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Abstract

This paper studies the impact of service frequency and reliabilitheoghoice of departure time and the travel
cost of transit users. When the user hasf(y) scheduling preferences, we show that the optimal head start
decreases with service reliability, as expected. It does not necessarase with service frequency, however.
We derive the value of service headway (VoSH) and the value of service reli@dBR), which measure the
marginal effect on the expected travel cosaahange in the mean and in the standard deviation of headways
respectively The VoSH and the VoSR complete the value of time and the value ddiliglifor the economic
appraisabf public transit projects by capturing the specific link between hegjwaiting times, and congestion

An empirical illustration is provided, which considers two mass transit limased in the Paris area.

Key words: Public transportation; Reliability; Headway; Scheduling; Welfare.

1. Introduction

The unreliability of transportation systems, in the sense that these sysanot guarantee perfectly
predictable travel times, has various consequences on travelers. It may induce anxiety, cause one to miss
a connection (in the case of public transport), or constitute a hindrance tarthinglof activities. But

the main impact is generally the potential delay at destination(STRAariel RAND Europe, 2004)
Travelers can cope with travel time variability through various meaag:dan adjust their departure

time (Coulombel and de Palma, 2012), change route (Abdel-Aty et al., 1995; Liu260d) or mode

(Chorus et al., 2006), travel somewhere else, or they can decide to report tw eaanel their trip.

The preferred strategy is usually to leave with a safety margieg®aal., 2001; Li et al., 2010), be it
because other alternatives may not be available. This is especially ttcengitr users, who often have

less alternative routes at their disposal than car users to reach their idestinat

Following this train of thought, several theoretical works, in line withsérainal contributions of
Gaver (1968) and Knight (1974), study the impact of travel time variability on theecbbdeparture
time and the cost of travel (Bates et al., 2001; Coulombel and de Palma, 2013; Fosg&aisaid,
2010; Noland and Small, 1995; Siu and Lo, 2009) They adapt the scheduling model popularized by
Small (1982) to the context of uncertaiavel times. They derive the expected travel cost and the value
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of reliability (VoR), the latter being usually defined as the derivativthe expected travel cost with
respect to the standard deviation of travel times. Most works focusiremsers, and although some
authors adapt their model to some extent to consider transit users (usuatkibyg geparture time a
discrete variableXhey still fail to take several aspects specific to public transpoermgsinto account
First, they do not distinguish between waiting time and in-vehicle time, whish transit users value
differently (Wardman, 2004). Congestion and waiting times are strongly retatezhtiways (and their
variability), which is also not modeled in these works. Last, the VoR hasitynificant drawbacks
when applied to public transtbtal travel time variability, to which the VOR relates, is hard to measur
but also inconvenient to use for the economic appraisal of public transpj@ttprbecause the transit
operator does not hawaedirect control over this variable (unlike headway variability orehigle time
variability, for instance

This paper intends to address these issues by adapting the standard schedulitmth®dakef
public transport. The scope is limitéal headway-based services (as opposed to schedule-based ones)
for which frequency is high. We study the impactsatvice headway and reliability on the choice of
departure time and the travel cost. Two indicators capture the effect of chasgesce characteristics
on the expected trip cost: the value of service headway (Yofdsures the effect of a change in the
mean headway, and the value of service reliability (VJaBBt of a change in the standard deviation of
headways. The VoSH and VoSR complete the value of time and the VoR in the case of gngitic tr
The former couple relates to headways and their impact on waiting timea-aelicle congestion,
while the latter couple, which originally related to the totaldtdime in the context of car users, more
naturally relates to in-vehicle time for transit users.

The layout of tis paper is as follows. Sections 2 and 3 review the theoretical framework, then
the main results of renewal theory regarding the link between transit skeadways, user-perceived
headways, and waiting times. Section 4 presents the model and several findimggyémeral case.
Section 5 elaborates on the case of exponentially distributed headways then providesriaal empi
illustration, which considers two heavy rail lines located in the Paris @eztion 6 extends the model
by introducing in-vehicle congestion, and Section 7 concludes.

2. Theoretical framework

There are currently three main modeling frameworks which address the value ofitnavehtiability
(Carrion and Levinson, 2012; Li et al., 2018)e mean-variance model, the mean lateness model, and
the scheduling model. The first two are based on a descriptive approaclastume that individuals
distaste travel time variability, but do not purport to explain wines& modeling frameworks intena
provide the most efficient specification to estimate the value of reliability

Scheduling models, on the other hand, provide a micro-economic foundatioa W@ltie of
reliability. They represent the choice of departure time when individuadifae constraints (e.g. work
start time). A first strand of the literature has focused on departure Esatgen travel times are
uncertain. Gaver (1968) and Knight (1974), who developed the naifofiscad start” and “safety
margin”, respectively, represent two pioneering contributions in this regard. Inebaaalbther strand
of the literature has aimed to model and estimate scheduling preferences wheiniesvale certain.
Building on the works of Gaver (1968) and Vickrey (1969), Small (1982) spéahd estimated a
scheduling model which has later been widely used in theoretical works. The imbdsled on the
assumption that the traveler's c@ss a linear function of travel time and schedule delay costs:

C(t)=aT+B(t*—t-T) +y(t+T—t*)" +5L(t+T-t*) (1)



where )" = x if x is positive, 0 otherwise, arfi{x) is the Heaviside step function (equal tof X is
positive, 0 otherwige C(t) is the travel disutility when leaving at tinte T the travel time, and

t* —t —T the schedule delay. The schedule delay is said to be early if it is positivéjti&genegative.

