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Stability analysis for systems with saturation and backlash in the loop

Sophie Tarbouriech, Isabelle Queinnec, Christophe Prieur

Abstract— This paper deals with the stability analysis prob-
lem for linear systems with saturation and backlash in the loop.
The resulting system controlled by a static output feedback
is a dynamical model with nested backlash and saturation
operators. Uniform ultimate boundedness stability is tackled in
a regional (local) or global context depending on the stability
property of the open-loop system. Suitable regions of the state
space in which the closed-loop trajectories can be captured are
characterized, together with estimates of the basin of attraction
of such regions. Convex optimization problems are proposed in
order to give a constructive solution (in the sense of theoretical
conditions associated to numerical procedures).

I. INTRODUCTION

Physical control systems are often subject to magnitude

limitation in the input and/or the output. This type of

nonlinearity may drastically reduce the performance of the

closed-loop system or even lead to instability. Therefore, for

these reasons the stability analysis or stabilization problems

of control systems with saturation in the input attracted

research efforts for several decades (see, e.g., [8], [6], [14]).

Another common nonlinearity that limits performance for

many applications is the backlash. These operators are non-

linear elements with memory. They are usual phenomena in

many physical systems, such as electrical inductors, piezo-

actuators, gear trains and mechanical friction systems (see

e.g. the survey [10] on such memory elements and other

operators as Krasnolsel’skii-Pokrovskii hysteresis). They still

constitute an open source of both theoretical and practical

problems [11], [1].

Few papers have considered both nonlinearities in view

of stability analysis or control design purpose. One can cite

[4] in which the authors study the presence of saturation and

backlash in series at the input of the system. The technique

proposes to inverse the backlash in order to cancel its un-

desirable effects. Then the resulting system corresponds to a

system with a new saturation for which the level is depending

on the magnitude constraint of the previous saturation and on

the parameters of the backlash. The current paper has chosen

another route and then does not search for inverting the

backlash element. Stability analysis results are studied from

the use of Lyapunov theory arguments. More precisely, gen-

eralized sector conditions using properties of the saturation

and backlash operators, associated to Lyapunov arguments

allow us to analyze the stability in a regional (local) or global
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context. The regional result (see Theorem 1 below), presents

sufficient conditions to prove that a compact set (inner set)

is a finite-time attractor, for all admissible initial conditions

belonging to another compact set (outer set). Then, the

second contribution of the paper (see Theorem 2) adapts the

technique of Theorem 1 to the global case. In this case, the

outer set becomes all the state space, provided that the open-

loop system is not strictly exponentially unstable. Further-

more, at the opposite of conditions developed in [17], we do

not need to use the time-derivative version of the system.

Moreover, while [7] addresses the characterization of the

global finite-time attractor (no saturation being considered),

our approach uses the knowledge of the Lyapunov function

and, in this sense, can be considered as bringing a new

brick to complement the method proposed in [7]. Both in the

local and global cases, the conditions are given in terms of

bilinear matrix inequalities and associated algorithms based

on LMI constraints are proposed to numerically implement

the theoretical conditions.

Notation. For two vectors x, y of ℜn, the notation x � y means

that x(i) − y(i) ≥ 0, ∀i = 1, . . . , n. 1 and 0 denote the identity

matrix and the null matrix of appropriate dimensions, respectively.

x ∈ ℜn
+ means that x � 0. The Euclidian norm is denoted

‖ · ‖. A′ and trace(A) denote the transpose and the trace of A,

respectively. For two symmetric matrices, A and B, A > B means

that A− B is positive definite. In partitioned symmetric matrices,

the symbol ⋆ stands for symmetric blocks. λmax(A) (respectively,

λmin(A)) denotes the maximal (respectively, minimal) eigenvalue

of the matrix A.

II. PROBLEM FORMULATION

The class of systems under consideration consists of

systems with saturation and backlash in the loop. The system

is described by:

ẋ = Ax+Bu
y = Cx+DΦ[w]
w = Ex
u = sat(Ky)

(1)

where x ∈ ℜn is the state, u ∈ ℜm is the input of the plant,

y ∈ ℜp is the measured output of the plant and w ∈ ℜq is the

input of the nonlinearity Φ. A, B, C, D, E and K are known

matrices of appropriate dimensions. sat denotes the classical

vector-valued saturation function defined as ∀i = 1, ...,m:

(sat(z))(i) = sat(z(i)) = sign(z(i))min(u0(i), |z(i)|) with

u0(i) > 0 the ith level of the saturation. Φ is a componen-

twise backlash operator (see, for example, [10], [12], [20],

[2]). We denote the set of continuous, piecewise differen-

tiable functions f : [0,+∞) → ℜq by C1
pw([0,+∞);ℜq),



that is the set of continuous functions w being, for some

unbounded sequence (tj)
∞

j=0 in [0,+∞) with t0 = 0,

continuously differentiable on (tj−1, tj) for all j ∈ N. Given

the vector ρ in ℜq
+ and L = diag(ℓ(i)), with positive values

ℓ(i), i = 1, . . . , q, the operator Φ is defined as follows, for all

f ∈ C1
pw([0,+∞);ℜq), for all j ∈ N, for all t ∈ (tj−1, tj)

and for all i ∈ {1, . . . , q}:

(
˙︷︸︸︷

Φ[f ](t))(i) =







ℓ(i)ḟ(i)(t) if ḟ(i)(t) ≥ 0
and (Φ[f ](t))(i) = ℓ(i)(f(i)(t)− ρ(i))

ℓ(i)ḟ(i)(t) if ḟ(i)(t) ≤ 0
and (Φ[f ](t))(i) = ℓ(i)(f(i)(t) + ρ(i))
0 otherwise

(2)

where 0 = t0 < t1 < . . . is a partition of [0,+∞) such

that f is continuously differentiable on each of the intervals

(tj−1, tj), j ∈ N. Thus, Φ is a time-invariant nonlinearity

with slope restriction, as in [13]. Note however that it is a

memory-based operator, since to compute it, we need to have

information about the past values of w (this is not the case

in [13]).

Throughout the paper, we define the set of admissible

initial conditions (w(t = 0)), from which we want to

guarantee the stability, as follows

L(w(0) + ρ) � Φ[w](0) � L(w(0)− ρ) (3)

According to [11], [3], that means that the nonlinearity Φ is

active. Then, with (2), one gets

L(w(t) + ρ) � Φ[w](t) � L(w(t)− ρ), ∀t ≥ 0 (4)

For conciseness, throughout the paper, we denote Φ̇ in-

stead of
˙︷︸︸︷

Φ[w], and Φ instead of Φ[w]. Let us define the

nonlinearities ϕ and Ψ

ϕ = sat(Ky)−Ky (5)

Ψ = Φ− Lw = Φ− LEx (6)

Hence, the closed-loop system (1) reads:

ẋ = (A+BK(C +DLE))x+Bϕ+BKDΨ
w = Ex

(7)

It is important to note that both nonlinearities are nested

since, by definition of y, ϕ depends on Ψ:

ϕ = sat(K0x+KDΨ)− (K0x+KDΨ) (8)

with K0 = K(C +DLE).
The presence of the backlash operator Φ may induce the

existence of multiple equilibrium points or a limit cycle

around the origin. Furthermore, in a neighborhood of the

origin, system (1) operates in open loop. In parallel, the

presence of the saturation asks for characterizing suitable

regions of the state space in which the stability of the closed-

loop saturated system can be ensured [14]. The regional (lo-

cal) uniform ultimate boundedness stability (see [9, Section

4.8]) of the system is then carried out. Hence, the proposed

approach aims at characterizing two sets such that the closed-

loop trajectories initialized in the outer set are ultimately

bounded in the inner set. It is important to emphasize that the

proposed technique does not require the open-loop system to

be stable. Nevertheless, depending on the open-loop stability,

the global uniform boundedness stability context is also

carried out. In this case, the outer set corresponds to the

whole state space. This is stated in the following problems:

Problem 1 (Regional Case): Considering A0 = A +
BK(C+DLE) = A+BK0 being Hurwitz, characterize the

regions S1 and S0 of the state space such that the closed-loop

trajectories of the system (7) remain confined in S1 and are

uniformly ultimately bounded in the set S0, when initialized

as in (3).

Imposing A0 = A + BK0 Hurwitz is classical since

it corresponds to system (1) when the saturation and the

backlash Φ are neglected. That corresponds to consider

u = Ky and to replace Φ by Lw (which corresponds to

take ϕ = 0 and Ψ = 0 in system (7)).

Problem 2 (Global Case): Assume that A is Hurwitz.

Considering A0 = A+BK(C +DLE) = A+BK0 being

Hurwitz, characterize the region S0 of the state space in

which the solutions of system (1) are uniformly ultimately

bounded when initialized as in (3).

