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A new H 2 -norm Lyapunov function for the stability of a singularly perturbed system of two conservation laws

In this paper a class of singularly perturbed system of conservation laws is considered. The partial differential equations are equipped with boundary conditions which may be studied to derive the exponential stability. Lyapunov stability technique is used to derive sufficient conditions for the exponential stability of this system. A Lyapunov function in H 2 -norm for a singularly perturbed system of conservation laws is constructed. It is based on the Lyapunov functions of two subsystems in L 2 -norm.

I. INTRODUCTION

The singular perturbation techniques occurred at the beginning of the 20th century. A great deal of the early motivation in this area arose from the studies of physical problems exhibiting both fast and slow dynamics, for instance DC-motor model, voltage regulator in [START_REF] Kokotovic | Singular pertrubation methods in control: analysis and design[END_REF] and semiconducting diode in [START_REF] Smith | Singular-perturbation theory: an introduction with application[END_REF]. The development of this method led to the efficient use in various fields in mathematical physics and engineering, for example, fluid mechanics, fluid dynamics, elasticity, quantum mechanics, chemical-reactor, aerodynamics etc. (see [START_REF] Kadalbajoo | Singularly perturbed problems in partial differential equations: a survey[END_REF] for a survey).

The stability properties of singularly perturbed systems have been investigated by several authors. In the papers [START_REF] Habets | Stabilité asymptotique pour des problèmes de perturbations singulières[END_REF], [START_REF] Chow | Asymptotic stability of a class of nonlinear singularly perturbed systems[END_REF], [START_REF] Grujic | Uniform asymptotic stability of nonlinear singularly perturbed and large scale systems[END_REF], [START_REF] Chow | A two-stage Lyapunov-Bellman feedback design of a class of nonlinear systems[END_REF] and [START_REF] Saberi | Quadratic-type Lyapunov Functions for Singularly Perturbed Systems[END_REF], Lyapunov method, which is commonly used for stability analysis of dynamical systems, has been employed. The main idea is to consider two subsystems: the reduced system representing the slow dynamic and the boundary-layer system standing for the fast dynamic. Assuming that each of the two subsystems is stable and has a Lyapunov function, the stability of the singularly perturbed system can be established by a Lyapunov function which is obtained by the composition of the Lyapunov function of the reduced and boundary-layer systems, for a sufficiently small perturbation parameter. As in [START_REF] Saberi | Quadratic-type Lyapunov Functions for Singularly Perturbed Systems[END_REF], a composite Lyapunov function has been investigated for the asymptotic stability of a singularly perturbed finite-dimensional nonlinear system.

In our previous work [START_REF] Tang | Lyapunov stability of a singularly perturbed system of two conservation laws[END_REF], a class of singularly perturbed system of two conservation laws with a small perturbation parameter introduced to both the dynamics and the boundary conditions has been studied. As soon as the two subsystems, the reduced and boundary-layer systems, are stable, the stability of this system can be obtained by a Lyapunov ying.tang@gipsa-lab.fr, christophe.prieur@gipsa-lab.fr.

A. GIRARD is with Laboratoire Jean Kuntzmann, Université de Grenoble, B.P. 53, 38041 Grenoble, France. antoine.girard@imag.fr. function in L 2 -norm. The present paper focuses on the stability problem of the singularly perturbed system of two conservation laws with a small perturbation parameter ε introduced only to the dynamics. The first problem under our consideration is the stability of the two subsystems. Some necessary and sufficient conditions are stated for exponential stability of these subsystems. Each of the two subsystems has a strict Lyapunov function in L 2 -norm. Furthermore, we consider the exponential stability of the whole singularly perturbed system. For a sufficiently small perturbation parameter, with some additional conditions on the boundary conditions, the stability of the whole singularly perturbed system can be established via strict Lyapunov function in H 2 -norm. The new element here is the use of Lyapunov function in H 2 -norm. This kind of Lyapunov function has been studied in several papers. In [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] a strict H 2 -norm Lyapunov function has been constructed to analyze the stability of solutions to a system of two hyperbolic conservation laws around equilibrium. The stability of one-dimensional n × n nonlinear hyperbolic systems has also been considered in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF]. And in the work of [START_REF] Gügat | H 2 stabilization of the isothermal Euler equations: a Lyapunov function approach[END_REF], it is concerned with H 2 -stabilization of the Isothermal Euler equations.

