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Abstract. In many geometry processing applications, the estimation of
differential geometric quantities such as curvature or normal vector field
is an essential step. In this paper, we investigate a new class of estimators
on digital shape boundaries based on Integral Invariants. More precisely,
we provide both proofs of multigrid convergence of curvature estimators
and a complete experimental evaluation of their performances.
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1 Introduction

In many shape processing applications, differential quantities estimation on the
shape boundary is usually an important tool. When evaluating a differential es-
timator on discrete or digital data, we need a way to mathematically link the
estimated quantity to the expect Euclidean one. In Digital Geometry, we usually
consider multigrid convergence principles: when the shape is digitized on a grid
with resolution tending to zero, the estimated quantity should converge to the
expected one [4]. Hence, in dimension 2, parameter free convergence results have
been obtained for length [3] and normal vector estimation [20]. Based either on
binomial convolution principles [15, 5], or polynomial fitting [18], convergence
results can also be obtained for higher order derivatives of digital curves. Algo-
rithms are parametrized by the size of the convolution or fitting kernel support
and convergence theorem holds when such support size is an increasing function
of the grid resolution and some shape characteristics. For curvature estimation
along 2D curves, multigrid convergence of parameter free estimator is still chal-
lenging, although accurate experimental results have been obtained [19]. In 3D,
several empirical methods exist for estimating curvatures, but none achieves
multigrid convergence (e.g. see [6]).

In geometry processing, interesting mathematical tools have been developed
to design differential estimators on smooth surfaces based on integral invariants
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grants



[17, 16]. They consist in moving a kernel along the shape surface and in com-
puting integrals on the intersection between the shape and the kernel. Authors
have demonstrated that some integral quantities provide interesting curvature
information when the kernel size tends to zero.

The contributions of the paper can be sketched as follows. First, we define
digital versions of integral invariant estimators for which convergence results
can be obtained when the grid resolution tends to zero. We provide an explicit
formula for the kernel size, which guarantees uniform convergence for smooth
enough curves (Sect. 3). Furthermore, we demonstrate that these estimators have
efficient implementations and that they compete with classical ones in terms of
accuracy (Sect. 4). We also illustrate the strength of the framework to design
mean and Gaussian curvature estimators on surfaces in Z3.

2 Preliminaries

2.1 Shapes, digital shapes and multigrid convergence

Since we are interested in evaluating both theoretically and experimentally the
behavior of a given differential estimator on digital object boundaries, we first
have to formalize links between Euclidean objects and digital ones with the help
of a digitization process. Let us consider a family X of smooth and compact
subsets of Rd. In Section 3 we will be more precise on the notion of smoothness
for shapesX ∈ X. We denote Dh(X) the digitization ofX in a d−dimensional grid
of resolution h. More precisely, we consider classical Gauss digitization defined
as

Dh(X)
def
=

(
1

h
·X

)
∩ Zd (1)

where 1
h ·X is the uniform scaling of X by factor 1

h . Furthermore, the set ∂X
denotes the frontier of X (i.e. its topological boundary). If z ∈ Zd, then Qz

denotes the unit d-dimensional cube of Rd centered on z. The h-frontier ∆hZ

of a digital set Z ⊂ Zd is defined as ∆hZ
def
= ∂(h · ∪z∈ZQz). Therefore, the

h-frontier of Dh(X) is a d−1-dimensional subset of Rd, which is close to ∂X. We
will precise the term “close” later in this subsection. Since this paper deals with
multigrid convergence, digital shapes will always come from the digitization of
continuous shapes. To simplify notations, the h-frontier of the Gauss digitization

at step h of a shape X will simply be denoted by ∂hX
def
= ∆hDh(X), and called

later on h-boundary of X.
As discussed in various previous works, the idea of multigrid convergence is

that when we define a quantity estimator on Dh(X), we check if the estimated
quantity converges (theoretically and/or experimentally) to the associated one
on X when h tends to zero. In this paper, we focus on local and global estimated
quantities. More formally,