It is measured relatively to a preferred arrival tithewhich usually represents the work starting time.
The cost of one minute of travel timedsthe cost of being one minute earlyoat’s destination ig;

and the cost of being one minute late.iBeing late also entails a fixed penalty equab.tdhese
parameters are positivaqC is a disutility function); they set the terms of the trade-off between travel
time and schedule delay when choosing the departure time. We will refer tes (@&),/Ay,0)
preferences, or more simply,(#,y) when the late dummy is not include@i< 0).

In line with Gaver (1968) and Polak (1987), Noland and Small (1995) combine trabowve
approaches and study the influence of travel time variability on the choice of departure tilne coud t
of travel under &,5,y,0) preferences. Travel tims the sum of a deterministic component and of a
random delay, the distribution of which does not vary with the departure tinkey Aesultis the
derivation of the minimum expected trip cost when the delay follows a mmiforexponential law
While it is not done in their work, one can use their results to deriveatie wf reliability (VoR),
usually defined as follows (Carrion and Levinson, 2012):

VoR = 8%0 (2)

oC
om

where m is the trip monetary cost angl the standard deviation of travel times. Fer,A,y,0)
preferences, the parameters are usually expressed in monetary terms and the VoR ié%?ply

Fosgerau and Karlstrom (201@¢neralize Noland and Small’s work by formally deriving the VB
under less strict assumptions regarding the distribution of the delay. They cdnsitie) preferences
instead of &,5,y,0), and assume that the expected travel time is constant. Under these assumptions, the
VOoR is:
VoR =(ﬁ+7)J1 o1(s)ds (3)
v
B+y

where® is the cumulative distribution function of the standardized travel time.

Most theoretical works on the VoR focus on car users Coulombel and de Palma, 2013;
Fosgerau and Karlstrém, 2010; Noland and Small, 1995). In the case of transit riders, one cannot use the
exact same analytical framework for at least two reasons. First, transiesedei not run continuously.

When choosing their departure time, individuals usually consider the schedule @qirenty of the

transit lines that they plan to use (Bowman and Turnquist, 1981; Furth died,N006). Schedule or
headways should thus be explicitly modeled. This point is especially saiembst studies find that
individuals have a higher value of waiting time thainefehicle time €.g. Algers et al., 1975; Beesley,
1965; Wardman, 2004). Second, congestion in public transportation is linked to the Beadway. It

can strongly vary between two consecutive vehicles when headways are irregular (Chen 20L).iu,
This differs from road congestion which is a more continuous phenomenon, traffic incidessglput

Bates et al. (2001) study the choice of departure time and the cost of ulitseliathe case of
transit users. Their analysis focuses on scheduled services, which leads theaeltdeparture timas



a discrete variableThe same choice is operaiedBatley (2007), Fosgerau and Karlstrom (2010), and
Fosgerau and Engelson (2011), among others. The underlying assumption is that headwagstiye perf
reliable, and that the variability of travel time entirely derives fioraehicle time variability’. This
assumption is strong, especially if one considers mass transit lines glithekiels of ridership, for
which headway regularity is often a significant issue (subsection 5.2 providitigsaraiive example
Moreover, these works consider neither the distinction between waiting tima-gebicle travel time,

nor the issue ah-vehicle congestion.

The main purpose of this paper is to study the influence of service religlimtited here to the
dimension of headway regularijyon the choice of departure time and the cost of travel. In particular,
we show that service reliability impacts the generalized travel cost thrioeghahannels: waiting time,
schedule delay, and congestion.

3. Route headways, user-per ceived headways and waiting times

This section reviews the main results of renewal theory regarding the linkdrethe headways of a
transit route, the headways perceived by users, and waiting times. We considbe fgeheral case,
then the case when the standardized distribution of headways follows a centered &tdanerithe

reader can refer to Osuna and Newell (1972) or Kleinrock (1975, p. 169) for a proof of these result

3.1. General case

Consider a direct transit line connecting two poifstand B, which we will refer to as a railway line

with no loss of generality. Headways/faare given by a sequence of positive random variablgs.(.

They are identically and independently distributed, with probability distribdtioction (p.d.f.)py and
cumulative distribution function (c.d.fd,. Headways being positive, and®y are both null orR™.

We will assume throughout the text that the distribution of headways has finitentsooi all orders.

We denotexy andoy the mean and the standard deviation of headways; they provide inverse measures
of service frequency and reliability, respectivély.

A traveler arrives at the train platformAnat timet. Given the assumptions, the user-perceived
headway, which is defined as the headway that the traveler experiences rixieg at timet, is a
random variabléd, with the following p.d.f.:

(=22

HH “)

The distribution of headways perceived by users differs from the objectivibutisin. Indeed, when a
traveler arrives on the platform in“@andom manné&r(meaning that he has no dynamic information
regarding headways), the longer the headway, the more likely it ihdbtravelerto arrive in the
corresponding time interval.

! Bates et al. (2001, pp.208-2ltPeat departure time as a continuous variable when considering the special case
where the transit service departure time is random. However, thepiavigle a very general discussion of this
case and do not give any significant result.

2 Again, Bates et al. (2001) is to the best of our knowledge one the féw tooconsider headway variability, in a

brief manner to bot Some other works do also consider headway variabdity Bowman and Turnquist, 1981;
Furth and Muller, 2006), but they do not use scheduling preferendessort to ad-hoc cost functions instead.

3 Service reliability encompasses two major dimensions in the case of lyehdse services: headway regularity

and in-vehicle time variability. This paper focuses on the former issue.

