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Abstract

Wildlife is exposed to natural (e.g., food availability and quality, parasitism) and anthropogenic stressors (e.g., habitat
fragmentation, toxicants). Individual variables (e.g., age, gender) affect behaviour and physiology of animals. Together,
these parameters can create both great inter-individual variations in health indicators and interpretation difficulties. We
investigated the relevance of body condition and somatic indices (liver, kidneys) as indicators of health status in wood mice
(Apodemus sylvaticus, n= 560) captured along a metal pollution gradient in four landscape types (30 sampling squares 500-
m sided). The indices were calculated using a recently proposed standard major axis regression instead of an ordinary least
square regression. After considering age and gender for the body condition index, no landscape type influence was
detected in the indices. However, important index variability was observed between sampling squares; this effect was
included as a random effect in linear models. After integrating all individual and environmental variables that may affect the
indices, cadmium (Cd) concentrations in both the liver and kidneys were negatively related to body condition and liver
indices only for individuals from highly contaminated sites. Lead in the liver was negatively related to the liver index, and Cd
in kidneys was positively linked to the kidney index, potentially suggesting metal-induced stress. However, interpretation of
these indices as a wildlife ecotoxicology tool should be performed with caution due to the sensitivity of potentially
confounding variables (e.g., individual factors and environmental parameters).
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Introduction

A wide range of morphological, biochemical, and physiological

metrics have been developed as health indices [1]. Body condition

is commonly defined as a measure of the energetic or nutritional

state of an animal [2,3]. Calculations and interpretation of body

condition indices (BCI), which are often based on the relationship

between body mass and length measurements, are highly debated,

and BCI have been found to correlate with fitness parameters

related to reproduction and survival in mammals and other taxa

[4]. Individual quality, defined as an estimate of individual fitness,

has been estimated by using somatic indices, i.e., the relative size

of internal organs [5]. For instance, liver size and pancreas size

have been shown to correspond to low quality foraging in

herbivorous mammals [5].

Among the numerous markers developed to assess deleterious

effects of trace metals (TMs) in wild small mammals, body

condition and somatic indices have sometimes been used, with

inconsistent results. For instance, Sanchez-Chardi et al. [6]

observed that the body condition index and the relative liver

weight (i.e., tissue weight divided by body weight) tended to

decrease in adult wood mice, Apodemus sylvaticus, from a landfill site,

while the relative kidney weight increased [6]. In the same site, no

difference of morphological parameters (both body condition and

somatic indices) was found in the greater white-toothed shrew,

Crocidura russula [7]. Nunes et al. [8] found that body length was

higher in Mus spretus mice from a reference site compared to mice

inhabiting a metal-contaminated area. Body weight and BCI were

influenced by both gender and reproductive activity, but not by

the level of pollution. However, kidney and spleen relative weights

were larger in the reference site [8].

These various studies may have suffered from several limitations

that potentially explain these discrepancies. First, the sample sizes

were relatively low (52, n individuals ,147) considering that

multiple variables (gender, age, site, etc.) may impact BCI and

somatic indices. Moreover, the calculations of BCI and somatic

indices did not consider the variation in the relationship between

mass and length as body size changes and growth occurs

(allometry), which was recently noted as a potentially misleading

bias [9,10]. In these studies [9,10], the authors proposed a new

index calculation using a standard major axis (SMA) regression

instead of the commonly used ordinary least square regression.

Scaled mass index (SMI, defined as body condition index

calculated following the SMA procedure) was shown to be a

better indicator of the relative size of energy reserves and other

body components compared with ordinary least square residuals

[9,10]. Finally, in the comparison of individuals from only one

contaminated versus one reference area, site characteristics and

confounding variables such as variations in resources availability
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and habitat or landscape features might influence the relationship

between BCI/somatic indices and contamination, even though

most contaminated and control study sites were selected for similar

vegetation and climate conditions.

