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Abstract 

 
This paper studies the impact of service frequency and reliability on the choice of departure time and the travel 

cost of transit users. When the user has (α ,ȕ ,Ȗ )  scheduling preferences, we show that the optimal head start 

decreases with service reliability, as expected. It does not necessarily decrease with service frequency, however. 

We derive the value of service headway (VoSH) and the value of service reliability (VoSR), which measure the 

marginal effect on the expected travel cost of a change in the mean and in the standard deviation of headways, 

respectively. The VoSH and the VoSR complete the value of time and the value of reliability for the economic 

appraisal of public transit projects by capturing the specific link between headways, waiting times, and congestion. 

An empirical illustration is provided, which considers two mass transit lines located in the Paris area. 

Key words: Public transportation; Reliability; Headway; Scheduling; Welfare. 

 

1. Introduction 

The unreliability of transportation systems, in the sense that these systems cannot guarantee perfectly 
predictable travel times, has various consequences on travelers. It may induce anxiety, cause one to miss 
a connection (in the case of public transport), or constitute a hindrance to the planning of activities. But 
the main impact is generally the potential delay at destination(STRATEC and RAND Europe, 2004). 
Travelers can cope with travel time variability through various means: they can adjust their departure 
time (Coulombel and de Palma, 2012), change route (Abdel-Aty et al., 1995; Liu et al., 2004) or mode 
(Chorus et al., 2006), travel somewhere else, or they can decide to report or even to cancel their trip. 
The preferred strategy is usually to leave with a safety  margin (Bates et al., 2001; Li et al., 2010), be it 
because other alternatives may not be available. This is especially true for transit users, who often have 
less alternative routes at their disposal than car users to reach their destination. 

Following this train of thought, several theoretical works, in line with the seminal contributions of 
Gaver (1968) and Knight (1974), study the impact of travel time variability on the choice of departure 
time and the cost of travel (Bates et al., 2001; Coulombel and de Palma, 2013; Fosgerau and Karlström, 
2010; Noland and Small, 1995; Siu and Lo, 2009) They adapt the scheduling model popularized by 
Small (1982) to the context of uncertain travel times. They derive the expected travel cost and the value 
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of reliability (VoR), the latter being usually defined as the derivative of the expected travel cost with 
respect to the standard deviation of travel times. Most works focus on car-users, and although some 
authors adapt their model to some extent to consider transit users (usually by making departure time a 
discrete variable), they still fail to take several aspects specific to public transport systems into account. 
First, they do not distinguish between waiting time and in-vehicle time, which most transit users value 
differently (Wardman, 2004). Congestion and waiting times are strongly related to headways (and their 
variability), which is also not modeled in these works. Last, the VoR has two significant drawbacks 
when applied to public transit: total travel time variability, to which the VoR relates, is hard to measure, 
but also inconvenient to use for the economic appraisal of public transport projects because the transit 
operator does not have a direct control over this variable (unlike headway variability or in-vehicle time 
variability, for instance). 

This paper intends to address these issues by adapting the standard scheduling model to the case of 
public transport. The scope is limited to headway-based services (as opposed to schedule-based ones), 
for which frequency is high. We study the impact of service headway and reliability on the choice of 
departure time and the travel cost. Two indicators capture the effect of changes in service characteristics 
on the expected trip cost: the value of service headway (VoSH) measures the effect of a change in the 
mean headway, and the value of service reliability (VoSR) that of a change in the standard deviation of 
headways. The VoSH and VoSR complete the value of time and the VoR in the case of public transit. 
The former couple relates to headways and their impact on waiting times and in-vehicle congestion, 
while the latter couple, which originally related to the total travel time in the context of car users, more 
naturally relates to in-vehicle time for transit users.  

 The layout of this paper is as follows. Sections 2 and 3 review the theoretical framework, then 
the main results of renewal theory regarding the link between transit service headways, user-perceived 
headways, and waiting times. Section 4 presents the model and several findings in the general case. 
Section 5 elaborates on the case of exponentially distributed headways then provides an empirical 
illustration, which considers two heavy rail lines located in the Paris area. Section 6 extends the model 
by introducing in-vehicle congestion, and Section 7 concludes. 

2. Theoretical framework 

There are currently three main modeling frameworks which address the value of travel time variability 
(Carrion and Levinson, 2012; Li et al., 2010): the mean-variance model, the mean lateness model, and 
the scheduling model. The first two are based on a descriptive approach: they assume that individuals 
distaste travel time variability, but do not purport to explain why. These modeling frameworks intend to 
provide the most efficient specification to estimate the value of reliability. 

Scheduling models, on the other hand, provide a micro-economic foundation to the value of 
reliability. They represent the choice of departure time when individuals face time constraints (e.g. work 
start time). A first strand of the literature has focused on departure strategies when travel times are 
uncertain. Gaver (1968) and Knight (1974), who developed the notions of “head start” and “safety 
margin”, respectively, represent two pioneering contributions in this regard. In parallel, another strand 
of the literature has aimed to model and estimate scheduling preferences when travel times are certain. 
Building on the works of Gaver (1968) and Vickrey (1969), Small (1982) specified and estimated a 
scheduling model which has later been widely used in theoretical works. The model is based on the 
assumption that the traveler's cost C is a linear function of travel time and schedule delay costs: 

        * * *C t T t t T t T t t T t             1  (1) 
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where (x)+ = x if x is positive, 0 otherwise, and 1(x) is the Heaviside step function (equal to 1 if x is 
positive, 0 otherwise). C(t) is the travel disutility when leaving at time t, T the travel time, and 

*t t T  the schedule delay. The schedule delay is said to be early if it is positive, late if it is negative. 
It is measured relatively to a preferred arrival time t*, which usually represents the work starting time. 
The cost of one minute of travel time is α; the cost of being one minute early at one’s destination is ȕ 
and the cost of being one minute late is Ȗ. Being late also entails a fixed penalty equal to δ. These 
parameters are positive (as C is a disutility function); they set the terms of the trade-off between travel 
time and schedule delay when choosing the departure time. We will refer to (1) as (α ,ȕ ,Ȗ ,δ ) 
preferences, or more simply (α ,ȕ ,Ȗ ) when the late dummy is not included (δ = 0). 