* The mean headway is inversely commensurate to service frequency, so one should understand “an increase in

service frequency” as a decrease in uy. Similarly, an increase in service reliability corresponds to a decreasge in

> To illustrate this point, consider a transit line with headways of 59.Ddndinutes with equal probabilities
(which is a Bernoulli process with mean 30 minutes). When a travelegsaat the platform in a random manner
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The waiting time is a stochastic variaBlgwith p.d.f.:

_ 1oy ()
Hy

The mean and the standard deviatibmvaiting times are (using integration by parts):

2
O
HH

ow(X) forxe R™, O otherwis (5)

(6)

2 2 3 4

o _\/ﬂH +OH”  THOH™_ OH
WENI2 T2 T 3y 4.2
HH

whereny is the skewness oH();.z. These results call for two comments. First, a change in service
reliability (i.e. in oy) impacts the mean waiting time, even when service headway remains constant.
Second, (5) linking the p.d.f. &1, andT,, these two variables cannot be standardized simultaneously.
Considering our focus on service reliability, we choose to standardize thez(®

H; = iy +oph ©

whereh is a random variable with mean 0 and variance 1. For reminder, the following relgisolski
the p.d.f. and c.d.f di andH:

(ﬂh(x_ﬂHj
i and(DH (X):(Dh(x_‘qu

OH OH

(8)
oH (X)=

3.2. Exponentially distributed headways

We will give special attention to the case of a centered expondistid@bution’ It leads to closed form
solutions and fits the data well to boot (see section 5).

Whenh follows a centered exponential distribution, we have:

on (X) _ e—(X+l)

forx>-1 9
o (x)=1- 4

In the exponential case, the condition that headways must be positive is, accof@d)ngdgoivalent to
constrainingry < iy . Service unreliability as measureddy cannot exceedy for the standardization
of headways to be consistent, the case uy corresponding to the standard exponential distribution.

The distribution of headways perceived by users is:

he has practically zero chance of arriving between two trains separated Ibyinute. He experiences a mean
headway of 59.9 minutes (approximately), which is twice thenrobgective headway.

® This choice is also empirically supported (see subsection 5.2).
" For the sake of brevity, we will often omit the term “centered”.



_[X+O‘H—,qu
w(x)= " —e’ &
HHOH forx= uy —oy (10)
X+o, — U,
X+oH _[ o
Oy (X)=1- e :
u () HH
Lastly, the p.d.f. of waiting times is:
1
X)=—— forOx < -0
ow(X)=",- HH —OH
_( X+, —H, j (12)
1 o,
X)=——8e H forx> —-o
ow(X) ™ HH —OH

Figure lillustratesy,, for various values of . Whenoy tends toward Qp,, converges pointwise to the
uniform distribution, which corresponds to the case of perfect headway regularity.

FIGURE 1 HERE
Figure 1: Probability distribution function of waiting times (exponential gase;, 1)

4. A scheduling model for headway-based transit services

4.1. Model set-up

An individual wishes to go from poirt to pointB. As previously, a direct transit line connects the two
points. The service is headway-based: there is no schedule, or alterrsgiwétg frequency is high
enough for the user to ignore the schedule and only consider headways when planningThis trip.
service is not perfectly reliable, headway variability being modeled by ié)transit line operator sets
the levels of service frequency and reliability, in other wasglgandsy, which are taken as exogenous.

As is common in the literature, we assume that the individual dag@sy() preferences. The
relevancy of &,f,y) preferences for modeling the departure time choice is actually controversial.
While Noland et al. (1998) find thaw(f,y) preferences well fit the behavior of individuals in their
survey, Tseng and Verhoef (2008) raise the objection that the assumptioredhvariant shadow
prices is unrealistic, a point corroborated by their empirical analgsigldition, Bérjesson et al. (2012)
find that («,f,y) preferences do not well capture the aversion of individuals to travevamability.
While acknowledging these limitationsg,(3,y) preferences are widely used in this research field,
simple to handle from a mathematical standpoint, and yield closed-form sslirtionr application in
section 5. These various points led us to keep this functionafform.

The individual has standardx(3,y) preferences except that he values in-vehicle time and
waiting time differently. The generalized cost of travel (or travel disgtist

C(t)=anwTw+ayTy + B(t* =Ty ~-T,) +y(t+Ty+T, -t*)" (12)

8 We could easily apply the same framework to another utility funct@losed-form solutions would not be
guaranteed in the exponential case, however.



whereT,, is the platform waiting time and, the in-vehicle time. The real parametess, («,,f,y) are
positive. A common result of the empirical literature on the value of timg s «, (Wardman, 2004)
waiting yields less utility than beinim a vehicle. The model remains valid whes, < a,. Most
empirical studies on scheduling preferences also find tha#t, ) are ordered as follows® < a < y
(Bates et al., 2001; Carrion and Levinson, 2012). Added to th¢ faet that leads to counterintuitive
behaviors (such as preferring to wait on the platform or to spend more tthevahicle rather than to
get early abne’s destination), we assume: @< « = min (a,a,) andy > 0.

Waiting timeT,is a random variable, its distribution being given by (5). Onboard travelliime
is on the other hand deterministic and constant. This assumption is madedakehef simplicity, as
computations are quite complex and hard to follow when both in-vehicle times and waigsgvary.
Our results can easily be extended to the case with variable in-vehicle tiowg asT, andT,, are not
correlated.

Waiting time variability has a twofold source in our model, as brought b ttig (5) and (6).
First, the user only knows the headway distribution of the railway linepg).enot the exact schedule.
Even in the case of perfectly regular headways, he will still arrive at a ratimderbetween two trains.
Second, headways are not perfectly reliable, which increases further waitngatiiability. Indeed, (5)
shows that waiting times follow a distribution which is uniform when headwhability is perfect
(o = 0), but progressively changes as reliability declines.

We denotem = t* — t — T, the head start. It is the time allocated to waiting, witiah be
positive or negative. Travel cost becomes:

C(m):oe\,\,T\,\,+o:\,T\,+ﬂ(m—TW)Jr +;/(TW—m)+ (13)

If Tw < m, the traveler arrives early at his destination],jf> m he is late. Becausg, is positive,
choosing a strictly negative head start implies arriving late with certainty.