In this context, the aim of this work was to study the

relationships between scaled mass index and somatic indices and

concentrations of TMs in the tissues of wood mice from 30

sampling sites surrounding a large-scale smelter-impacted area in

Metaleurop Nord, northern France. A large sampling effort was

needed to simultaneously study the influence of several variables in

a sufficient sample size. These variables include individual

characteristics (age and gender) as well as metal concentrations

in the soil and in two organs: the liver and kidneys. Landscape type

has been shown to influence small mammal population dynamics

and community composition, structure and dynamics [11–15];

thus, this variable was included in the models to test the potential

modulation of body condition or somatic indices.

Materials and Methods

Study Site
Fieldwork was conducted around the former lead (Pb) and zinc

(Zn) Metaleurop Nord smelter (Noyelles-Godault, Nord-Pas-de-

Calais, northern France, 50u25942 N 3u00955 E). The study area,

spanning 40 km2 (Figure 1) around the former smelter, was

divided into 160 squares of 5006500 m that constituted our

sampling units. Smelting activity for more than 100 years has

caused dramatic pollution in this area by three main TMs:

cadmium (Cd), Pb, and Zn [11,16]. To evaluate the concentration

of TMs in the soil (0–25 cm depth), a composite soil sample (15

points in homogeneous woody patch) was taken in one to ten

woody patches (for instance, hedgerows, tree plantations, copses,

or woodlots) in each square during the autumn of 2006. Soil metal

levels in the soil site ranged from 0.1 to 2,402 mg/g of dry matter

(DM) for Cd, from 16 to 41,960 mg/g DM for Pb, and from 44 to

38,760 mg/g DM for Zn [11]. Three levels of soil contamination,

defined as ‘‘light’’ (median [Cd] #5 mg/g DM soil and median

[Pb] #300 mg/g DM soil), ‘‘moderate’’ (5, median [Cd]

#10 mg/g DM soil and/or 300, median [Pb] #600 mg/g DM

soil), and ‘‘high’’ (median [Cd] .10 mg/g DM soil or median [Pb]

.600 DM mg/g soil), were allocated to each square. For graphical

representation (Figure 2a to d), the ‘‘highly polluted’’ class was

subdivided into two classes of contamination, ‘‘highly polluted’’

(10# [Cd]soil $20 mg/g DM soil) and ‘‘extremely polluted’’ (20#

[Cd]soil $70 mg/g DM soil).

A land use analysis was performed to determine the landscape

composition of each square [17]. According to their dominant

land cover, seven types of landscapes were identified throughout

the area: urban area, shrubland, mixed urban/agricultural land,

agricultural land, woodland, mixed woodland/grassland, and the

Metaleurop former smelter (Figure 1). Only the four landscape

types mainly represented in the area (dominated by agricultural

land, urban areas, woodland, and shrubland) were studied here.

Small Mammals Sampling
During the autumn of 2006, small mammals were trapped in 30

squares selected from among the 160 squares of the grid to obtain

several sampling square replicates for each pollution level in each

landscape type (Figure 1, Table 1). Sampling was performed in the

woody patches, where soil concentrations have been previously

measured. In each sampling square, 10 lines of 10 3 m-spaced

break-back traps were set. In 3 squares, the available areas of

woody patches were insufficient to place 10 trap-lines; thus, the

number of lines was reduced to 6–7 in these squares. The 290

trap-lines were checked every morning for three consecutive days

and re-set/re-baited if needed. The sampling effort consisted of

2900, 580, 2610, and 2610 trap-nights in the ‘agricultural land’,

‘shrubland’, ‘urban’, and ‘woodland’ landscape types (surrounding

the woody patches where animals were trapped), respectively. The

percentage of captures, hereafter referred to as ‘‘capture success’’,

was calculated as the number of individuals trapped per 100 trap-

nights. Sampling authorisation was given by the Direction Régionale

de l’Environnement, de l’Aménagement et du Logement (DREAL) of Nord –

Pas-de-Calais. Captured animals were frozen following capture

and stored at 220uC until dissection.