 In line with Gaver (1968) and Polak (1987), Noland and Small (1995) combine the two above 
approaches and study the influence of travel time variability on the choice of departure time and the cost 
of travel under (α ,ȕ ,Ȗ ,δ )  preferences. Travel time is the sum of a deterministic component and of a 
random delay, the distribution of which does not vary with the departure time. A key result is the 
derivation of the minimum expected trip cost when the delay follows a uniform or exponential law. 
While it is not done in their work, one can use their results to derive the value of reliability (VoR), 
usually defined as follows (Carrion and Levinson, 2012): 

 VoR
C

C
m

   
 (2) 

where m is the trip monetary cost and σ the standard deviation of travel times. For (α ,ȕ ,Ȗ ,δ ) 

preferences, the parameters are usually expressed in monetary terms and the VoR is simply C   . 

Fosgerau and Karlström (2010) generalize Noland and Small’s work by formally deriving the VoR 
under less strict assumptions regarding the distribution of the delay. They consider (α ,ȕ ,Ȗ)  preferences 
instead of (α ,ȕ ,Ȗ ,δ ) , and assume that the expected travel time is constant. Under these assumptions, the 
VoR is: 

    1
1VoR Φ 

  


   s ds  (3) 

where Φ is the cumulative distribution function of the standardized travel time. 

 Most theoretical works on the VoR focus on car users (e.g. Coulombel and de Palma, 2013; 
Fosgerau and Karlström, 2010; Noland and Small, 1995). In the case of transit riders, one cannot use the 
exact same analytical framework for at least two reasons. First, transit services do not run continuously. 
When choosing their departure time, individuals usually consider the schedule or the frequency of the 
transit lines that they plan to use (Bowman and Turnquist, 1981; Furth and Muller, 2006). Schedule or 
headways should thus be explicitly modeled. This point is especially salient as most studies find that 
individuals have a higher value of waiting time than of in-vehicle time (e.g. Algers et al., 1975; Beesley, 
1965; Wardman, 2004). Second, congestion in public transportation is linked to the service headway. It 
can strongly vary between two consecutive vehicles when headways are irregular (Chen and Liu, 2011). 
This differs from road congestion which is a more continuous phenomenon, traffic incidents put aside. 

 Bates et al. (2001) study the choice of departure time and the cost of unreliability in the case of 
transit users. Their analysis focuses on scheduled services, which leads them to model departure time as 
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a discrete variable.1 The same choice is operated in Batley (2007), Fosgerau and Karlström (2010), and 
Fosgerau and Engelson (2011), among others. The underlying assumption is that headways are perfectly 
reliable, and that the variability of travel time entirely derives from in-vehicle time variability.2 This 
assumption is strong, especially if one considers mass transit lines with high levels of ridership, for 
which headway regularity is often a significant issue (subsection 5.2 providing an illustrative example). 
Moreover, these works consider neither the distinction between waiting time and in-vehicle travel time, 
nor the issue of in-vehicle congestion. 

 The main purpose of this paper is to study the influence of service reliability (limited here to the 
dimension of headway regularity3) on the choice of departure time and the cost of travel. In particular, 
we show that service reliability impacts the generalized travel cost through three channels: waiting time, 
schedule delay, and congestion. 

3. Route headways, user-perceived headways and waiting times 

This section reviews the main results of renewal theory regarding the link between the headways of a 
transit route, the headways perceived by users, and waiting times. We consider first the general case, 
then the case when the standardized distribution of headways follows a centered exponential law. The 
reader can refer to Osuna and Newell (1972) or Kleinrock (1975, p. 169) for a proof of these results. 

3.1. General case 

Consider a direct transit line connecting two points A and B, which we will refer to as a railway line 
with no loss of generality. Headways at A are given by a sequence of positive random variables (H i) iℤ. 
They are identically and independently distributed, with probability distribution function (p.d.f.) φH and 
cumulative distribution function (c.d.f.) ΦH. Headways being positive, φH and ΦH are both null on ℝ-*. 
We will assume throughout the text that the distribution of headways has finite moments of all orders. 
We denote μH  and σH  the mean and the standard deviation of headways; they provide inverse measures 
of service frequency and reliability, respectively.4 

 A traveler arrives at the train platform in A at time t. Given the assumptions, the user-perceived 
headway, which is defined as the headway that the traveler experiences when arriving at time t, is a 
random variable HU with the following p.d.f.: 

      H
U

H

x x
x  (4) 

The distribution of headways perceived by users differs from the objective distribution. Indeed, when a 
traveler arrives on the platform in a “random manner” (meaning that he has no dynamic information 
regarding headways), the longer the headway, the more likely it is for that traveler to arrive in the 
corresponding time interval.5  