4.2. Optimal head start
The traveler chooses the head start which minimizes his expected travel disutility
m +00
C(m)= awﬂeravTvaﬂjo (m—x)(pw(x)dx+yjm (x—m) gy, (x)dx (14)

The first order condition igd,, (m*)—y (1-®,,(m*))=0. The optimal head start is:
nt = (I)W_l(K) (15)

where;cz%ﬂ/ is the relative shadow price of being late.

We find an equation identical to Fosgerau and Karlst{io) except that it involves the c.d.f.
of waiting time instead of travel time. In our set-up, the choice of the headnstarly impacts the
expected scheduling cost within the total expected cost of travel. It bearsueadefon the travel time
cost componentu,, + a,Ty, which is independent oh. This explains whyr* only depends on the

® There is likely some linkage between the variability of headwagsramehicle times, and thus of waiting times
and in-vehicle timesHowever, there is a direct link between headway variability and waiting tariability,
which is less clear for headway variability and in-vehicle time variabiltgre the connection between the two to
be established (literature on this topic being currently seldom to the bestlofawledge), we could mod&}, as

a random variable function &f and take this phenomenon into account.



scheduling parametefsandy and not on the values of timg, anda,. The safety margin increases
with y and decreases with The more important it is to be on time, the more extra time one plans for his

trip. Wheny tends towards o, the optimal margin tends towardi;‘,v‘l(l), the maximum waiting time,

also equal to the maximum headway. Individuals who must be on time at all costs consigmsthe
case scenario and take the necessary head start.

When service reliability is perfect{ = 0), the optimal safety margin im:tiet =Kuy . Itis
equal to the average waiting timg/2 wheng = y. If § <y, the individual dislikes being late more than
being early and plans more time for waiting than the mean waiting time, and vice versa.

The effects of marginal changes in service headway and reliability on thebpead start are
given by (see Appendix):

dam _ Kk—0y (m*)
d ity 1- oy (m*)

(16)

* . (DH (m*)—K
d _ | PR

*

doy o 1~y (m

The shape of the headway distribution largely determines the impagt afid ofoy on the optimal
head start. Nevertheless, we show three main results in the general cagméselx for proof). First,
the optimal head stamn* is always greater thanty. As expected, headway variability causes

individuals to take a bigger margin than when headways are perfectly regular. S@ﬁbﬂd‘lﬂH <1.
When the operator increases the service headway (while keeping relialtitiey setme level), the user
increases his margin by less than the increageg imastly, dm /I doyy > 0: the less reliable the service,
the greater the head start. This is again coherent with intuition.

The sign ofdm’ /dyy is not clear cut in the general case, however. While one would expect

dm /duy >0, which indeed is usually the caske opposite can occur for fat-tailed distributions. An

increase in the service headway causes then travelers to reduce their he@distadunterintuitive
result stems from the disjunction between the objective and subjective distributi@asioflys?

4.3. Values of service headway and reliability

Using the first order condition, we obtain the minimum expected travel cost:

C* = E(m* )=y Ty +(aw—B) iy +(B+ )/)J.n: Xy (X) dx 17)
or equivalently :
m*
C*:aVTV+(aW+7/),uW—(ﬂ+}/)IO XgoW(X)dX (18)

When headways are perfectly reliable, the travel cost is:

% 1n the example discussed in footnote 5, slightly increagingvould actually be beneficial to transit users as
they would have more chance to board the trains with very short hgadwence a shorter safety margin.



Caet =T, +ay o+ 4L (19)

The first two terms are the time cost. The last term is the schedulinginbkt in the standard model
(e.g. Fosgerau and Karsltrém, 2010), it is not null because waiting times exhiiitilitgreven when
headways are perfectly reliatfe.

To study the impact of service characteristics on the travel cost, wdloé two indicators.
The value of service headway (Vob&hd the value of service reliability (VoSR) are the derivatives of
the minimum expected travel cost with respect to the mean and the standandrdefvideadways,
respectively?

VosH= €
Ouy

(20)

VoSR=-9C
80'H

The VoSH and the VoSR are closely related to the VoT and the VoR. Actualimotied of Fosgerau
and Karlstrém (2010) can easily be adaptederive the value of waiting time (VoWT) and the value of
waiting time variability (VoOWR)?* The couple (VOWT, VoWR) would be formally equivalent to the
couple (VoSH, VoSR), except thatwould use the waiting time metrics instead of the headway metrics.
For headway-based transit services, the headway metrics is the most relevant one, howswaysHea
are easieto measure than waiting times. Transit operators control headways, not waitasy*tAnd
congestion is easier to introduce with headways than with waiting times (see section 6).

Differentiating (18) yields #taVoSH and the VoSR:

2 m*
VoSH=%w 7|4 oH" |, B+y ((DH (X)— Dy (x))dx
2 ,UHZ HH JO
(21)
VoSR:(aW+7)Z—:+7M—(ﬂ+7) *

m*
m—+2—ﬂ+7j Dy (x)dx
OH OH OH Jo

In the general case, the relationship between the VoSH and the various modelguarenoetmplex.
Similarly, comparative statics for the VoSR are not straightforward. We dutfmetexponential case:
this allows us to analytically derive the VoSH and the VoSR while providing a amaximation of
real-case data, as we will see for two mass transit lines of the Paris area.

5. Application: the exponential case

From this point on, we assume that headways follow a centered exponential distribution:

™ Interestingly, the ternfuy/2 is similar to the terngxN/s that appears in the equilibrium cost of the bottleneck
model of road congestion.