III. MAIN RESULTS

A. Preliminary results

From Lemma 3.1 in [16] and (4), we can formulate the

following properties with respect to Ψ.

Lemma 1: For any diagonal positive definite matrices N1,

N2, N3 in ℜm×m, with N3 ≥ 1, we have, for all w ∈
C1
pw([0,+∞);ℜq), for all t ∈ (ti−1, ti)

(Ψ̇ + Lẇ)′N1Ψ ≤ 0, (9)

(Ψ̇ + Lẇ)′N2(Ψ̇ + (1−N3)Lẇ) ≤ 0, (10)

−Lρ � Ψ � Lρ (11)

where 0 = t0 < t1 < . . . is a partition of [0,+∞) such

that w is continuously differentiable on each of the intervals

(tj−1, tj), j ∈ N.

B. Stability analysis

The following result relative to Problem 1 can be given.

Theorem 1: Consider A0 = A + BK(C + DLE) =
A+BK0 being Hurwitz. If there exist a symmetric positive

definite matrix P ∈ ℜn×n, four diagonal positive definite

matrices N1 ∈ ℜq×q , N2 ∈ ℜq×q , T3 ∈ ℜq×q and T ∈
ℜm×m, a matrix G ∈ ℜm×n, two positive scalars η, τ1
satisfying the following conditions

M1 < 0 (12)

ρ′LT3Lρ− τ1 ≤ 0 (14)
(

P G′

(i)

⋆ ηu2
0(i)

)

≥ 0, i = 1, ....,m (15)

η < 1 (16)

with M1 defined in (13) (see at the top of the next page),

then, for any initial admissible conditions (x(0),Ψ(0)), with



M1 =







A′

0P + PA0 + τ1P PB −K ′

0T −G′T PBKD −A′

0E
′LN1 −A′

0E
′LN2

⋆ −2T −B′E′LN1 − TKD −B′E′LN2

⋆ ⋆ −T3 −N1LEBKD −D′K ′B′E′LN1 −N1 −D′K ′B′E′LN2

⋆ ⋆ ⋆ −2N2







(13)

x(0) ∈ S1, the resulting trajectories of the closed-loop

system (1) are uniformly ultimately bounded in the set S0,

where the sets S1 and S0 are defined as follows:

S1 = {x ∈ ℜn;x′Px ≤ η−1} (17)

S0 = {x ∈ ℜn;x′Px ≤ 1} (18)

Proof: Consider a quadratic Lyapunov function candi-

date V defined by V (x) = x′Px, P = P ′ > 0, for all x
in ℜn. Regarding the nonlinearity ϕ, the proof relies on the

application of the generalized sector condition [15] stating

that for any diagonal positive define matrix T , one satisfies:

−2ϕ′T (sat(Ky) + Gx) ≥ 0 for any x ∈ S(G, u0) = {x ∈
ℜn;−u0(i) ≤ G(i)x ≤ u0(i), i = 1, ...,m}. Furthermore, the

satisfaction of relation (15) ensures that the set S1, defined

in (17) is included in the region S(G, u0) in which the

sector condition on ϕ is satisfied. Hence, in S1, we can

write V̇ (x) ≤ V̇ (x) − 2ϕ′T (sat(Ky) + Gx). Note that the

satisfaction of relation (16) guarantees that S1 contains S0.

We want to verify that there exists a class K function α
such that V̇ (x) ≤ −α(V (x)), for all x such that x′Px ≥
1 and x′Px ≤ η−1 (i.e. for any x ∈ S1\S0), and for all

nonlinearities Ψ satisfying Lemma 1 (i.e. satisfying relations

(9), (10), (11)).

By using the S-procedure, it is sufficient to check that

L < 0, where

L = V̇ (x)− τ1(1− x′Px)

−Ψ′T3Ψ+ ρ′LT3Lρ− 2(Ψ̇ + Lẇ)′N1Ψ

−2(Ψ̇ + Lẇ)′N2(Ψ̇ + (1−N3)Lẇ)
−2ϕ′T (sat(Ky) +Gx)

(19)

with τ1 a positive scalar and T3 a positive diagonal matrix.