                                                      
1 Bates et al. (2001, pp.208-210) treat departure time as a continuous variable when considering the special case 
where the transit service departure time is random. However, they only provide a very general discussion of this 
case and do not give any significant result. 
2 Again, Bates et al. (2001) is to the best of our knowledge one the few works to consider headway variability, in a 
brief manner to boot. Some other works do also consider headway variability (e.g. Bowman and Turnquist, 1981; 
Furth and Muller, 2006), but they do not use scheduling preferences and resort to ad-hoc cost functions instead. 
3 Service reliability encompasses two major dimensions in the case of headway-based services: headway regularity 
and in-vehicle time variability. This paper focuses on the former issue. 
4 The mean headway μ H  is inversely commensurate to service frequency, so one should understand “an increase in 
service frequency” as a decrease in μ H . Similarly, an increase in service reliability corresponds to a decrease in σH . 
5 To illustrate this point, consider a transit line with headways of 59.9 and 0.1 minutes with equal probabilities 
(which is a Bernoulli process with mean 30 minutes). When a traveler arrives at the platform in a random manner, 
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The waiting time is a stochastic variable Tw with p.d.f.: 

    1 Φ
   for ,  0  otherwiseH

w
H

x
x x   R  (5) 

The mean and the standard deviation of waiting times are (using integration by parts): 
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(6) 

where ηH is the skewness of (H i) iℤ. These results call for two comments. First, a change in service 
reliability (i.e. in σH) impacts the mean waiting time, even when service headway remains constant. 
Second, (5) linking the p.d.f. of H i and Tw, these two variables cannot be standardized simultaneously. 
Considering our focus on service reliability, we choose to standardize the (H i) iℤ:6 

   i H HH h  (7) 

where h is a random variable with mean 0 and variance 1. For reminder, the following relationships link 
the p.d.f. and c.d.f of h and H:  

     
   and   Φ Φ

    
         

H
h

H H
H H h

H H

x
x

x x  
(8) 

3.2. Exponentially distributed headways 

We will give special attention to the case of a centered exponential distribution.7 It leads to closed form 
solutions and fits the data well to boot (see section 5).  

When h follows a centered exponential distribution, we have: 

    
   

1

1

        
    for 1

Φ 1

  
 

     
x

h

x
h

x e
x

x e
   (9) 

In the exponential case, the condition that headways must be positive is, according to (7), equivalent to 
constraining σH  μH  . Service unreliability as measured by σH  cannot exceed μH  for the standardization 

of headways to be consistent, the case σH = μH  corresponding to the standard exponential distribution. 

The distribution of headways perceived by users is: 

                                                                                                                                                                        
he has practically zero chance of arriving between two trains separated by 0.1 minute. He experiences a mean 
headway of 59.9 minutes (approximately), which is twice the mean objective headway.  
6 This choice is also empirically supported (see subsection 5.2). 
7 For the sake of brevity, we will often omit the term “centered”. 
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Lastly, the p.d.f. of waiting times is: 

 
 

1                               for 0

1        for        
H H
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w H H
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x

w H H
H

x x

x e x

 

  
  

    

       
 

(11) 

Figure 1 illustrates φw for various values of σH . When σH  tends toward 0, φw converges pointwise to the 
uniform distribution, which corresponds to the case of perfect headway regularity. 

 

 FIGURE 1 HERE 
Figure 1: Probability distribution function of waiting times (exponential case, μH  = 1) 

 

4. A scheduling model for headway-based transit services 

4.1. Model set-up 

An individual wishes to go from point A to point B. As previously, a direct transit line connects the two 
points. The service is headway-based: there is no schedule, or alternatively service frequency is high 
enough for the user to ignore the schedule and only consider headways when planning his trip. The 
service is not perfectly reliable, headway variability being modeled by (7). The transit line operator sets 
the levels of service frequency and reliability, in other words μH  and σH , which are taken as exogenous. 

 As is common in the literature, we assume that the individual has (α ,ȕ ,Ȗ)  preferences. The 
relevancy of (α ,ȕ ,Ȗ)  preferences for modeling the departure time choice is actually controversial. 
While Noland et al. (1998) find that (α ,ȕ ,Ȗ)  preferences well fit the behavior of individuals in their 
survey, Tseng and Verhoef (2008) raise the objection that the assumption of time-invariant shadow 
prices is unrealistic, a point corroborated by their empirical analysis. In addition, Börjesson et al. (2012) 
find that (α ,ȕ ,Ȗ)  preferences do not well capture the aversion of individuals to travel time variability. 
While acknowledging these limitations, (α ,ȕ ,Ȗ)  preferences are widely used in this research field, 
simple to handle from a mathematical standpoint, and yield closed-form solutions in our application in 
section 5. These various points led us to keep this functional form.8  

The individual has standard (α ,ȕ ,Ȗ)  preferences except that he values in-vehicle time and 
waiting time differently. The generalized cost of travel (or travel disutility) is: 

      * *w w v v w v w vC t T T t t T T t T T t               (12) 

                                                      
8 We could easily apply the same framework to another utility function. Closed-form solutions would not be 
guaranteed in the exponential case, however. 
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where Tw is the platform waiting time and Tv the in-vehicle time. The real parameters (αw,α v ,ȕ ,Ȗ)  are 
positive. A common result of the empirical literature on the value of time is α w > α v  (Wardman, 2004): 
waiting yields less utility than being in a vehicle.  The model remains valid when α w  α v . Most 
empirical studies on scheduling preferences also find that (α ,ȕ ,Ȗ)  are ordered as follows: ȕ < α < Ȗ 
(Bates et al., 2001; Carrion and Levinson, 2012). Added to the fact ȕ > α that leads to counterintuitive 
behaviors (such as preferring to wait on the platform or to spend more time in the vehicle rather than to 
get early at one’s destination), we assume: 0 < ȕ < α = min (α w ,α v )  and Ȗ > 0. 