12 \We thereby extend the work of Fosgerau (2009) by completingihigsis on the value of headway in the case
of deterministic headways to the case of variable headways.

13 Indeed, one can apply the model of Fosgerau and Karlstrom tmskewhere the travel time is the sum of a
constant in-vehicle time and a variable waiting time. Travel time variability would lgrgteam from waiting time
variability, and the various results would still apply using the waitimg distribution instead of the travel time
distribution.

4 To be precise, operators can control waiting times, but indirectly ¢hrbeadways) and not perfectly. For
instance, even if headway regularity is perfect, waiting times rewaiable. It is also likely that users have a
good knowledge of the frequency of the lines they use but no¢ afigtribution of waiting times.



Hi =ty +oph (22)

where h is a random variable with centered exponential law (which has -1 as mumihi As
underlined in subsection13 the condition that headways must be positive implies tissplecification
only makes sense foty < uy.

5.1. Analytical derivation

Two regimes arise in the exponential case (see Appendix and Figure 1 for areimitetpretation). In
the first mode, headway variabilitylow (in relative terms)oy / uy < 1— . The optimal head start and
the minimum cost are:

M = Ky = Met
2 (23)
_ HH _ ~* OH

C*—avTv+(aw+7)ﬂw_7”f7—Cdet+(aw+7)m
In this regime, service reliability is good enough so that individuals do not chheigeléparture time
compared to the deterministic case. The expected travel cost does increase, howenelasf two
concurring phenomena. Headway variability increases the mean waiting time, svhightured by the
termawon?/(2uy). It also leads to greater waiting time variability, hence a greater schedobhg
The termyaHzl(ZﬂH) reflects this second mechanism.

When service reliability is poorf / uy > 1 - ), the system tips over the exponential regime. The
optimal head start and the expected trip cost are:

Nt =puy —oy +onln 10"')
HH —OH +0H (1_’(,”H

=0’ 1 OH 4)
C=o,T,+ + +opy In —
vIv+awiy + 5 20 H (1—/{ij

Individuals respond to the poorer service reliability by adjusting their safetgin. As expected, the
margin increases with the service headway and the service unreliadtityd .y =1—op / uy >0

and dm*/doy =In (o / uy.(B+7)! B)>0.

Figure 2 compares the optimal head start in the deterministic case and foatheseofs . In
the former case, the optimal head start increases linearlynieasuring the relative cost of being late)
For low values of, the head start does not dependsgn Whenx exceeds a certain threshold (itself
decreasing witls), individuals shift to the exponential regime. Agcreases, they increase more and
more their margin to insure themselves against the risk of being late causedviog unreliability.
Whenk tends toward 1, the head start tends towasdSince headways are unbounded for exponential
distributions, insuring oneself against the worst case scenario implies taking an iafetiyengargin.

FIGURE 2 HERE
Figure 2 Influence of headway variability on the head start (exponential gasel)

We can use (23) and (24) to derive the value of service headway ¥@SHe two regimes:
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2 2
VoSH:[ —GH](ZZW+{1—K—O-H j7 it TH < 1,

2 2
" u®)% (25)
2 2
VoSH=| 1- 1 “W+£1_UH] s it TH> 1
U 2 HH 2 HH

As expeced, the VoSH increases with,, £, andy.” The more the user values not waiting or being on
time, the more he enjoys better transit service frequency. Furthermore, the VoSKatewiia /.
Improving service frequency is more beneficial when headway variability is lowlglivesterms.*®

Similarly, we can derive the value of service reliability (VoSR):

VOSRzo-—H(aW+;/) if TH <1,

HH HH (26)
VosR=H g, +| 1-7H 4 In(l "Hj g it THx 1

HH HH 1-x uy HH

Similarly, the VoSR increases with,, , andy. Headway variability increases the mean waiting time,
which explains that the highex,, the more a degradation in service reliability would cost. In addition,
headway irregularity increases waiting time variability. This increases tieglging disutility, hence
the increase witlf andy.17 Unlike the VoSH, the VOSR increases with/uy instead of decreasing.
Thus, there exists a cut-off level above which it is more beneficial to improvieeseeliability than
service frequency (Figure 3).

FIGURE 3 HERE

Figure 3: Influence of service reliability on the VoSH and the VoSR
(exponential cas¢,= 0.8,y = 3,ay = 2)

5.2. Empirical illustration

We use data on observed headways during the morning peak hour to estirhatdthay distribution
of two mass transit lines of the Paris area, the RER A and the RER E. Batgpnuvided by the
railway operator, Transilien, in the case of the RER E, and were collectedegiisigne data available
on the web in the case of the RER A. Both databases provide recordinfier @eriod of 3 months in
2011. For the RER A, headways are measured at the station named Nation, which isolo¢ht=d
eastern frontier of Paris, and for westbound trains. For the RER E, headwaysasured at Bondy,
which is outside of Paris, again for westbound trains.

The RER A is one of the most used transit lines in the world, matle than one million riders
a day. At the morning peak hour, headways are short but the high congestion levek legrapsions,

15 Less intuitive is the fact that, in the exponential regime, the VoSH doespend ory. This property is likely
specific to the exponential distribution, but further investigation woelddzessary to assert this point.

'® This point was not trite considering the example in footnote 5. Waadways are highly irregular, increasing
the mean headway could lead to a better allocation of travelers between traisgbseglently to a decrease of
the expected cost of travel.