The paper is organized as follows. The class of singularly perturbed system of conservation laws under consideration in this paper is given in Section 2. Section 3 states the exponential stability of the reduced and boundary-layer systems via Lyapunov functions in L 2 -norm. Section 4 analyzes the stability for the overall singularly perturbed system. A strict Lyapunov function in H 2 -norm is constructed. In Section 5, an illustrative example is provided to show the main result. Finally, concluding remarks end the paper. Some proofs have been omitted due to space limitation.

Notation. For a partitioned symmetric matrix P , the symbol stands for symmetric block, P 0 means that P is positive semidefinite. Given a matrix A, the transpose matrix of A is denoted as A T . The associate norm in H 2 (0, 1) space is denoted by || || H 2 , defined for all functions f ∈ H 2 (0, 1), by

||f || H 2 = 1 0 f 2 + f 2 x + f 2 xx dx 1/2 . (1) 
Following [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], we introduce the notation, for all matrices

M ∈ R n×n , ρ 1 (M ) = inf{ ∆M ∆ -1 , ∆ ∈ D n,+ }, (2) 
where || || denotes the usual matrix 2-norm and ∆ ∈ D n,+ denotes the set of diagonal positive matrix in R n×n .

According to [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF], for all matrices M ∈ R n×n , ρ(M ) is defined as

ρ(M ) = inf{|||∆M ∆ -1 |||, ∆ ∈ D n,+ }; (3) 
where

|||M ||| = max    n j=1 |M ij |; i ∈ 1, . . . , n    . (4) 

II. PROBLEM FORMULATION

We consider the following singularly perturbed system of conservation laws for a small positive perturbation parameter ε:

y t (x, t) + y x (x, t) = 0, εz t (x, t) + z x (x, t) = 0, (5) 
where

x ∈ [0, 1], t ∈ [0, +∞), y : [0, 1] × [0, +∞) → R, z : [0, 1] × [0, +∞) → R, with the boundary conditions y(0, t) z(0, t) = G y(1, t) z(1, t) , (6) 
where

G = G 11 G 12 G 21 G 22 is a 2 × 2 constant matrix.
Given two continuous functions y 0 : [0, 1] → R and z 0 : [0, 1] → R, the initial conditions are:

y(x, 0) z(x, 0) = y 0 z 0 . (7) 
Let us compute the reduced and boundary-layer systems following the approach of [START_REF] Kokotovic | Singular pertrubation methods in control: analysis and design[END_REF]. By setting ε = 0 in system (5), the reduced system is defined as:

y t (x, t) + y x (x, t) = 0, (8a) z x (x, t) = 0. (8b) 
Substitute (8b) into the boundary condition (6) yields:

y(0, t) = G 11 + G12G21 1-G22 y(1, t), z(., t) = G21 1-G22 y(1, t). (9) 
The reduced system is rewritten as

ȳt (x, t) + ȳx (x, t) = 0, (10) 
with the boundary condition

ȳ(0, t) = G 11 + G 12 G 21 1 -G 22 ȳ(1, t). (11) 
To define the boundary-layer system, the variable y(x, t) is seen as a constant with respect to time, which yields:

zτ (x, τ ) + zx (x, τ ) = 0, (12) 
with the boundary condition:

z(0, τ ) = G 21 ȳ(1) + G 22 z(1, τ ), (13) 
where τ = t ε is a stretching time scale. ȳ(1) in ( 13) is handled as a fixed parameter for the boundary-layer system.

Remark. According to Proposition 2.1 in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], for every y 0 z 0 ∈ H 2 (0, 1) satisfying the following compatibility conditions:

y 0 (0) z 0 (0) = G y 0 (1) z 0 (1) , (14) 
y 0 x (0) 1 ε z 0 x (0) = G y 0 x (1) 1 ε z 0 x (1) , (15) 
the system ( 5) and ( 6) has a unique maximal classical solution y z ∈ C 0 ([0, +∞), H 2 (0, 1)).

III. STABILITY ANALYSIS OF REDUCED AND BOUNDARY-LAYER SYSTEMS

The first problem under consideration is the stability analysis of the reduced system ( 10) and ( 11) and the boundarylayer system [START_REF] Gügat | H 2 stabilization of the isothermal Euler equations: a Lyapunov function approach[END_REF] and [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF]. Our objective in this section is to establish the stability properties of the reduced and boundarylayer systems via strict Lyapunov function in L 2 -norm.

