0.186	4.418	6.636	3.522	2.285
	Segment	16	17	18	19	20
	2 2 1 th st σ i segment segment σ	1.071	0.664	0.809	0.5821	0.604

Table 2 .

 2 4 th IMF statistics for each segment.

	Segment	1	2	3	4	5
	2 2 1 th st σ i segment segment σ	1.0000	1.2687	5.0897	5.0476	132.446
	Segment	6	7	8	9	10
	2 2 1 th st σ i segment segment σ	64.6928	3.4446	1.5039	3.6355	31.211
	Segment	11	12	13	14	15
	2 2 1 th st σ i segment segment σ	1.6115	46.4227 48.2043 19.0097	0.178
	Segment	16	17	18	19	20
	2 2 1 th st σ i segment segment σ	16.4797	4.1726	8.2415	0.6626	0.392