In a way symmetric to what happens for the VoSH, the VoSR does not dmpgiial the deterministic regime.
Again, we did not find an easy interpretation of this intriguing resuitich is most surely linked to the
specificities of the exponential distribution.
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leading to irregular headways. Parametric estimation of the headway distrigigids .y = 2.4 and
on = 0.9, the exponential distribution fitting the data remarkably well (Figyte 4a

FIGURE 4 HERE

Figure 4: Density of waiting times during the morning peak hour for westbound passengerg a
randomly at Nation and Bondy stations (Web-sourced data for RER A, Transilien data for RE

The RER E is a newer and less central line than the RER A, with about 300,006rdraezl day.
Frequency is lower than for the RER /(= 7.8), for a similar service reliability{ = 1.0). Again, the
exponential distribution fits the data well, although ksthan for the RER A (Figure 3b

To illustrate our findingswe consider a traveler who has the following preference parameters:
ay =1,a, =2, = 0.8,y = 32 His journey on the RER (A or E) is 10 minutes long. Under these
assumptions, the VoSH is equal to 1.02 and the VoSR tddr.Tde RER A. For the RER E, the values
are 1.27 and 0.64espectively. Judging from the values of the VoSH and the VoSR, itikeily be
more beneficial to improve reliability on the RER A and frequency on the RER E. To confirm thjs point
we simulate in Table 1 the impact of an increase in either frequency or refiahilihe expected travel
cost, which is broken down into three components, in-vehicle time, waiting time and scatheldylas
apparent in equation (14\s expected, the best scenario is “Reliability improvement” for the RER A
and “Frequency improvement” for the RER E . This basic simulation hints that future investments
should focus on improving service reliability on the RER A and increasing frequency of the RER E.

Table 1 Simulation of 2 improvement scenarios for the RER A and the RER E

Expected cost
Scenario In-vehicle Waiting Schedule Total Relative
A OH time time delay decrease
Actual 24 0.9 10 2.74 1.24 13.98 -
RER Frequency
A improvement 16 09 10 2.11 1.15 13.25 5,2%
Reliability
improvement 24 0.1 10 2.40 0.76 13.17 5,8%
Actual 7.8 1 10 7.93 2.66 20.58 -
RER Frequency
E improvement 7 1 10 7.14 2.42 19.57 4,9%
Reliability
improvement 78 02 10 7.81 2.47 20.28 1,5%

18 Regarding the tripletd(,,7), Bates et al. (2001) indicate the ratios 1:0.8:3 as typical from the literature. A ratio
of 2 fora, / a is also standard (Wardman, 2004).

19 Obviously, the investment costs of improving service frequendyrelimbility should also be factored in the
analysis to confirm this point.

12



6. Extension: in-vehicle congestion

Headway has an impact on waiting times, but also on in-vehicle congestion (see 2gctiVhen
headways are irregular, loeigheadways are associated with both longer waiting times and greater
passenger vehicle loadsence a “double punishment” (and vice versa for shorter headways). To take
this effect into account, we amend the model by linking the value of in-vehiclddithe number of
passengertl:

C(t)=auTw +a®(N) Ty + B(t*~t =Ty —T,) +7(t+ T+ Ty —t*)" (27)

where ®(N) representsn-vehicle discomfort and increases with For the sake of exposition,ew
choose a simple specification 1©r.

O(N)=1 if N<N

(N)=1 0 (28)

O(N)=k if N>Ng

If the number of passengers is greater tgrthe vehicle is overcrowded. The value of in-vehicle time
is penalized by a factdr> 1. Otherwise, it retains its former valug

We assume that the rate of new travelers arriving on the platform is constaquanhtbg. All
travelers, our individual included, are impatienteyttboard the first train regardless of congestion
Furthermore, we consider that trains are empty when they arrive at A, whileh departure station.
Under these assumptions, a simple relationship links the passenger vehicle load to the headMay:
We rewrite® as a function oH instead oiN:

{@(H)—l if H<Ho=No/q 29)
©(H)=k if H>Hg

Our individual being impatient, introducing congestion does not change the dfaleparture time
since headways are not time depend®htchanges the expected travel cost, however (note that we still
consider exponential headways):

2
C*:aVTVE((D(HU))+aW,LA\/V+7u;(1—K+UH2J if Z—Hsl—lc
HH H
(30)

2 2
HH —OH 1 CH . OH
C*=o,TLE(O(H + oy "1 4oy In| ———" if —2>1-«
Vv ( ( U)) w. ﬁ[ 21 H (1_,(/”_' ﬂ L

Note that because we take the user point of view, we take the expectadi¢H @f and not of® (H).
Computations give:

2If our individual is patient, the problem is more complex. If the firshtraiarrive is crowded, the individual can
wait for the next train hoping that it will not be crowded. This possibilibdifies the problem of the choice of
departure time, and depending on how much the individual dislikes stiomgehe might increase his safety
margin to insure himself against this eventuality. For the salsamgflicity, we do not consider this possibility.
This model does not include inter-personal variability either, in the sensaltpassengers experience the same
level of congestion while in reality, some passengers are comfortably, iy in overcrowded vehicles.
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E(@(Hu))zk If HOS/JH —O'H
_(H0+O-H_ﬂH

Ho+ j .
oio-He Oy 1f HOZIUH _O-H
HH

(81
E(®(Hy))=1+(k-1)

If Ho <un — oy, all trains are congested. The expected trip cost increases by a cdastapt (T, . If
Ho > uy — oy, only trains with a headway abokk are congested. This model, seemingly simple at first
glance, leads to strong discontinuities whins close tq:y (Figure 5.