Definition 1: The reduced system ( 10) and ( 11) is exponentially stable in L 2 -norm if there exist α > 0 and C > 0 such that, for every ȳ0 ∈ L 2 (0, 1), the solution to the reduced system [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] and [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] 

satisfies ||ȳ(., t)|| L 2 Ce -αt ||ȳ 0 || L 2 .
Proposition 1: The reduced system [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] and ( 11) is exponentially stable in L 2 -norm to 0 if and only if the boundary condition satisfies

G 11 + G 12 G 21 1 -G 22 < 1. ( 16 
)
Under this condition, a strict Lyapunov function is defined as:

V (ȳ) = 1 0 e -µx ȳ2 dx, (17) 
for all ȳ ∈ L 2 (0, 1), where µ > 0 satisfies

e -µ G 11 + G 12 G 21 1 -G 22 2 . ( 18 
)
Proposition 2: Given any ȳ(1) the boundary-layer system (12) and ( 13) is exponentially stable in L 2 -norm to the equilibrium point G21 1-G22 ȳ(1) if and only if the boundary condition satisfies

|G 22 | < 1. ( 19 
)
Under this condition, a strict Lyapunov function is defined as:

W (z) = 1 0 e -νx z - G 21 1 -G 22 ȳ(1) 2 dx, (20) 
for all z ∈ L 2 (0, 1), where ν > 0 satisfies

e -ν G 2 22 . (21) 

IV. STABILITY ANALYSIS OF SINGULARLY PERTURBED SYSTEM OF CONSERVATION LAWS

The aim of this section is to state the exponential stability of the singularly perturbed system of conservation laws from that of the reduced and boundary-layer systems, for small ε > 0.

In the previous section, the exponential stability has been established via Lyapunov functions in L 2 -norm for the reduced and boundary-layer systems. As we will see later, in order to do the stability analysis of the overall singularly perturbed system of conservation laws, it is needed to consider a strict Lyapunov function in H 2 -norm.

Definition 2: The singularly perturbed system of conservation laws ( 5) and ( 6) is exponentially stable to the origin in H 2 -norm if there exist γ > 0 and C 1 > 0, for every y 0 z 0 ∈ H 2 (0, 1), the solution to the system ( 5) and ( 6) satisfies

(||y(., t)|| H 2 + ||z(., t)|| H 2 ) C 1 e -γt ||y 0 || H 2 + ||z 0 || H 2 .
Our result shows that as soon as the reduced system ( 10) and ( 11) and the boundary-layer system ( 12) and ( 13) are exponentially stable in L 2 -norm, with some additional conditions on the boundary conditions, for sufficiently small ε, the exponential stability of singularly perturbed system of conservation laws ( 5) and ( 6) holds in H 2 -norm.

Let us start by stating our assumptions. Assumption 1: The reduced system [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] with boundary condition [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] is exponentially stable in L 2 -norm.

Assumption 2: The boundary-layer system [START_REF] Gügat | H 2 stabilization of the isothermal Euler equations: a Lyapunov function approach[END_REF] with boundary condition [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF] is exponentially stable in L 2 -norm. The last assumption (Assumption 3) deals with technical properties on matrix G in the boundary condition [START_REF] Grujic | Uniform asymptotic stability of nonlinear singularly perturbed and large scale systems[END_REF].

Assumption 3: For a given d such that 0 < d < 1, µ > 0 (resp. ν > 0) such that e -µ > G 2 11 and e -µ > G

11 + G12G21 1-G22 2 (resp. e -ν > G 2 22
), the following three inequalities hold: a)

(1 -d)R 1 -dG 2 21 0, (22) b 
) dR 2 -(1 -d)G 2 12 0, (23) c 
)

(1 -d)R 1 -dG 2 21 dR 2 -(1 -d)G 2 12 -((1 -d)R 3 + dR 4 ) 2 0.
(24) where:

R 1 = e -µ -G 2 11 , R 2 = e -ν -G 2 22 , R 3 = G 11 G 12 , R 4 = G 21 G 22 .
Remark. 1) Due to Proposition 1, Assumption 1 is equivalent to G 11 + G12G21 1-G22 < 1, which guarantees that y = 0 is an exponentially stable equilibrium point of the reduced system [START_REF] Coron | A strict Lyapunov function for boundary control of hyperbolic systems of conservation laws[END_REF] and [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF].