Waiting time Tw is a random variable, its distribution being given by (5). Onboard travel time Tv 
is on the other hand deterministic and constant. This assumption is made for the sake of simplicity, as 
computations are quite complex and hard to follow when both in-vehicle times and waiting times vary. 
Our results can easily be extended to the case with variable in-vehicle time, as long as Tv and Tw are not 
correlated.9 

Waiting time variability has a twofold source in our model, as brought to light by (5) and (6). 
First, the user only knows the headway distribution of the railway line (i.e. φh), not the exact schedule. 
Even in the case of perfectly regular headways, he will still arrive at a random time between two trains. 
Second, headways are not perfectly reliable, which increases further waiting time variability. Indeed, (5) 
shows that waiting times follow a distribution which is uniform when headway reliability is perfect 
(σH = 0), but progressively changes as reliability declines. 

We denote m = t* – t – Tv the head start. It is the time allocated to waiting, which can be 
positive or negative. Travel cost becomes: 

               w w v v w wC m T T m T T m  (13) 

If  Tw < m, the traveler arrives early at his destination, if Tw > m he is late. Because Tw is positive, 
choosing a strictly negative head start implies arriving late with certainty. 

4.2. Optimal head start 

The traveler chooses the head start which minimizes his expected travel disutility:  

          
0

m

w w v v w w
m

C m T m x x dx x m x dx              (14) 

The first order condition is     Φ * 1 Φ * 0w wm m    . The optimal head start is: 

  1* Φwm   (15) 

where      is the relative shadow price of being late. 

We find an equation identical to Fosgerau and Karlström (2010) except that it involves the c.d.f. 
of waiting time instead of travel time. In our set-up, the choice of the head start m only impacts the 
expected scheduling cost within the total expected cost of travel. It bears no influence on the travel time 
cost component αwμw + α vT v , which is independent of m. This explains why m* only depends on the 

                                                      
9 There is likely some linkage between the variability of headways and in-vehicle times, and thus of waiting times 
and in-vehicle times. However, there is a direct link between headway variability and waiting time variability, 
which is less clear for headway variability and in-vehicle time variability. Were the connection between the two to 
be established (literature on this topic being currently seldom to the best of our knowledge), we could model Tv as 
a random variable function of H and take this phenomenon into account. 
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scheduling parameters ȕ and Ȗ and not on the values of time αw and αv . The safety margin increases 
with Ȗ and decreases with ȕ. The more important it is to be on time, the more extra time one plans for his 

trip. When Ȗ tends towards +∞, the optimal margin tends towards  1Φ 1w
 , the maximum waiting time, 

also equal to the maximum headway. Individuals who must be on time at all costs consider the worst 
case scenario and take the necessary head start. 

 When service reliability is perfect (σH = 0), the optimal safety margin is *det Hm  . It is 

equal to the average waiting time μ H /2 when ȕ = Ȗ. If ȕ < Ȗ, the individual dislikes being late more than 
being early and plans more time for waiting than the mean waiting time, and vice versa. 

The effects of marginal changes in service headway and reliability on the optimal head start are 
given by (see Appendix): 

 

     

*
*

*

*
* *

*

Φ
                             

1 Φ

Φ
1

1 Φ

H

H H

H
H

H H H

m
dm
d m

m
dm m
d m




  

              

 
(16) 

The shape of the headway distribution largely determines the impact of μH  and of σH  on the optimal 
head start. Nevertheless, we show three main results in the general case (see Appendix for proof). First, 
the optimal head start m* is always greater than m*det. As expected, headway variability causes 

individuals to take a bigger margin than when headways are perfectly regular. Second, * / 1 Hdm d . 

When the operator increases the service headway (while keeping reliability at the same level), the user 

increases his margin by less than the increase in μH . Lastly, * / 0 Hdm d : the less reliable the service, 

the greater the head start. This is again coherent with intuition.   

The sign of * / Hdm d  is not clear cut in the general case, however. While one would expect 

* / 0 Hdm d , which indeed is usually the case, the opposite can occur for fat-tailed distributions. An 

increase in the service headway causes then travelers to reduce their head start. This counterintuitive 
result stems from the disjunction between the objective and subjective distributions of headways.10 

4.3. Values of service headway and reliability 

Using the first order condition, we obtain the minimum expected travel cost: 

        
*

* * v v w w w
m

C C m T x x dx              (17) 

or equivalently : 

      *

0
*

m

v v w w wC T x x dx             (18) 

When headways are perfectly reliable, the travel cost is: 

                                                      
10 In the example discussed in footnote 5, slightly increasing μH  would actually be beneficial to transit users as 
they would have more chance to board the trains with very short headways, hence a shorter safety margin. 
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 *
2 2
H H

det v v wC T
       (19) 

The first two terms are the time cost. The last term is the scheduling cost; unlike in the standard model 
(e.g. Fosgerau and Karsltröm, 2010), it is not null because waiting times exhibit variability even when 
headways are perfectly reliable.11 

 To study the impact of service characteristics on the travel cost, we introduce two indicators. 
The value of service headway (VoSH) and the value of service reliability (VoSR) are the derivatives of 
the minimum expected travel cost with respect to the mean and the standard deviation of headways, 
respectively:12 

 

*

*

VoSH

VoSR

H

H

C

C




     
 (20) 

The VoSH and the VoSR are closely related to the VoT and the VoR. Actually, the model of Fosgerau 
and Karlström (2010) can easily be adapted to derive the value of waiting time (VoWT) and the value of 
waiting time variability (VoWR).13 The couple (VoWT, VoWR) would be formally equivalent to the 
couple (VoSH, VoSR), except that it would use the waiting time metrics instead of the headway metrics. 
For headway-based transit services, the headway metrics is the most relevant one, however. Headways 
are easier to measure than waiting times. Transit operators control headways, not waiting times.14 And 
congestion is easier to introduce with headways than with waiting times (see section 6).  