Definition 1 (Multigrid convergence for local geometric quantities). A
local discrete geometric estimator Ê of some geometric quantity E is multigrid



convergent for the family X if and only if, for any X ∈ X, there exists a grid
step hX > 0 such that the estimate Ê(Dh(X), x̂, h) is defined for all x̂ ∈ ∂hX
with 0 < h < hX , and for any x ∈ ∂X,

∀x̂ ∈ ∂hX with ‖x̂− x‖∞ ≤ h, |Ê(Dh(X), x̂, h)− E(X,x)| ≤ τX,x(h), (2)

where τX,x : R+ \ {0} → R+ has null limit at 0. This function defines the speed

of convergence of Ê toward E at point x of X. The convergence is uniform for X
when every τX,x is bounded from above by a function τX independent of x ∈ ∂X
with null limit at 0.

When a geometrical quantity is gobal (e.g. area or volume), we do not need
explicit mapping between ∂X and ∂hX, and Def 1 can be rephrased to define
multigrid convergence of global geometric quantities [4]. A local discrete estima-
tor thus estimates a geometric quantity at points on the h-frontier of a digital
set, otherwise said at any point on the interpixel representation of the digital
set boundary. This definition encompasses usual definitions where input points
are pointels, linels or surfels. In some proofs, a more precise mapping between
points x ∈ ∂X and x̂ ∈ ∂hX is required. For a 2D shape X with bounded curva-
ture κmax along its boundary, this mapping is the back-projection map (cf Fig.
1-(right)). Let n(X,x, l) be the straight segment, centered on x, aligned with
the normal vector at x along ∂X, and of half-length l.

Definition 2 (Back-projection πX
h [12]). For 0 < h ≤ 1/κmax, let πX

h :

∂hX → ∂X, x̂ 7→ x = πX
h (x̂), where x is the only point such that x̂ ∈ n(X,x,

√
2
2 h).

Lemma B.9 [12] indicates that the map πX
h is well-defined and onto. Lemma

B.10 further tells that this map is continuous. It shows that the boundaries ∂hX

and ∂X are indeed close, since their Hausdorff distance is no greater than
√
2
2 h.

2.2 Integral invariants theory

In Geometry Processing, integral invariants have been widely investigated to con-
struct estimators of differential quantities (see [17, 16] for a complete overview).
For short, the main idea is to move a kernel on points x ∈ ∂X and to compute
integrals on the intersection between X and the kernel. Even if different kernels
(Euclidean ball, Euclidean sphere,. . . ) and different integration functions can be
considered, we focus here on volumetric integral invariants defined as follows:

Definition 3. Given X ∈ X and a radius r ∈ R+∗, the volumetric integral Vr(x)
at x ∈ ∂X is given by (see Fig. 1−(left))

Vr(x)
def
=

∫

Br(x)

χ(p)dp , (3)

where Br(x) is the Euclidean ball with radius r and center x and χ(p) the char-
acteristic function of X. In dimension 2, we simply denote Ar(x) such quantity.
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Fig. 1. Integral invariant computation (left) and notations (right) in dimension 2.

Several authors have detailed connections between Vr(x) and curvature (resp.
mean curvature) at x for shapes in R2 (resp. R3) [2, 17, 16].

Lemma 1 ([16]). For a sufficiently smooth shape X in R2 x ∈ ∂X, we have

Ar(x) =
π

2
r2 −

κ(X,x)

3
r3 +O(r4) (4)

where κ(X,x) is the curvature of ∂X at x. For a sufficiently smooth shape X in
R3 and x ∈ ∂X, we have

Vr(x) =
2π

3
r3 −

πH(X,x)

4
r4 +O(r5) (5)

where H(X,x) is the mean curvature of ∂X at x.