Choosing N3 = 1, noting that ẇ = EA0x + EBϕ +
EBKDΨ, from the definitions of ϕ and of Ψ in (8) and

in (6), noting that V̇ (x) = x′(A′

0P + PA0)x + 2x′PBϕ +
2x′PBKDΨ, it follows that L = L0 + ρ′LT3Lρ− τ1 with

L0 =







x
ϕ
Ψ

Ψ̇







′

M1







x
ϕ
Ψ

Ψ̇







and M1 defined in (13). The satisfaction of relations (12)

and (14) implies both L0 < 0 and ρ′LT3Lρ − τ1 ≤ 0, and

then L < 0, for all (x, ϕ,Ψ, Ψ̇) 6= 0.

Therefore, the satisfaction of relations (12)-(16) ensures

that there exists ε > 0, such that L ≤ −ε‖(x′ ϕ′ Ψ′ Ψ̇′)′‖2 ≤
−εx′x. Hence, since by definition one gets V̇ (x) ≤ V̇ (x)−
τ1(1− x′Px) ≤ L, one can also verify

V̇ (x) ≤ −εx′x , ∀x such that η−1 ≥ x′Px ≥ 1 (20)

Consider now a solution of (1) starting from any admissible

initial condition at t0 such that η−1 ≥ x(t0)
′Px(t0) ≥ 1. Ac-

cording to (20), there exists a time T ≥ t0+(x(t0)
′Px(t0)−

1)λmax(P )/ǫ such that x(t) ∈ S1, ∀t ≥ T . Furthermore,

S1 is an invariant set for the trajectories of system (1).

Hence, in accordance with [9], it follows that the trajectories

are uniformly ultimately bounded in S0. That concludes the

proof of Theorem 1.

Using the same tools and assuming that the matrix A is

Hurwitz we can propose the following solution to the global

case, i.e., to Problem 2.

Theorem 2: Assume that A is Hurwitz. Consider A0 =
A+BK(C+DLE) = A+BK0 being Hurwitz. A positive

scalar τ1 being given, if there exist a symmetric positive

definite matrix P ∈ ℜn×n, four diagonal positive definite

matrices N1 ∈ ℜq×q , N2 ∈ ℜq×q , T3 ∈ ℜq×q and T ∈
ℜm×m satisfying the following LMI conditions

M2 < 0 (21)

ρ′LT3Lρ− τ1 ≤ 0 (23)

with M2 defined in (22) (see at the top of the next page),

then, for any initial admissible conditions (x(0),Ψ(0)), the

resulting trajectories of the closed-loop system (1) are uni-

formly ultimately bounded in the set S0 defined as follows

S0 = {x ∈ ℜn;x′Px ≤ 1} (24)

Proof: The proof follows the same stages as in that

one of Theorem 1. In this case one wants to verify that there

exists a class K function α such that V̇ (x) ≤ −α(V (x)), for

all x such that x′Px ≥ 1 (i.e. for any x ∈ ℜn\S0), for all

nonlinearities Ψ satisfying Lemma 1 (i.e. satisfying relations

(9), (10), (11)) and any ϕ satisfying −2ϕ′Tsat(Ky) ≥ 0,

∀x. In the global context, one then chooses G = 0.

Theorem 1 guarantees the finite-time convergence of the

solutions to system (1) inside S0 for any initial condition

satisfying (3) and belonging to S1. Therefore the property

is locally satisfied. Theorem 2 assures the same type of

convergence but in a global sense, since it is valid for

any admissible initial condition. In both cases, the region

S0, which captures the closed-loop trajectories, contains the

possible equilibrium points or limit cycles induced by the

backlash operator. The equilibrium points or limit cycles

induced by the saturation operator are outside the set S1.

Remark 1: In the case without backlash (Ψ = 0), in the

definition of M1 or M2, one removes the columns 3 and 4

and the corresponding lines. One removes relations (14) and



M2 =







A′

0P + PA0 + τ1P PB −K ′

0T PBKD −A′

0E
′LN1 −A′

0E
′LN2

⋆ −2T −B′E′LN1 − TKD −B′E′LN2

⋆ ⋆ −T3 −N1LEBKD −D′K ′B′E′LN1 −N1 −D′K ′B′E′LN2

⋆ ⋆ ⋆ −2N2







(22)

(16) (which, roughly speaking, corresponds to take τ1 = 0
and η = 1) and therefore one retrieves the results of [15].

Remark 2: In the case without saturation (ϕ = 0), in the

definition of M2 one removes the second column and line,

and one sets T = 0. The results of [19] are recovered.