WhenH, increases, congestion is less severe, the case with no congestion corredpath@ing
limit caseHy = + . For a fixed headway variabilityy, the travel cost always decreases With The
reverse is not trud, being fixed, the expected travel cost does not always increasewilthere are
two polar cases. IH, > uy, frequency is high enough and no trercongested wheay = 0. In this
“normal regim&, congestion only arises because headway variations can cause headways tHgxceed
In the“degraded reginie(H, < un), all trains are congested when the service is perfectly reliable. The
travel cost jumps froncy, to Caet+(k—1)0!vTv whengy = 0. This time, service unreliability causes

some trains to run with headways shorter tHgiand be uncongested. This explains why the travel cost
may fall whensy increases in the degraded regime (Figyre 5

FIGURE 5 HERE

Figure 5: Influence off, on the expected travel cost curve
(exponential case,, =1,T, =3,ay, =2, #=0.8,y =3, k=2 anduy =1)

We now derive the VoSH and the VoSR to establish these points more firthly,, < un — Ho, all
trains are congested, and the VoSH and VoSR are the same as Ibefgre ., — Ho, the VOoSH and
the VoSR are modified as follows denoting the model with congestion, andithout):

H _(HO+GH_:L[HJ
VOSH, = VoSH, + (k- ])aVTV( O+GH)2(ﬂH _GH)e o
HH OH
(32)
Ho +ow ) (Ho— ) | | 2t |
VOSR; = VOSR, + (k- T, -1 {}( 0 HA 0 H Je %
HH OH

Congestion increases the VoSFbSH. > VoSH, seeing that the second term in (32) is always positive.
In the degraded regime, the VoSH is discontinuous with a spike atuy — Ho (Figure 6). This is the
limit between the “fully degraded” mode (all trains are congested) and the “partly degraded” mode (only

a fraction of them are). From this point on, improving service frequency leagisréoand more trains
being uncongested, hence the surge in the VoSH.

2L We still call VoSH and VoSR the derivatives of the expected cost with respegtdadoy. However, it is
worth noting that these are now different from the willingntessay of travelers for an increase in frequency or
reliability. Indeed, passengers are not likely to take a diminution of stogento account when faced with an
improvement in service frequency or reliability, because congestiontimtninsic to passengers' preferences.
However, the VOoSH or VoSR can still be used to assess the socio-economéquemtes of a change in
operations.
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Contrary to VoS VoSR. can be lower than VoSRn the degraded regime. In (32), the term
1+(HO+GH)(HO_ﬂH)/gH2 is positive in the normal regiméd{ > uy), but negative in the degraded

mode when o, G[ﬂH “Hg ?1/2(ﬂH —Ho+[(ur —Ho) (1t + 340))] On this interval, increasing

headway variability reduces the number of congested trains, which causes the travel cost to fall.

Headway variabity entails a “double punishment” in the normal regime. Travel time variability
increases, raising the mean schedule delay cost, and some trains get overcrowdedireligioiity
is less detrimental in the degraded mode: it still raises schedule delay lmgstewers the mean
congestion cost by reducing the number of overcrowded trains. These results stem from the properties of
the congestion function presented in equation (28): because it is a steprfuitatioes not increase
gradually and convexly with the number of passengers. In particular, in thalmegime, it is convex
arounduy, but in the degraded regime it is concave arQU,nEi2 If the congestion function was convex,
headway variability would always raise the mean congestion cost, and converselycémcave
function®

FIGURE 6 HERE

Figure 6: Influence of congestion intendity on the VoSH
(exponential case,, =1, T, =3,ay =2, £=0.8,y=3,k=2 anduy = 1)

FIGURE 7 HERE

Figure 7: Influence of congestion intendityon the VoSR
(exponential case,, =1,T, =3,ay, =2, #=0.8,y =3, k=2 anduy =1)

7. Conclusion

Service frequency and reliability impact the travel cost of transit usergyththtee channels: waiting
time, schedule delay and congestion. Transit users behave strategically and adjust theie diepauin
order to minimize these costs. The safety margin, which represents the ticeteall to waiting,
decreases with service reliability, as expectedndteases with service headway, except for specific
distributions of headways.

The values of service headway (VoSH) and service reliability (VoS#sure the marginal
effect on the expected travel cost of a change in the mean and in the standard deviegamwalys,
respectively. They complete the values of in-vehicle time and in-vehiclevanebility by capturing
the influence that headways leawn waiting times and congestion. Furthermore, they can easily be
computed: they relate to the distribution of headways, which are easily measured uniiigetin@es or
total travel times. This makes the VoSH and the VoSR well suitetidardonomic appraisal of public
transport projects.

In the case of exponentially distributed headways with no congestion, we showetWaiSH is
actually not constant and decreases with service reliability. Converselyp8#® increases with the

%2 To be specific, equation (29) implies that the congestion functionieatizg,(@(HU ))2®(ﬂH) for Ho > un
(normal regime) and E(@(HU )) <O(uy) for Ho < uy (degraded regime).

Z gimilarly, it is likely that were travelers to be patient (meaning that ctingest one instant can spill over to
various departures), the mean congestion cost would be more regular @ddaiways increase with headway
variability. We could not confirm this point, however.
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reliability level. The relative values of the VOSR and the VoSR can help quidstments aiming to
improve the quality of service towards either frequency or reliability improvements.

The analysis is subject to a certain number of caveats. First and foremgtjdle travel time
variability is not modeled. The extent to which modeling the variability of both headways-agldicle
times would change our findings should be investigated by future research. Theoaxteesngestion
could be refined further and take into account the fact that travelers may waait for the next train
in case of heavy congestigim which case the phenomenon of “bunching” should also be represented).
Last the extent to which our results depend on the choi¢e,8fy) scheduling preferences has also to
be established.
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Appendix A. Mathematical appendix

A.1  Optimal head start

For reminder, the optimal head start solves:

y (A.1)
O, (M*)=———=x

w(m®) B+y
We start by showingnt >my. Whenaoy = 0, the p.d.f. of waiting times IS8y det (X) =1/ pq for

xe[0,uq]- As 1—2()‘)3%, we haveg,(X) < @y, get (X) and thusd,, (X) <Dy 4 (X) VXeR.