Such results are obtained by Taylor expansion at x of the surface ∂X approx-
imated by a parametric function y = f(x) in 2D and z = f(x, y) in 3D. From
Eq. (4) and (5) and with a fixed radius r, one can derive local estimators κ̃r(x)
and H̃r(x) respectively:

κ̃r(X,x)
def
=

3π

2r
−

3Ar(x)

r3
, H̃r(X,x)

def
=

8

3r
−

4Vr(x)

πr4
(6)

In this way, when r tends to zero, both estimated values will converge to
expected ones (respectively κ and H). More formally:

κ̃r(X,x) = κ(X,x) +O(r), H̃r(X,x) = H(X,x) +O(r) (7)

We mention additional results which allows us to access to directional infor-
mation such as principal curvature directions. Instead of computing the measure
of Br(x)∩X as in Def. 3, we consider its covariance matrix. In [17], authors have
demonstrated that eigenvalues and eigenvectors of the covariance matrix provide
principal curvature and principal direction information. We do not detail this
approach here but we give preliminary results on digital curvature estimators
based on this fact in Sect. 4.

When dealing with digital shapes Dh(X), implementation of these estimators
becomes straightforward: choose a radius r, center an Euclidean (or digital) ball



at chosen points of ∂hX (e.g. centroids of linels or surfels), compute the intersec-
tion in terms of number of pixels/voxels and finally estimate κ̃ and H̃ using (6).
However, several issues are hidden is this approach: What are meaningful values
for r according to the shape size and geometry ? Do points of ∂hX converge to
points x ∈ ∂X for which Lemma 1 is valid ? Does counting the number of pixels
(resp. voxels) converge to Ar(x) (resp. Vr(x)) ? The rest of the paper addresses
all these questions.

3 Multigrid convergence of curvature estimator in digital

space

We first recall multigrid convergence theorems for area and volume estimation
by counting which will be useful to design digital version of integral invariants.
A new digital curvature estimator κ̂r is then defined (Eq. (11)) and its multigrid
convergent properties are established (Theorems 1 and 2).

3.1 Area or volume estimation by counting

Area in the plane and volume in the space can be estimated by counting the
number of digital points belonging to the shape. Given digital shapes Z ⊂ Z2

and Z ′ ⊂ Z3, the discrete area and volume estimators by counting at step h

are defined as Ârea(Z, h)
def
= h2Card(Z) and V̂ol(Z ′, h)

def
= h3Card(Z ′). Now, if

those digital shapes Z and Z ′ come from digitizations of Euclidean shapes X
and X ′, then as the digitization step h gets finer, these estimators give better
and better estimation of the area of X and of the volume of X ′ respectively. We
have the following convergence results, letting X be a finite convex shape of R2

and X ′ defined similarly in R3:

Ârea(Dh(X), h) = Area(X) +O(hβ), V̂ol(Dh(X
′), h) = Vol(X ′) +O(hγ), (8)

where β = 1 in the general case (known since Gauss and Dirichlet according to
[10]) and may be improved to 15

11 − ǫ, ǫ > 0 arbitrary small, when the shape
boundary is C3 with non-zero curvature [8]. Similar results hold in 3D, γ = 1 is
the general case (e.g. see [11]) while γ = 243

158 for smoother boundary [7]. In fact,
preceding equations hold whenever the shape boundary can be decomposed in
a finite number of convex pieces [9].

3.2 Estimation of integral invariants

We are mainly concerned by the estimation of the quantity Ar(x) = Area(Br(x)∩
X) of Def. 3 at a step h. We cannot readily use Eq. (8) to estimate this area: in
this case, the big “O” notation hides the fact that the involved constant depend
on the shape size, scale and maximal curvature. It is obvious that doubling the
size of X will induce a better estimate of the area of 2 · X at the same scale
h. This is a problem with integral invariants, since the involved balls have a



radius r which tends toward 0 as h tends toward 0. We need to normalize our
area estimation so that the error is no more influenced by the scale. Hence we
estimate the area Ar(x) as follows:

Ârea(Dh(Br(x) ∩X), h)
def
= h2Card((

1

h
· (Br(x) ∩X)) ∩ Z2),

= h2Card((
r

h
· (B1(

1

r
· x) ∩

1

r
·X)) ∩ Z2),

= r2
h2

r2
Card((

r

h
· (B1(

1

r
· x) ∩

1

r
·X)) ∩ Z2),

= r2Ârea(Dh/r(B1(
1

r
· x) ∩

1

r
·X), h/r),

by definitions of Ârea and D. We insert (8) in the right handside term:

Ârea(Dh(Br(x) ∩X), h) = r2
(
Area(B1(

1

r
· x) ∩

1

r
·X) +O((h/r)β)

)
. (9)

Let SB(r) denotes the set B1(
1
r · x) ∩ 1

r · X. The constant K1 associated to
the big “O” depends only of the maximal curvature of ∂SB(r). The curvature
is not defined on the subset ∂B1(

1
r · x) ∩ 1

r · ∂X, but its influence on the area
estimation is negligible (at most O(h2)). The remaining part of ∂SB(r) has a
maximal curvature which is obviously 1 for sufficiently small r. Indeed, since
X has bounded curvature, its dilated 1

r · ∂X becomes flat at point 1
r · x, the

maximal curvature value 1 is thus induced by ∂B1(x). We conclude that there
exists some r0 such that the constant K1 holds for arbitrary r < r0. Developping
the big “O” with K1 and inserting in (9) the straightforward relation Ar(x) =
Area(Br(x) ∩X) = r2Area(B1(

1
r · x) ∩ 1

r ·X), we finally obtain:

|Ârea(Dh(Br(x) ∩X), h)−Ar(x)| ≤ K1h
βr2−β . (10)

The preceding convergence relation holds for h ≤ r ≤ r0, and is also valid
when x is any point of R2, not necessarily a point of ∂X. Note that the constant
K1 is independent of the shape X (but not r0).

The same reasoning is valid in 3D: The curvature is then not defined on the
subset ∂B1(

1
r · x) ∩ 1

r · ∂X, which tends toward the unit circle as r → 0. The
induced error on volume estimation is then the number of intersected voxels
(≈ 2π/h) times the volume of a voxel (h3), and is hence negligible. Maximal
curvatures are obviously 1 for sufficiently small r. The same relation as (10)

holds for V̂ol, where β is replaced by γ.

3.3 Digital curvature estimator

In a similar spirit to (6), we define the integral digital curvature estimator κ̂r of
a digital shape Z at point x ∈ R2 and step h as:

∀0 < h < r, κ̂r(Z, x, h)
def
=

3π

2r
−

3Ârea(Br/h(
1
h · x) ∩ Z, h)

r3
. (11)



To establish its multigrid convergence when Z is the digitization of some
subset X of R2, we proceed in two phases, depending on whether or not we
know the exact position of point x on ∂X or only an approximation x̂ on ∂hX.

Convergence when x ∈ ∂X. Using relations on integral invariants (6), (10),
and relation Dh(Br(x) ∩X) = Br/h(

1
h · x) ∩ Dh(X), we obtain for r < r0:

|κ̂r(Dh(X), x, h)− κ(X,x)| =

∣∣∣∣∣
3π

2r
−

3Ârea(Br/h(
1
h · x) ∩ Dh(X), h)

r3
− κ(X,x)

∣∣∣∣∣ ,

|κ̂r(Dh(X), x, h)− κ(X,x)| ≤

∣∣∣∣
3π

2r
−

3Area(Br(x) ∩X)

r3
− κ(X,x)

∣∣∣∣+ 3K1
hβ

r1+β

≤ |κ̃r(X,x)− κ(X,x)|+ 3K1
hβ

r1+β
,

≤ O(r) + 3K1
hβ

r1+β
, (using Eq. (7)). (12)

There are two error terms, both of which depends on the choice of the ball
radius r. We propose to set r = khα, and to choose k and α so as to minimize
the error bound. Denoting by K2 the constant in the big “O”, we derive:

|κ̂r(Dh(X), x, h)− κ(X,x)| ≤ K2kh
α +

3K1

k1+β
hβ−α(1+β). (13)

Since one error term in (13) increases with α while the other decreases with α, the
minimum is achieved when the exponents are the same (solve α = β−α(1+β)).
The constant k is then obtained by studying its variation at the optimal α. We
obtain the convergence theorem below.