Remark 3: The kind of systems studied in [17] could be

addressed by using the framework of the current paper. In

[17], the following system is considered:

ẋ = Ax+BΦ[w]
w = sat(K1y +K2Φ[w])
y = Cx+DΦ[w]

(25)

which can be rewritten, by noting ∆ = (1 − (K1D +
K2)L)

−1 from Assumption 2 in [17], as follows:

ẋ = (A+BL∆K1C)x+BL∆ϕ2

+B(1+ L∆(K1D +K2))Ψ
w = ∆ϕ2 +∆K1Cx+∆(K1D +K2)Ψ

(26)

with ϕ2 defined by mimicking (5) and Ψ defined in (6).

According to our framework, in the global case (i.e. matrix

A is Hurwitz) we can relax the condition (10) in [17] linking

up K1 and K2.

IV. NUMERICAL PROCEDURES

The objective related to Theorem 1 is to maximize the

region S1, while minimizing the region S0. This double

objective needs to consider a trade-off between two conflict-

ing goals: maximize the region of attraction of the closed

loop (namely select a small trace for ηP ) and minimize the

region of ultimate boundedness stability (namely select a

large trace for P ). Thanks to the use of a unique matrix

P to shape both sets S0 and S1, the objective may be

expressed as maximizing the distance between those two sets,

and a solution to Problem 1 is searched with the following

(bilinear) optimization problem:

min η
under conditions (12), (14), (15), (16)

(27)

In Theorem 1, relation (12) admits two kinds of nonlinear-

ities: the products τ1P and G′T . These nonlinearities may

be managed relatively easily. Actually, T ∈ ℜm×m is a

diagonal positive definite matrix. In the particular case of

single-input systems (m = 1), T becomes a scalar and the

optimal solution of (12) can be obtained from an iterative

line search. For m = 2, a search for the optimal solution

over a bi-dimensional grid (composed by the 2 elements of

T ) can be considered. For systems presenting high number

of inputs (m > 2), a relaxation scheme, which translates the

problem into a sequence of iterative LMI problems fixing T
or G at each step, can be considered. The convergence of the

procedure is always ensured, but not necessarily to the global

optimal value. Furthermore, the convergence value depends

on the initialization of T or G in the iterative procedure.

A grid search may also be used to select τ1. This latter

parameter being issued from the use of the S-procedure, its

influence remains rather limited on the optimal cost of the

optimization problem (27) as soon as a feasible value has

been selected.

In Theorem 2, the condition (21) becomes a LMI when

τ1 is fixed. The same treatment as in Theorem 1 may be

applied.

V. ILLUSTRATIVE EXAMPLES

Example 1: Consider first an illustrative example bor-

rowed from [5] (Example 6) or [18] and adapted to our

context (the deadzone is replaced by a backlash). This

example mimics the case of a nonlinear actuator involving a

backlash and a saturation (see Figure 1).

E x = Ax+Bu
. xuw

Nonlinear actuator

Fig. 1. Closed-loop system with backlash and saturation in the actuator

System (1) is defined by the following data:

A =

[
0.5 −1
1 0.5

]

; B =

[
0.5
1

]

; C =
[
0 0

]

D = 1; E =
[
0.93 −3.84

]
; K = 1

with u0 = 4, L = 1 and ρ = 0.4.

A preliminary solution is first obtained on a rough grid

then a more precise grid on a thiner interval is applied to get a

solution to Problem 1. To illustrate the influence of parameter

τ1 and matrix T (actually in this example of dimension 1),

the cost function η solution to the optimization problem (27)

is plotted in Figure 2.

The optimal ellipsoids S0 and S1 obtained for τ1 = 0.65
and T = 7.5 are plotted in Figure 3 in solid lines. Trajectories

starting from several initial states (for any given initial state

x(0) one selects Φ(0) = Φ[w(0)] verifying (3)) are also

plotted in the figure. They illustrate that the outer ellipsoid

S1 obtained is a reasonable approximation of the domain of

attraction. Moreover, to illustrate this aspect, the ellipsoidal

approximation of the basin of attraction focusing on the case

of saturation only is plotted in Figure 3 (dashed ellipsoid). It

may also be compared to the outer ellipsoid corresponding

to the maximal volume issued from the grid search (dashdot

ellipsoid).
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Fig. 2. Example 1 - influence of parameters τ1 and T on the cost η
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Fig. 3. Example 1 - Ellipsoids S0 and S1 corresponding to the optimal
cost η (solid lines). Ellipsoid Ssatonly solution to the case with saturation
element only (dashed ellipsoid, see [14]) compared to the set S1 obtained
by considering the solution (on a grid search) which maximizes its volume
(dashdot ellipsoid). State-space trajectories issued from x(0) = [2 0]′

(inside S1) and from x(0) = [4.3 4.2]′ (outside S1).