 Differentiating (18) yields the VoSH and the VoSR: 

 
    

     

2 *

2 0

*

0

VoSH 1 Φ Φ                      
2

* *VoSR 2 Φ

m
w H

H w
HH

m
H H

w w
H H H H

x x dx

m m x dx

    
          

                  




 
(21) 

In the general case, the relationship between the VoSH and the various model parameters is complex. 
Similarly, comparative statics for the VoSR are not straightforward. We turn to the exponential case: 
this allows us to analytically derive the VoSH and the VoSR while providing a good approximation of 
real-case data, as we will see for two mass transit lines of the Paris area. 

5. Application: the exponential case 

From this point on, we assume that headways follow a centered exponential distribution: 

                                                      
11 Interestingly, the term ȕμH /2 is similar to the term ȕκN/s that appears in the equilibrium cost of the bottleneck 
model of road congestion. 
12 We thereby extend the work of Fosgerau (2009) by completing his analysis on the value of headway in the case 
of deterministic headways to the case of variable headways. 
13 Indeed, one can apply the model of Fosgerau and Karlström to the case where the travel time is the sum of a 
constant in-vehicle time and a variable waiting time. Travel time variability would entirely stem from waiting time 
variability, and the various results would still apply using the waiting time distribution instead of the travel time 
distribution. 
14 To be precise, operators can control waiting times, but indirectly (through headways) and not perfectly. For 
instance, even if headway regularity is perfect, waiting times remain variable. It is also likely that users have a 
good knowledge of the frequency of the lines they use but not of the distribution of waiting times.  
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  i H HH h    (22) 

where h is a random variable with centered exponential law (which has -1 as a minimum). As 
underlined in subsection 3.1, the condition that headways must be positive implies that this specification 
only makes sense for σH  μH . 

5.1. Analytical derivation 

Two regimes arise in the exponential case (see Appendix and Figure 1 for an intuitive interpretation). In 

the first mode, headway variability is low (in relative terms): σH / μH   1 – κ. The optimal head start and 
the minimum cost are: 

    
*

2
*

*                                                                 

*
2 2

H det

H H
v v w w det w

H

m m

C T C


        

         
 (23) 

In this regime, service reliability is good enough so that individuals do not change their departure time 
compared to the deterministic case. The expected travel cost does increase, however, as a result of two 
concurring phenomena. Headway variability increases the mean waiting time, which is captured by the 
term α wσ H

2 / (2μ H ) .  It also leads to greater waiting time variability, hence a greater scheduling cost. 
The term Ȗσ H

2 / (2μ H )  reflects this second mechanism. 

When service reliability is poor (σH / μH   1 – κ), the system tips over the exponential regime. The 
optimal head start and the expected trip cost are: 

 
2 2

1* ln                                      
1

1ln  
2 1

*

H
H H H

H

H H H
v v w W H

H H

m

C T

    
        

                      

 
(24) 

Individuals respond to the poorer service reliability by adjusting their safety margin. As expected, the 
margin increases with the service headway and the service unreliability: * / 1 / 0    H H Hdm d

and   */ ln / . / 0       H H Hdm d .  

 Figure 2 compares the optimal head start in the deterministic case and for three values of σH . In 
the former case, the optimal head start increases linearly in κ (measuring the relative cost of being late). 
For low values of κ, the head start does not depend on σH . When κ exceeds a certain threshold (itself 
decreasing with σH), individuals shift to the exponential regime. As κ increases, they increase more and 
more their margin to insure themselves against the risk of being late caused by service unreliability. 
When κ tends toward 1, the head start tends toward +∞. Since headways are unbounded for exponential 
distributions, insuring oneself against the worst case scenario implies taking an infinite safety margin. 

 

FIGURE 2 HERE    
Figure 2: Influence of headway variability on the head start (exponential case, μH  = 1) 

 

We can use (23) and (24) to derive the value of service headway (VoSH) for the two regimes: 
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2 2

2 2

22

2

VoSH 1 1      if     1             
2 2

VoSH 1 1              if     1            
2 2

wH H H

HH H

wH H H

H HH

    
    

                                      

 (25) 

As expected, the VoSH increases with α w , ȕ, and γ.15 The more the user values not waiting or being on 
time, the more he enjoys better transit service frequency. Furthermore, the VoSH decreases with σH /μH . 
Improving service frequency is more beneficial when headway variability is low (in relative terms).16 

 Similarly, we can derive the value of service reliability (VoSR): 

 
 VoSR                                                if     1

1VoSR 1 ln      if     1  
1

H H
w

H H

H H H H
w

H H H H

    
         

                  
 (26) 

Similarly, the VoSR increases with α w , ȕ, and γ. Headway variability increases the mean waiting time, 
which explains that the higher α w , the more a degradation in service reliability would cost. In addition, 
headway irregularity increases waiting time variability. This increases the scheduling disutility, hence 
the increase with ȕ and γ.17 Unlike the VoSH, the VoSR increases with σH /μH  instead of decreasing. 
Thus, there exists a cut-off level above which it is more beneficial to improve service reliability than 
service frequency (Figure 3). 