Theorem 1 (Convergence of digital curvature estimator κ̂r along ∂X).
Let X be some convex shape of R2, with at least C2-boundary and bounded cur-
vature. Then ∃h0,K1,K2, such that

∀h < h0, r = kmhαm , |κ̂r(Dh(X), x, h)− κ(X,x)| ≤ Khαm , (14)

where αm = β
2+β , km = ((1 + β)K1/K2)

1
2+β ,K = K2km + 3K1/k

1+β
m . When the

boundary of X is C3 without null curvature points, the exponent αm = 15
37 − ǫ ≈

0.405, otherwise αm = 1
3 .

Convergence for x̂ ∈ ∂hX. Unfortunately, the exact position of x is unknown
in digital geometry applications. We only know some digital point x̂ ∈ ∂hX,
which is close to some point x ∈ ∂X. More precisely, the back-projection is used
to determine x as πX

h (x̂). Integral invariants are not directly applicable since
estimator κ̂r at x̂ is then related to Ar(x̂), where x̂ does not generally lie onto
∂X. We have to determine the error between the area measure at x̂ and at x.



Notice first that point x̂ lies on the normal direction to ∂X at x, at a distance

δ
def
= ‖x−x̂‖2. In 3D, we could use Theorem 7 of [17]. In 2D, we achieve similarly:

|Ar(x̂)−Ar(x)| = 2rδ(1 +O(r2) +O(δ)). (15)

We write (10) at point x̂ (recall that Ar(y) = Br(y) ∩X) and insert (15):

|Ârea(Dh(Br(x̂) ∩X), h)−Ar(x̂)| ≤ K1h
βr2−β , which implies

|Ârea(Dh(Br(x̂) ∩X), h)−Ar(x)| ≤ K1h
βr2−β + 2rδ(1 +O(r2) +O(δ)).(16)

In order to get the curvature estimator, we follow the same reasoning as in
(12) but we use (16) instead of (10), which gives:

|κ̂r(Dh(X), x̂, h)− κ(X,x)| ≤ O(r) + 3K1
hβ

r1+β
+

6δ

r2
(1 +O(r2) +O(δ)).(17)

We know that δ ≤
√
2
2 h (see above). In fact, in some cases (see [13]), we can

hope to get a better localization of x wrt x̂. Therefore we write δ = O(hα′

),
where α′ ≥ 1. We rewrite (17) to obtain an error bound depending only on h by
setting r = khα:

|κ̂r(Dh(X), x̂, h)− κ(X,x)| ≤O(hα) +O(hβ−α(1+β))

+O(hα′−2α) +O(hα′

) +O(h2α′−2α).
(18)

We follow the same idea as for (13) to find the best possible parameter α.
The difference is that the optimal αm depends not only on β but also on α′.
Simple computations give αm = β

1+β if α′ ≥ 3β
1+β , otherwise αm = α′

3 . If point

x̂ is taken on the digital boundary ∂hX, then α′ = 1 from the relation δ ≤
√
2
2 h

(see above). We obtain then the convergence theorem below.

Theorem 2 (Uniform convergence of curvature estimator κ̂r along ∂hX).
Let X be some convex shape of R2, with at least C3-boundary and bounded cur-
vature. Then, ∃h0 ∈ R+, for any h ≤ h0, setting r = kh

1
3 , we have

∀x ∈ ∂X, ∀x̂ ∈ ∂hX, ‖x̂− x‖∞ ≤ h ⇒ |κ̂r(Dh(X), x̂, h)− κ(X,x)| ≤ Kh
1
3 .