2) Similarly, due to Proposition 2, Assumption 2 is equivalent to |G 22 | < 1, which plays the same role for the boundarylayer system (12) and ( 13) which has an equilibrium point z = G21

1-G22 y(1). It is important to notice that, for the boundary-layer system, y(1) is treated as a constant with respect to time. On the other hand it is reasonable to consider y(1) as a variable of time for the overall system ( 5) and ( 6).

3) Assumption 3 stands for the additional conditions on the boundary conditions, which ensures the solutions converge in H 2 -norm. We can state the following theorem:

Theorem 1: Under Assumptions 1, 2 and 3, let the positive value ε * = min(ε 1 , ε 2 ), ε 1 , ε 2 ∈ (0, +∞] be given by: Case 1:

If G 12 = 0 or G 21 = 0 ε 1 = dK 1 R 2 (1 -d)G 2 12 K 1 + (1 -d)K 2 2 ;
(25)

ε 2 = (1 -d)µe -µ νe -ν (1 -G 22 ) 2 2dG 2 21 . ( 26 
)
where:

K 1 = e -µ - G 11 + G12G21 1-G22 2 
and

K 2 = G 11 G 12 + G 2 12 G21
1-G22 .

Case 2: If G 12 = 0 and G 21 = 0

ε 1 = ε 2 = +∞, (27) 
Then, for all 0 < ε < ε * and 0 < ε < +∞, the singularly perturbed system of conservation laws ( 5) and ( 6) is exponentially stable in H 2 -norm to the origin and it has a strict Lyapunov function:

L(y, z) = (1 -d) 1 0 e -µx (y 2 + y 2 x + y 2 xx )dx + d 1 0 e -νx z - G 21 1 -G 22 y(1) 2 + η 1 (ε)z 2 x + η 2 (ε)z 2 xx ( 28 
)
where η 1 , η 2 are positive values which depend on ε.

Remark. ε * can be computed by ε 1 and ε 2 , moreover, to ensure the stability of system ( 5) and ( 6) in H 2 -norm for all ε < ε * , ε * should be taken as the minimum value between ε 1 and ε 2 . Sketch of the proof: First, let us decompose L(y, z) in the following way:

L(y, z) = L 1 + L 2 + L 3 , (29) 
with L 1 , L 2 and L 3 selected respectively to the zero-th, first and second space-derivative of the solutions, that is:

L 1 = (1 -d) 1 0 e -µx y 2 dx +d 1 0 e -νx z - G 21 1 -G 22 y(1)
2 dx, (30)

L 2 = (1 -d) 1 0 e -µx y 2 x dx + dη 1 (ε) 1 0 e -νx z 2 x dx, (31) 
L 3 = (1 -d) 1 0 e -µx y 2 xx dx + dη 2 (ε) 1 0 e -νx z 2 xx dx. (32) 
Next, we use 4 steps to demonstrate the proof of Theorem 1.

Step 1: Compute the time derivative of the first term L 1 along the solutions to ( 5) and ( 6)

L1 = L 11 + L 12 ( 33 
)
with

L 11 = -(1 -d) e -µx y 2 x=1 x=0 - d ε e -νx z - G 21 1 -G 22 y(1) 2 x=1 x=0 , (34) 
and

L 12 = -(1 -d)µ 1 0 e -µx y 2 dx + 2dG 21 1 -G 22 1 0 e -νx z - G 21 1 -G 22 y(1) y x (1)dx - d ε ν 1 0 e -νx z - G 21 1 -G 22 y(1) 2 dx. (35) 
Under the boundary conditions ( 6) and replacing z(1) by the right-hand side of the following equation

z(1) = z(1) - G 21 1 -G 22 y(1) + G 21 1 -G 22 y(1),
the term L 11 follows

L 11 = - y(1) z(1) -G 21 1-G 22 y(1) T M 11 y(1) z(1) -G 21 1-G 22 y(1)
with

M 11 = (1 -d)K 1 -(1 -d)K 2 d ε R 2 -(1 -d)G 2 12 ,
where K 1 , K 2 are defined in Theorem 1 and R 2 is defined in Assumption 3.