A zoom of the inner ellipsoid S0 and, by the way, of the

state-space trajectory of the system issued from x(0) = [2 0]′

(with Φ(0) = 1.46) is plotted in Figure 4. It illustrates that

the system does not converge to the origin but to a limit

cycle. This limit cycle remains however confined inside the

inner ellipsoid S0.

Example 2: Let us consider again the system of Example

1 but with a reorganization of the nonlinear element such as

to mimic a system with input saturation and output backlash,

such as given in Figure 5.

System (1) is defined by the following data:

A =

[
0.5 −1
1 0.5

]

; B =

[
0.5
1

]

; C =

[
1 0
0 0

]

D =

[
0
1

]

; E =
[
0 1

]
; K =

[
0.93 −3.84

]

with the same u0 = 4, L = 1 and ρ = 0.4. The

linear behavior of both systems of Examples 1 and 2 is

exactly the same. However, the presence of the backlash

in the output makes the problem much more difficult to

solve and feasibility may not be obtained depending on the

organization of matrices C, D and E. In the current case,

the problem is made feasible by considering that only the

second state is affected by a backlash element in its sensor.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
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0

0.1

0.2

0.3

0.4

0.5

x1

x
2

S0

Fig. 4. Example 1 - Zoom on the inner ellipsoid S0 and state space
trajectory issued from x(0) = [2 0]′ (inside S1)

E D

x = Ax+Bu
.

K

Nonlinear

actuator

C

w

xu

Nonlinear sensor

y

Fig. 5. Closed-loop system with backlash in the sensor and saturation in
the actuator

A solution, similar to the one obtained in Example 1, is

obtained for τ1 = 0.65 and T = 0.55. The feasibility set

with respect to τ1 and T is displayed in Figure 6, so as the

associated cost level η (smallest costs in black, largest in

white).
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Fig. 6. Example 2 - Feasibility set of the optimization problem (27) with
respect to τ1 and T and associated cost level η. The star at τ1 = 0.65,
T = 0.55 corresponds to the optimal solution

The time evolution of w = x2 and backlash Φ[w] is

plotted in Figure 7, for the system initialized in x(0) =
[
1.5 −0.9

]
′

(with Φ(0) = −1.3). It illustrates the local

behavior and the limit cycle induced by the backlash.

The input signal u and its value Ky before the saturation

are plotted in Figure 8. It may verified that u is initially

saturated.

Example 3: Let us now consider the following system,

with backlash in the output and saturation in the input:

A =





−2 −1 −0.5
2 0 0
0 1 0



 ; B =





−0.19 0.41
0 −0.41
0 0




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Fig. 7. Example 2 - Time-evolution of the state of w = x2 and backlash
Φ[w] for the system initialized in x(0) = [1.5 − 0.9]′
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Fig. 8. Example 2 - Time-evolution of the input u = sat(Ky) and Ky

for the system initialized in x(0) = [1.5 − 0.9]′ and zoom during the first
second

C = 0; D = 1; E = 1; K =

[
1.875 −0.188 0.094
1 0.75 1

]

The open-loop matrix is Hurwitz and Theorem 2 may be

applied to solve the global case described in Problem 2. The

ellipsoid S0 solution to the optimization problem (27) with

τ1 = 0.3 selected with a grid search is plotted in Figure 9.

Several trajectories are also plotted which enter the ellipsoid

and, then, remain inside.
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Fig. 9. Example 3 - Ellipsoidal set S0 and several trajectories of the
closed-loop system

VI. CONCLUDING REMARKS

Systems presenting a backlash in the loop and a saturated

input have been considered in this paper. The stability has

been studied for this class of nonlinear systems by exploit-

ing generalized sector conditions of both nonlinearities. By

means of a Lyapunov function, some numerically tractable

sufficient conditions have been derived for the regional

(local) or global stability of a neighborhood of the origin

(where the solutions are captured). The main results have

been illustrated with different examples, in particular for

systems with saturation in the input and backlash in the

output. Several generalizations may be considered. Following

the research line suggested in this paper, the design of anti-

windup compensator using the knowledge on the backlash

operator could be pursued in order to alleviate the bad effects

due to both saturation and backlash operators.
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