Proof. Let x̂ ∈ ∂hX and set x0 = πX
h (x̂). We know that δ = ‖x̂ − x0‖2 ≤

√
2
2 h.

Thus α′ = 1 and αm = 1
3 . Then (18) becomes:

|κ̂r(Dh(X), x̂, h)− κ(X,x0)| ≤ O(h
1
3 ). (19)

with r = kh
1
3 , k is an arbitrary positive constant, and r < r0 (constant that

depends on X). This implies h < h1
def
= (r0/k)

3. Let x ∈ ∂X with ‖x̂−x‖∞ ≤ h.

Since ‖x̂− x0‖2 ≤
√
2
2 h =⇒ ‖x̂− x0‖∞ ≤

√
2
2 h < h, we conclude that x and x0

are under the same closed square Q of edge length 2h centered on x̂. It is proven
that for sufficiently regular shapes (called par(R)-regular shapes in [14], R is the



inverse of the maximal curvature) there exists a gridstep h2 =
√
10
5 R below which

the boundary of the shape digitization has same topology as the shape boundary
([12], Theorem B.5). Furthermore, these two boundaries are very close (Hausdorff
distance is below h). For h < R/2 < h2, since Q ∩ ∂hX is connected, Q ∩ ∂X
is connected. Hence x and x0 both belongs to the same piece of Q ∩ ∂X, whose
length is upper bounded by πh. Since the boundary is C3 the curvature may
only vary between x and x0 by some O(πh). Hence |κ(X,x)−κ(X,x0)| ≤ O(h).
Inserting the previous relation in (19) and observing that O(h) is negligible

against O(h
1
3 ) allow us to conclude for h < h0

def
= min(h1, R/2). ⊓⊔

Mean and Gaussian curvature in 3D. For the mean curvature, we may
follow the same principles as above, using (6) and (7), and inserting the vol-

ume estimator V̂ol into the formulas. Since (10) holds for V̂ol (if γ replaces β),
we derive the uniform convergence for the the integral digital mean curvature
estimator Ĥr of a digital shape Z ′ ⊂ Z3 at point x ∈ R3 and step h as:

∀0 < h < r, Ĥr(Z
′, x, h)

def
=

8

3r
−

4V̂ol(Br/h(
1
h · x) ∩ Z ′, h)

πr4
. (20)

If X has C2-boundary and bounded curvatures, the uniform convergence of Ĥr

towards Hr is achieved along ∂X for r = K ′h1/3, with a speed of convergence of
O(h1/3). To be valid along ∂hX, it is required to prove that the back-projection
has the same properties in 3D as in 2D. This is not developed here for space rea-
sons. Similarly, an integral digital Gaussian curvature estimator can be obtained
by digital approximation of the covariance matrices of X ∩Br(x). Convergence
results rely on the fact that digital moments converge in the same manner as
volumes [10].

4 Experimental evaluation

We present an experimental evaluation of curvature estimators in 2D and 3D.
We have implemented these Integeral Invariant estimators (II) in the DGtal

library [1] whichallows us to have parametric or implicit shape construction in
dimension 2 and 3 for multigrid evaluation. Furthermore, it allows comparison
with former approaches available in DGtal: Most-centered Digital Circular Arc
(MDCA) [19] and Binomial based convolution [5].