 

FIGURE 3 HERE 
Figure 3: Influence of service reliability on the VoSH and the VoSR  

(exponential case, ȕ = 0.8, Ȗ = 3, α w  = 2)  

 

5.2. Empirical illustration 

We use data on observed headways during the morning peak hour to estimate the headway distribution 
of two mass transit lines of the Paris area, the RER A and the RER E. Data were provided by the 
railway operator, Transilien, in the case of the RER E, and were collected using real-time data available 
on the web in the case of the RER A. Both databases provide records for a time period of 3 months in 
2011. For the RER A, headways are measured at the station named Nation, which is located on the 
eastern frontier of Paris, and for westbound trains. For the RER E, headways are measured at Bondy, 
which is outside of Paris, again for westbound trains. 

 The RER A is one of the most used transit lines in the world, with more than one million riders 
a day. At the morning peak hour, headways are short but the high congestion level hampers operations, 

                                                      
15 Less intuitive is the fact that, in the exponential regime, the VoSH does not depend on Ȗ. This property is likely 
specific to the exponential distribution, but further investigation would be necessary to assert this point. 
16 This point was not trite considering the example in footnote 5. When headways are highly irregular, increasing 
the mean headway could lead to a better allocation of travelers between trains, and subsequently to a decrease of 
the expected cost of travel. 
17 In a way symmetric to what happens for the VoSH, the VoSR does not depend on ȕ in the deterministic regime. 
Again, we did not find an easy interpretation of this intriguing result, which is most surely linked to the 
specificities of the exponential distribution. 
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leading to irregular headways. Parametric estimation of the headway distribution yields μH  = 2.4 and  
σH  = 0.9, the exponential distribution fitting the data remarkably well (Figure 4a).  

 

FIGURE 4 HERE 

 

 

The RER E is a newer and less central line than the RER A, with about 300,000 travelers per day. 

Frequency is lower than for the RER A (μH  = 7.8), for a similar service reliability (σH = 1.0). Again, the 
exponential distribution fits the data well, although less so than for the RER A (Figure 4b). 

 To illustrate our findings, we consider a traveler who has the following preference parameters: 
α v  = 1, α w  = 2,  ȕ = 0.8, Ȗ = 3.18 His journey on the RER (A or E) is 10 minutes long. Under these 
assumptions, the VoSH is equal to 1.02 and the VoSR to 1.71 for the RER A. For the RER E, the values 
are 1.27 and 0.64, respectively. Judging from the values of the VoSH and the VoSR, it will likely be 
more beneficial to improve reliability on the RER A and frequency on the RER E. To confirm this point, 
we simulate in Table 1 the impact of an increase in either frequency or reliability on the expected travel 
cost, which is broken down into three components, in-vehicle time, waiting time and schedule delay, as 
apparent in equation (14). As expected, the best scenario is “Reliability improvement” for the RER A 
and “Frequency improvement” for the RER E . This basic simulation hints that future investments 
should focus on improving service reliability on the RER A and increasing frequency of the RER E.19 

 

 
Table 1: Simulation of 2 improvement scenarios for the RER A and the RER E 

    
Expected cost 

 

 
Scenario μH σH 

In-vehicle 
time 

Waiting 
time 

Schedule 
delay 

Total 
Relative 
decrease 

RER 
A 

Actual 2.4 0.9 10 2.74 1.24 13.98 - 

Frequency 
improvement 1.6 0.9 10 2.11 1.15 13.25 5,2% 

Reliability 
improvement 2.4 0.1 10 2.40 0.76 13.17 5,8% 

RER 
E 

Actual 7.8 1 10 7.93 2.66 20.58 - 

Frequency 
improvement 7 1 10 7.14 2.42 19.57 4,9% 

Reliability 
improvement 7.8 0.2 10 7.81 2.47 20.28 1,5% 

 

                                                      
18 Regarding the triplet (α ,ȕ ,Ȗ ) , Bates et al. (2001) indicate the ratios 1:0.8:3 as typical from the literature. A ratio 
of 2 for α w  / α v  is also standard (Wardman, 2004). 
19 Obviously, the investment costs of improving service frequency and reliability should also be factored in the 
analysis to confirm this point. 

Figure 4: Density of waiting times during the morning peak hour for westbound passengers arriving 
randomly at Nation and Bondy stations (Web-sourced data for RER A, Transilien data for RER E)  
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6. Extension: in-vehicle congestion 

Headway has an impact on waiting times, but also on in-vehicle congestion (see section 2). When 
headways are irregular, longer headways are associated with both longer waiting times and greater 
passenger vehicle loads, hence a “double punishment” (and vice versa for shorter headways). To take 
this effect into account, we amend the model by linking the value of in-vehicle time to the number of 
passengers N: 

        Θ * *w w v v w v w vC t T N T t t T T t T T t               (27) 

where Θ(N) represents in-vehicle discomfort and increases with N. For the sake of exposition, we 
choose a simple specification for Θ:  

 
   0

0

1    if    

   if    

N N N

N k N N

      (28) 

If the number of passengers is greater than N0, the vehicle is overcrowded. The value of in-vehicle time 
is penalized by a factor k > 1. Otherwise, it retains its former value α v . 