To prove L 11 is non positive, which is equivalent to prove the matrix M 11 0, it is sufficient to require that

0 < ε dK 1 R 2 (1 -d)G 2 12 K 1 + (1 -d)K 2 2 , ( 36 
) if G 12 = 0. And pick any ε > 0 if G 12 = 0. Due to Assumption 1 (resp. Assumption 2), K 1 (resp. R 2 )
is always positive. The right-hand side of (36) gives ε 1 .

Step 2: Differentiating (5) with respect to x, we have

y xt (x, t) + y xx (x, t) = 0, εz xt (x, t) + z xx (x, t) = 0, (37) 
with the boundary conditions

y x (0, t) = G 11 y x (1, t) + 1 ε G 12 z x (1, t), z x (0, t) = εG 21 y x (1, t) + G 22 z x (1, t). (38) 
Compute the time derivative of the second term L 2 along the solutions to (37) and (38)

L2 = L 21 + L 22 (39) 
with

L 21 = -(1 -d)[e -µx y 2 x ] x=1 x=0 - dη 1 (ε) ε [e -νx z 2 x ] x=1 x=0 , (40) 
and

L 22 = -(1 -d)µ 1 0 e -µx y 2 x dx - dνη 1 (ε) ε 1 0 e -νx z 2 x dx. (41) 
Take η 1 (ε) = 1 ε , under the boundary conditions (38), the term L 21 follows

L 21 = - y x (1) z x (1) T M 21 y x (1) z x (1) , with: 
M 21 = (1 -d)R 1 -dG 2 21 -( (1-d)R3 ε + dR4 ε ) d ε 2 R 2 - (1-d)G 2 12 ε 2
, where R 1 , R 2 , R 3 and R 4 are defined in Assumption 3.

To prove L 21 is non positive, which is equivalent to prove the matrix M 21 0, it is sufficient to require the following conditions are satisfied:

(1 -d)R 1 -dG 2 21 0; (42) 
it is equivalent to the first inequality of Assumption 3.

d ε 2 R 2 - (1 -d)G 2 12 ε 2 0; (43) 
it is equivalent to the second inequality of Assumption 3.

(

-d)R 1 -dG 2 21 dR 2 -(1 -d)G 2 12 ε 2 - ((1 -d)R 3 + dR 4 ) 2 ε 2 0; 1 
it is equivalent to the third inequality of Assumption 3.

Step 3: Differentiating (37) with respect to x, we have:

y xxt (x, t) + y xxx (x, t) = 0, εz xxt (x, t) + z xxx (x, t) = 0, (45) 
with boundary conditions:

y xx (0, t) = G 11 y xx (1, t) + 1 ε 2 G 12 z xx (1, t), z xx (0, t) = ε 2 G 21 y xx (1, t) + G 22 z xx (1, t). (46) 
Compute the time derivative of the third term L 3 along the solutions to (45) and ( 46)

L3 = L 31 + L 32 (47) 
with

L 31 = -(1 -d)[e -µx y 2 xx ] x=1 x=0 - dη 2 (ε) ε [e -νx z 2 xx ] x=1 x=0 , (48) 
and

L 32 = -(1 -d)µ 1 0 e -µx y 2 xx dx - dνη 2 (ε) ε 1 0 e -νx z 2 xx dx. (49) 
Take η 2 (ε) = 1 ε 3 , under the boundary conditions (46), the term L 31 follows

L 31 = - y xx (1) zxx(1) ε T M 21 y xx (1)
zxx( 1) ε

.

As soon as the matrix M 21 0, L 31 is non positive.

Step 4: Combining all the integral terms (35), ( 41) and (49), with η

1 (ε) = 1 ε , η 2 (ε) = 1 ε 3 , we get L 12 + L 22 + L 32 = -(1 -d)µ 1 0 e -µx (y 2 + y 2 x + y 2 xx )dx - dν ε 1 0 e -νx z - G 21 1 -G 22 y(1) 2 + z 2 x ε + z 2 xx ε 3 + 2dG 21 1 -G 22 1 0 e -νx z - G 21 1 -G 22 y(1) y x (1)dx. (50) 
The following inequalities hold

-(1 -d)µ 1 0 e -µx (y 2 + y 2 x + y 2 xx )dx -(1 -d)µe -µ y 2 H 2 . (51) 
Moreover

- dν ε 1 0 e -νx z - G 21 1 -G 22 y(1) 2 + z 2 x ε + z 2 xx ε 3 dx - d ε νe -ν z - G 21 1 -G 22 y(1) 2 H 2 . (52) 
Furthermore