As described in Sect. 2, brute-force implementation is trivial. We first need to
construct a kernel from an Euclidean ball in dD with radius given by r = kmhαm

as described in theorem statements. Then, we track the digital object boundary,
center the kernel on each surface elements and compute the volume intersection
between the kernel and the object. Using this approach, we obtain a computa-
tional cost in O((r/h)d) per surface element (i.e. the size of the kernel digitization
with grid-step h). However, we can take benefit from digital surface structure to
considerably speed-up this algorithm: if we consider a surface tracker for which
surface elements are processed by proximity (the current surface element is a



neighbor of the previous one through a translation vector δ), the area/volume
computation can be done incrementally since they are countable additive:

Ârea(Dh(X) ∩Br(x+ δ), h) = Ârea(Dh(X) ∩Br(x), h)

+ Ârea(Dh(X) ∩ (Br(x+ δ) \Br(x)), h)− Ârea(Dh(X) ∩ (Br(x) \Br(x+ δ)), h).

If we precompute all kernels Dh(Br(0±δ)\Br(0)) for some δ displacements (based
on surface element umbrella configurations, 8 in 2D and 26 in 3D for ‖δ‖∞ =
h), the computational cost per surface element can be reduced to O((r/h)d−1).
Finally, the first surfel has to be computed using kernel Br(x̂) and the subsequent
neighboring surfels are processed using sub-kernels Dh(Br(0± δ) \Br(0)).

0.001

0.01

0.1

1

0.0001 0.001 0.01 0.1 1

L
ο
ο

e
rr

o
r

h

α=1/2

α=2/5

α=1/3

α=2/7

α=1/4
0.1

1

10

0.0001 0.001 0.01 0.1 1

L
ο
ο

e
rr

o
r

h

α=1/2

α=2/5

α=1/3

α=2/7

α=1/4

Fig. 2. Comparison of hα on an ellipse (left) and on the accelerated flower (right).

As discussed in the previous section, we first validate the experimental multi-
grid convergence for various αm parameters. Fig. 2 gives results for two 2D
shapes: error is given by the l∞ distance to the true expected values in order
to match with theorem settings. For multigrid ellipses (Fig. 2, left) which cor-
responds to theorem hypothesis (convex C3 shape), we observe convergence for
several αm values. However, as suggested by Theorem 2, αm = 1

3 provides better
worst-case errors. Furthermore, note that for αm = 1

3 , the behavior of the l∞
error is experimentally in O(h

1
3 ) as suggested by the theorem. For non-convex

accelerated flower shape (Fig. 2, right), we still observe the convergence but val-
ues αm higher than 1

3 (and thus larger digital kernel size) seem to lead to lower
error values. Further analysis should be done to clearly understand this fact.

In Fig. 3, we compare the proposed 2D curvature estimator (II with αm = 1
3 )

with binomial convolution and MDCA estimator for the l∞ error metric. In these
noise-free object, MDCA performs better than II or Binomial. However, since II
and Binomial are based on integration, we may expect better results on noisy
objects. Note that in our experiments, observed convergence speeds on ellipses
are: O(h0.154) for binomial, O(h0.42) for MDCA, and O(h0.38) for II using least
square linear fitting. The first one differs from theoretical results of [5]. In both



graphs, we had to stop the computations for Binomial and MDCA for the fol-
lowing reasons: for our implementation of Binomial, the mask size was too large
for small h values which induces memory usage issues. For MDCA, circular arc
recognition in DGtal is driven by a geometrical predicate based on a determi-
nant computation of squared point coordinates. Hence, small h values lead to
numerical capacity issues and thus instability (which could be solved considering
arbitrary precision integer numbers but would lead to efficiency issues). The pro-
posed integral invariant estimator does not suffer from these two kind of issues.
Fig. 4, right, details timings for the 2D accelerated flower and for the 3D blobby
cube (see below). We have performed the same analysis in 3D for the mean cur-
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Fig. 3. Comparison of L∞ error with Binomial [5] and MDCA [19] on multigrid ellipses
(left) and accelerated flower (right).

vature: evaluation of αm parameters (Fig. 4, left) on a blobby cube3. Concerning
the literature and as far as we know, no estimators target multigrid convergence.
We have compared with fixed neighborhood convolution as described in [6].