 We assume that the rate of new travelers arriving on the platform is constant and equal to q. All 
travelers, our individual included, are impatient: they board the first train regardless of congestion. 
Furthermore, we consider that trains are empty when they arrive at A, which is the departure station. 
Under these assumptions, a simple relationship links the passenger vehicle load to the headway: N = qH. 
We rewrite Θ as a function of H instead of N: 

 
   0 0

0

1    if   /  

    if                   

H H H N q

H k H H

        (29) 

Our individual being impatient, introducing congestion does not change the choice of departure time 
since headways are not time dependent.20 It changes the expected travel cost, however (note that we still 
consider exponential headways): 

 

  
  

2

2

2 2

* Θ 1                                if     1  
2

1* Θ ln     if     1  
2 1

H H H
v v U w W

HH

H H H H
v v U w W H

H H H

C T E H

C T E H

       
           

                              

 (30) 

Note that because we take the user point of view, we take the expectation of Θ(HU) and not of Θ(H ) . 
Computations give: 

                                                      
20 If our individual is patient, the problem is more complex. If the first train to arrive is crowded, the individual can 
wait for the next train hoping that it will not be crowded. This possibility modifies the problem of the choice of 
departure time, and depending on how much the individual dislikes congestion, he might increase his safety 
margin to insure himself against this eventuality. For the sake of simplicity, we do not consider this possibility. 
This model does not include inter-personal variability either, in the sense that all passengers experience the same 
level of congestion while in reality, some passengers are comfortably sitting, even in overcrowded vehicles. 
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 (31) 

If H0 < μH  – σH , all trains are congested. The expected trip cost increases by a constant (k – 1)α v T v . If 
H0  μH  – σH , only trains with a headway above H0 are congested. This model, seemingly simple at first 
glance, leads to strong discontinuities when H0 is close to μH  (Figure 5). 

When H0 increases, congestion is less severe, the case with no congestion corresponding to the 
limit case H0 = +∞ . For a fixed headway variability σH , the travel cost always decreases with H0. The 
reverse is not true: H0 being fixed, the expected travel cost does not always increase with σH . There are 
two polar cases. If H0  μH , frequency is high enough and no train is congested when σH  = 0. In this 
“normal regime”, congestion only arises because headway variations can cause headways to exceed H0. 
In the “degraded regime” (H0 < μH), all trains are congested when the service is perfectly reliable. The 

travel cost jumps from *
detC  to  * 1det v vC k T   when σH  = 0. This time, service unreliability causes 

some trains to run with headways shorter than H0 and be uncongested. This explains why the travel cost 
may fall when σH  increases in the degraded regime (Figure 5). 

 

FIGURE 5 HERE   
Figure 5: Influence of �0 on the expected travel cost curve 

(exponential case, α v  = 1, T v  = 3, α w  = 2,  ȕ = 0.8, Ȗ = 3, k = 2 and μH  = 1) 

 

We now derive the VoSH and the VoSR to establish these points more firmly.21 If  σH  < μH  – H0, all 
trains are congested, and the VoSH and VoSR are the same as before. If  σH   μH  – H0, the VoSH and 
the VoSR are modified as follows (c denoting the model with congestion, and u without): 
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 (32) 

Congestion increases the VoSH: VoSHc  VoSHu seeing that the second term in (32) is always positive. 
In the degraded regime, the VoSH is discontinuous with a spike at  σH  = μH  – H0 (Figure 6). This is the 
limit between the “fully degraded” mode (all trains are congested) and the “partly degraded” mode (only 
a fraction of them are). From this point on, improving service frequency leads to more and more trains 
being uncongested, hence the surge in the VoSH. 

                                                      
21 We still call VoSH and VoSR the derivatives of the expected cost with respect to μ H  and σH . However, it is 
worth noting that these are now different from the willingness-to-pay of travelers for an increase in frequency or 
reliability. Indeed, passengers are not likely to take a diminution of congestion into account when faced with an 
improvement in service frequency or reliability, because congestion is not intrinsic to passengers' preferences. 
However, the VoSH or VoSR can still be used to assess the socio-economic consequences of a change in 
operations. 
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Contrary to VoSHc, VoSRc can be lower than VoSRu in the degraded regime. In (32), the term 

   2
0 01 /H H HH H      is positive in the normal regime (H0  μ H ), but negative in the degraded 

mode when    0 0 0 0 ;1 / 2 3H H H H HH H H H             . On this interval, increasing 

headway variability reduces the number of congested trains, which causes the travel cost to fall. 

Headway variability entails a “double punishment” in the normal regime. Travel time variability 
increases, raising the mean schedule delay cost, and some trains get overcrowded. Service unreliability 
is less detrimental in the degraded mode: it still raises schedule delay costs, but lowers the mean 
congestion cost by reducing the number of overcrowded trains. These results stem from the properties of 
the congestion function presented in equation (28): because it is a step function, it does not increase 
gradually and convexly with the number of passengers. In particular, in the normal regime, it is convex 
around μH , but in the degraded regime it is concave around μH .22 If the congestion function was convex, 
headway variability would always raise the mean congestion cost, and conversely for a concave 
function.23 

 

FIGURE 6 HERE 
Figure 6: Influence of congestion intensity H0 on the VoSH 

(exponential case, α v  = 1, T v  = 3, α w  = 2,  ȕ = 0.8, Ȗ = 3, k = 2 and μH  = 1) 

FIGURE 7 HERE 
Figure 7: Influence of congestion intensity H0 on the VoSR 

(exponential case, α v  = 1, T v  = 3, α w  = 2,  ȕ = 0.8, Ȗ = 3, k = 2 and μH  = 1) 

 

7. Conclusion 

Service frequency and reliability impact the travel cost of transit users through three channels: waiting 
time, schedule delay and congestion. Transit users behave strategically and adjust their departure time in 
order to minimize these costs. The safety margin, which represents the time allocated to waiting, 
decreases with service reliability, as expected. It increases with service headway, except for specific 
distributions of headways. 