Considering thatDW(m* ) =Dy dat (rﬁjet ) =i, M >Ny follows.

We then compute the derivativesngf with respect taey, andoy. Rewrited,,(m*) as:

1- Dy (X) rr’fl_q)h(x_ﬂHj
Ly m 1y (X o

D,y (m* =J- xdx:j - HY dx:j H_/ dx
w(m) 0 Aw(X) 0 HH 0 HH

(A.1) is therefore equivalent to:

m* _
I 1—q>h(x HH jdx:mH (A.2)
0 OH

Differentiating (A.2) with respect to, yields:

dm* {1_®h(m —HH ﬂ-{q)h(m* —HH j_q)h(_ﬂ_Hﬂ:K
dun OH OH OH

The assumption of positive headways implyDg( -, / oy ) =@ (0)=0, we have:
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dmt _ K= Py (M¥) _ @y (m*) -0y (M*)
d,LlH 1—CDH (m*) l—(DH (m*) (A.3)

Sincex < 1,dm*/duy < 1 follows. The denominator being strictly positive, the sigdrof /duy is the
same as for the numerator. The sign®gf— ®y depends on the shape of the headway distribution.
While in most cases, including the deterministic and exponential,chges) > ®y(X), the opposite
can occur for fat-tailed distributions (an example is available from the authors upon request).

Differentiating (A.2) with respect tey yields:

nm*
dm* 1 _ X—HH HH _
doy, [1 Dy (m*)]+jo o > goh( o jdX—O

Integrating by parts gives:

= (m” 1_Hq£:]()_*’; MHJ (A.4)

dO'H GH

Using > 0 andm’ > myg = sy >0, We haveﬂ>(1 x)H HH m>o_
dony oy 1- Dy (m*)

A.2  VoSH and VoSR
Using (5) and (8), we rewrite (18) as:

nm* _
C*:avTv+(aw+7)ﬂw_(ﬁ+7)J Ly El @ (X A Ddx (A.5)

0 OH
We derive the VoSH:

2 "
Cwt7|1_O%H dm* nr B+y ™M
VoSH=-"W 1- —(p+ -y (m*))+ £ X X)— X)) dx
2 { /IHZJ # y)d/”H My sy U PH (M) 4y Jo (w(X) =1 (x))

2
<:>VoSH=aW2+7[1—Z:2J—(7—(ﬁ+7)(DH (m*))uH ﬂ#Hym*[/c Dy (M*) ]

,34;7 .[Om*(q)H (X)— @y, (x))dx

This simplifies to:

2 ok
_owtY| ., OH B+y M _
VOoSH= > (1 IUHZ}-F i o ((DH (X) q)W(X))dX (AB)

We now derive the VoSR:

me oy
VOSR=(aiy +7) 7 ~(+7) 41T (1- 0, (m*))_ﬁujjo R gy ()
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< VOSR=(ay+7) Z: —'30;7 Z: [m*(l—cpH (Mm*))+ Py (m*)_K)]

Py (M ) o By (o
HH OH (M) HHOH JO ( )

(1= 211w (X)) dx

Integrating by parts the last term and simplifying yields:

oy ., My —M* m* o, B+y [™
VOSR=(a,, + + —(B+y)——+2—~ ®d,, (x)dx (A.7)
(awty) oty =g = (Brr) g 270 2| Pw(X)
A.3  Exponential case
In the exponential case, according to (11) we have:
1
X)=— for Ox < -o
§0w( ) L HH H
_(X+O-H _#Hj
1 o
X)=—g H for x> -0
QDW( ) L HH H
Computation gives:
CDW(X):L forO< X< uy —on
Hy
_(Xw—ﬂ) (A.8)
D, (x)=1-ZHel for x> upy — oy

M

We seek to solveb,, (m*)=x. Two regimes naturally emerge depending on whetifeis greater or
lower thanuy — oy.

Assumem* < uy — oy. (A.8) givesn* = xuy . We rewrite the conditiom® < uy — oy as
Ky < up — oy » henceg, <(1-x) payy - The minimum expected trip cdst

m* %2
cr=ayly +(aw+7)ﬂw_(ﬂ+7)jo Xy (X) dx = ey T, "'(“w‘*‘?/)ﬂw_(ﬂ"‘?/) SLH
Usingm* = xun anduw=(yH2+oH 2)/2ﬂH yields:
y* i o’
It is now easy to derive the values of service headway and reliability:
2 2 2
_ocx _awtr|, ow®|_ 2 1 [, ontlew [ B _on’ly
VoSH_aﬂ == 1 2| By 2" 1 5 2+,3+;/ 5 1%
H
HH HH HH (A.10)

oc* oH
VoSR==—=—=(ay+7)—
don (o y)ﬂH
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The second mode corresponds to the o#se 1y — o, which is equivalent tes > (1-«) 44 - Again,

using (A.8) gives:

(m*+0'H—,uH] (m*+O'H—,qu
oY . o, _ 7Y B HH Oy — (ﬂJr}/O'H]
1-—"e = T —e o= —oy +oyIn —
i By Bty on HRZORTORT T8y
The minimum expected trip cost is given by:
00
C*:aVTV+(aW—,B)yW+(ﬂ+7)J.mk X (X)X
< Cr =y Ty +(a—B) thy + B(NT +o1)
o Cr T+ | BT .n(MG_Hj
viv T CwhHw 2uy H B uy
We can use this last formulation to derive the VoSH and VoSR:
2 2
VoSH=| 1-ZH_ m{l_o’_H) B
ma®) 2 Ha ) 2
(A.12)

OH OH 1 OH
VoSR=—"¢,, +| 1- +
puy [ HH r{1—’<ﬂH Dﬂ
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