2dG 21 1 -G 22 1 0 e -νx z - G 21 1 -G 22 y(1) y x (1)dx 2 √ 2dG 21 1 -G 22 z - G 21 1 -G 22 y (1) 
H 2 y H 2 . ( 53 
)
According to (51), ( 52) and (53), L 12 + L 22 + L 32 follows

L 12 + L 22 + L 32 - y H 2 (z -G 21 1-G 22 y(1) H 2 T M 4 y H 2 (z -G 21 1-G 22 y(1) H 2 , with M 4 = (1 -d)µe -µ -| √ 2dG21 1-G22 | dν ε e -ν .
To prove M 4 > 0, it is sufficient to require that

0 < ε < (1 -d)µe -µ νe -ν (1 -G 22 ) 2 2dG 2 21 . ( 54 
)
Let ε 2 be given by the right-hand side of (54). Under Assumptions 1, 2 and 3, pick ε * = min(ε 1 , ε 2 ), where ε 1 and ε 2 are given by ( 25) and (26) in Case 1 and (27) in Case 2. λ is the minimal eigenvalue of M 4 , it is obtained:

L -λ z - G 21 1 -G 22 y(1) 2 H 2 + y 2 H 2 . ( 55 
)
Therefore the Lyapunov function ( 28) is a strict Lyapunov function for singularly perturbed system of conservation laws ( 5) and ( 6). This concludes the proof of Theorem 1.

V. NUMERICAL EXAMPLE

In this section, we consider the following boundary condition for the singularly perturbed system (5):

G = 0.7 2 0.1 -0.5 , (56) 
where Assumptions 1 and 2 hold. Let take d = 0.95, µ = ν = 0.1, it is computed: R 1 = 0.4148, R 2 = 0.6548, R 3 = 1.4, R 4 = -0.05, the three inequalities of Assumption 3 hold. Following the statement of Theorem 1 it is computed: K 1 = 0.2104, K 2 = 1.6666. According to (25) and ( 26), ε 1 and ε 2 are computed:

ε 1 = 0.7233, ε 2 = 0.0485.
The admissible perturbation parameter ε is chosen as 0.045.

Applying Theorem 1, the system (5) and ( 56) is exponentially stable. Considering a diagonal positive definite matrix ∆ = 1 0 0 4 , the inequality ||∆G∆ -1 || < 1 holds and thus ρ 1 (G) < 1. Therefore with [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], we recover the stability of system ( 5) and (56). In other words, the stability condition of [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF] applies for system (5) and (56). However ρ(|G|) > 1, and thus the stability condition of [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF] does not apply.

Let us check the stability in numerical simulation of ( 5) and (56). Discretize the equation ( 5) using a two-step variant of the Lax-Wendroff method which is presented in [START_REF] Shampine | Two-step Lax-Friedrichs method[END_REF] and the solver on Matlab in [START_REF] Shampine | Solving hyperbolic PDEs in Matlab[END_REF]. More precisely, we divide the space domain [0, 1] into 100 intervals of identical length, and 15 as final time. We choose a time-step that satisfies the CFL condition for the stability and select the following initial functions:

y(x, 0) = sin(4πx) z(x, 0) = sin(5πx) for all x ∈ [0, 1].
The time evolutions of the solutions y z and of square of H 2 -norm 

||y|| 2 H 2 z -G21 1-G22 y(1)

VI. CONCLUSIONS

In this paper, the stability for a class of singularly perturbed system of conservation laws has been studied. Necessary and sufficient condition has been derived for the stability of the reduced and boundary-layer systems. For a perturbation parameter sufficiently small, under suitable assumptions on the boundary conditions, the exponential stability of the singularly perturbed system of conservation laws has been established in H 2 -norm. This result was proved by means of a Lyapunov function approach. This work was restricted to analyze singularly perturbed system of two conservation laws. It is natural to extend to the system of balanced laws and to systems of higher dimension. Another interesting point is to consider some physical application, like gas flow through pipelines in [START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF], [START_REF] Colombo | Optimal control in networks of pipes and canals[END_REF] and open channels in [START_REF] Santos | Boundary control of open channels with numerical and expermental validations[END_REF].
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 221222 Fig. 1. Time evolutions of the first component y (top) and of the second component z (bottom) of the solution of the system (5) and (56)