 The values of service headway (VoSH) and service reliability (VoSR) measure the marginal 
effect on the expected travel cost of a change in the mean and in the standard deviation of headways, 
respectively. They complete the values of in-vehicle time and in-vehicle time variability by capturing 
the influence that headways have on waiting times and congestion. Furthermore, they can easily be 
computed: they relate to the distribution of headways, which are easily measured unlike waiting times or 
total travel times. This makes the VoSH and the VoSR well suited for the economic appraisal of public 
transport projects.  

In the case of exponentially distributed headways with no congestion, we show that the VoSH is 
actually not constant and decreases with service reliability. Conversely, the VoSR increases with the 

                                                      
22 To be specific, equation (29) implies that the congestion function satisfies     Θ  ΘU HH E  for H0  μ H  

(normal regime) and       Θ  ΘU HH E  for H0 < μ H  (degraded regime). 
23 Similarly, it is likely that were travelers to be patient (meaning that congestion at one instant can spill over to 
various departures), the mean congestion cost would be more regular and would always increase with headway 
variability. We could not confirm this point, however. 
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reliability level. The relative values of the VoSR and the VoSR can help guide investments aiming to 
improve the quality of service towards either frequency or reliability improvements.  

The analysis is subject to a certain number of caveats. First and foremost, in-vehicle travel time 
variability is not modeled. The extent to which modeling the variability of both headways and in-vehicle 
times would change our findings should be investigated by future research. The extension to congestion 
could be refined further and take into account the fact that travelers may want to wait for the next train 
in case of heavy congestion (in which case the phenomenon of “bunching” should also be represented). 
Last, the extent to which our results depend on the choice of (α ,ȕ ,Ȗ )  scheduling preferences has also to 
be established. 
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Appendix A. Mathematical appendix 

A.1 Optimal head start 

For reminder, the optimal head start solves: 

  Φ *w m
     

(A.1) 

We start by showing ** detm m . When σH  = 0, the p.d.f. of waiting times is:  , 1/W det Hx   for 

 0, Hx  . As  1 Φ 1H

H H

x
 

  , we have    , w w detx x   and thus    ,Φ Φ    w w detx x x  R . 

Considering that    * *
,Φ Φw w det detm m   , ** detm m  follows.  

 We then compute the derivatives of m* with respect to μH  and σH . Rewrite Φw(m* )  as: 

     * * *

0 0 0

1 Φ
1 Φ

Φ *

H
hm m m

H H
w w

H H

x
x

m x dx dx dx

  
           

(A.1) is therefore equivalent to: 

 
*

0
1 Φ

m
H

h H
H

x
dx

       (A.2) 

Differentiating (A.2) with respect to μH  yields: 

* ** 1 Φ Φ ΦH H H
h h h

H H H H

m mdm
d

                                     

The assumption of positive headways implying    Φ / Φ 0 0h H H H    , we have: 
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       Φ * Φ * Φ **

1 Φ * 1 Φ *
H w H

H H H

m m mdm
d m m




     (A.3) 

Since κ < 1, dm* /dμH  < 1 follows. The denominator being strictly positive, the sign of dm* /dμH  is the 
same as for the numerator. The sign of Φw – ΦH depends on the shape of the headway distribution. 
While in most cases, including the deterministic and exponential cases, Φw(x )   ΦH(x ) , the opposite 
can occur for fat-tailed distributions (an example is available from the authors upon request). 

Differentiating (A.2) with respect to σH  yields: 

  *

20

* 1 Φ * 0
m

H H
H h

H HH

x xdm m dx
d

  
           

Integrating by parts gives: 

   Φ ** 1 *
1 Φ *

H
H

H H H

mdm m
d m

  
      (A.4) 

Using ȕ > 0 and * * 0det Hm m    , we have     Φ ** 1 0
1 Φ *

HH

H H H

mdm
d m

    .  

 

A.2 VoSH and VoSR 

Using (5) and (8), we rewrite (18) as: 

     *

0
* 1 Φ

m
H

v v w w h
H H

xxc T dx
                    (A.5) 

We derive the VoSH: 
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This simplifies to: 
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2 0
VoSH 1 Φ Φ
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m
w H

H w
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           (A.6) 

We now derive the VoSR: 
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Integrating by parts the last term and simplifying yields: 

      *

0

* *VoSR 2 Φ
m

H H
w w

H H H H

m m x dx
                   (A.7) 

 

A.3 Exponential case 

In the exponential case, according to (11) we have: 
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Computation gives: 
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   (A.8) 

We seek to solve  Φ *w m  . Two regimes naturally emerge depending on whether m* is greater or 

lower than μH  – σH .  

Assume m*  μH  – σH . (A.8) gives m* = κμH  . We rewrite the condition m*  μH  – σH  as

H H H    , hence  1H H    . The minimum expected trip cost is: 

         * 2

0

**
2

m

v v w w w v v w w
H

mc T x x dx T                        

Using m* = κμH  and  2 2 / 2w H H H      yields: 

     22
*

2 2
H H

v v w w det w
H

C T C
                (A.9) 

It is now easy to derive the values of service headway and reliability: 
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(A.10) 
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The second mode corresponds to the case m*  μH  – σH , which is equivalent to  1H H    . Again, 

using (A.8) gives: 

* *

1 * ln
H H H H

H H

m m

H H H
H H H

H H H
e e m

                  
                             

The minimum expected trip cost is given by: 

     
*

* v v w w w
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C T x x dx             
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2 2
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We can use this last formulation to derive the VoSH and VoSR: 
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(A.11) 
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