Finally, Fig. 5 illustrates mean and Gaussian curvature estimation in 3D
(based on covariance matrix of the intersection between the kernel and the shape)
and principal curvature directions (eigenvectors of the covariance matrix). Con-
cerning mean curvature, setting αm = 1

3 leads to an experimental convergence

speed in O(h0.52) for the blobby cube, which means either that h
1
3 is not a tight

upper bound or that tested parameters h are not small enough and far from the
asymptotic behavior (note that for the finest experiment h = 0.0247, the object
surface contains 1277288 elements).

5 Conclusion

In this paper, we have used integral invariant results from differential geometry
to design simple and efficient digital curvature estimator in dimension 2 and 3.
Digital Geometry is a perfect domain for such differential tools: volume/area

3 Implicit surface is 81x4 + 81y4 + 81z4 − 45x2
− 45y2

− 45z2 − 6 = 0.
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Fig. 4. (Left) Experimental evaluation for mean curvature on blobby cube. (Right)
Computational efficiency in dimension 2 (blue, cyan and red) and 3 (black).

Fig. 5. Illustration of curvature estimation on a 3D blobby cube. From left to right:
mean curvature and Gaussian curvature mapping (h = 0.02, highest is yellow, lowest is
blue, red is in-between, furthermore we have set to black zero curvature surfels), first
and second principal curvature directions.

computations are digital by nature, interesting connections to fundamental re-
sults on Gauss digitization exist, fast computations induced by the specific geom-
etry of digital surfaces. Concerning the 2D curvature estimator, its theoretical
convergence speed in O(h

1
3 ) on C3 contours is comparable to state-of-the-art

methods (O(h
4
9 ) for [5] and O(h

1
3 ) for [18]). Evaluation confirms this bound and

has demonstrated efficient algorithm in practice with low computational costs.
We have also demonstrated that such integral invariants lead to digital mean and
Gaussian curvature estimators in 3D. A convergence result for mean curvature
has been established and similar results for principal and Gaussian curvatures
are expected. Moreover, convergence speed is obtained with a weak constraint
on the distance between x̂ and x (which just needs to be lower that h for the l∞
metric). Using specific projection as discussed in [12], better convergence speed
is expected at least for dimension 2.
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recherches, Université Bordeaux 1, Talence, France (2006)

13. Lachaud, J.O., de Vieilleville, F.: Convex shapes and convergence speed of discrete
tangent estimators. In: Proc. Int. Symposium on Visual Computing. LNCS, vol.
4292, pp. 688–697. Springer (2006)

14. Latecki, L.J., Conrad, C., Gross, A.: Preserving topology by a digitization process.
Journal of Mathematical Imaging and Vision 8(2), 131–159 (1998)

15. Malgouyres, R., Brunet, F., Fourey, S.: Binomial convolutions and derivatives es-
timation from noisy discretizations. In: Discrete Geometry for Computer Imagery.
LNCS, vol. 4992, pp. 370–379. Springer (2008)

16. Pottmann, H., Wallner, J., Huang, Q., Yang, Y.: Integral invariants for robust
geometry processing. Computer Aided Geometric Design 26(1), 37–60 (2009)

17. Pottmann, H., Wallner, J., Yang, Y., Lai, Y., Hu, S.: Principal curvatures from the
integral invariant viewpoint. Computer Aided Geometric Design 24(8-9), 428–442
(2007)

18. Provot, L., Gérard, Y.: Estimation of the derivatives of a digital function with
a convergent bounded error. In: Discrete Geometry for Computer Imagery. pp.
284–295 (2011)

19. Roussillon, T., Lachaud, J.O.: Accurate curvature estimation along digital contours
with maximal digital circular arcs. In: Combinatorial Image Analysis. vol. 6636,
pp. 43–55. Springer (2011)

20. de Vieilleville, F., Lachaud, J.O., Feschet, F.: Maximal digital straight segments
and convergence of discrete geometric estimators. Journal of Mathematical Image
and Vision 27(2), 471–502 (2007)