Animal Preparation and Morphometric Measurements
Animals were thawed, identified to specific levels based on

morphometrics and skull and teeth characteristics [18,19],

weighed, measured, dissected, sexed, and aged. The wood mouse,

Apodemus sylvaticus, whose biomass largely dominates the commu-

nity [20], is the only species studied in this work. Liver and kidneys

were weighed. The age of rodents was estimated by measuring

their crystalline dry weight (following Quéré and Vincent [21]).

Because body length measurement was problematical (heads

were cut off prior to dissection), the left foot length was measured.

Measurements were performed from the heel to the central claw,

to the nearest 0.01 mm. However, the body length of small

animals is considered to be a more suitable measure of structural

length than foot length and is preferred for SMI computation [9].

The body length was predicted from the foot length using a linear

model based on wood mice captured during another sampling

session (autumn 2010) conducted in the same study site. Body and

foot lengths were measured in 192 individuals following the

exclusion of females showing reproductive traits and of individuals

partially eaten in the traps. Body length was predicted using a

linear model including ‘‘foot length’’, ‘‘age’’, ‘‘gender’’, and

interactions between foot length, age, foot length, and gender as

independent variables (Pearson r2=0.83, p,0.001). Body lengths

of individuals captured in 2006, referred to as ‘‘body length’’

hereafter, were predicted from their foot lengths with the equation

of the model described above.

The entire body (body and head) was weighed (to the nearest

0.01 g); after dissection, the digestive tract was subtracted prior to

the calculation of the indices. Females showing reproductive traits

(pregnancy or lactation) were excluded from the dataset to avoid

biases in weight estimation due to physiology.

Measure of TM Concentrations in Tissues
Metal concentrations (Cd, Pb) were measured in the liver and

kidneys by furnace atomic absorption spectrometry (AAS,

VARIAN 240Z) and expressed as mg/g dry mass (DM). Samples

were digested with nitric acid (5 mL HNO3, 65%, Carlo-Erba,

analytical quality) in a drying oven (65uC) during 72 h. After

digestion, samples were diluted by adding 20 mL ultra-pure water

(Elga, 18.2 MV/cm2). Blanks (acid+water) and certified reference

materials (CRM: TORT-2, lobster hepatopancreas, and DOLT-3,

dogfish liver, from the National Research Council Canada) were

prepared and analysed with the samples. Duplicates were

performed for each analysis and repeated if the RSD was above

5%. Average CRM recoveries were calculated at 98628% for Pb

and 100617% for Cd. Lead and Cd detection limits in organs

were 0.24 mg/g DM and 0.01 mg/g DM for the liver, and

1.03 mg/g DM and 0.04 mg/g DM for kidneys, respectively. When

a concentration value was under the detection limit, half of the

detection limit value was used for statistical analyses.

The percentage of individuals considered at risk for metal-

induced stress was estimated according to the thresholds proposed

Body Condition Somatic Indices Metal Wild Mammals
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by Shore and Douben [22,23] as follows: number of individuals

with Cd or Pb internal concentrations.thresholds6100)/total

number of individuals (Table 2).

Indices Calculations and Statistical Analyses
Potential differences in population structure (sex ratio and mean

age differences as estimated by crystalline lens mass) between

pollution levels and landscapes were checked using x2 tests for the

sex ratio and a Fisher test for age.

Relationships between TM concentrations (log10-transformed)

in soils and organs were studied using a Pearson correlation test

after graphically checking the normality of residuals of linear

models and the variance homoscedasticity.

Body condition and somatic indices were calculated for 653

individuals out of the 859 individuals sampled after the

suppression of partially eaten individuals and pregnant or lactating

females [3]. Body condition was estimated using the method

proposed by Peig and Green [9,10] based on a standardised

regression axis (SMA) instead of an ordinary least squares (OLS)

regression between individuals. The SMI standardises body mass

at a fixed value of a linear body measurement based on the scaling

relationship between mass and length according to the equation

SMI=mi(L0/Li)
bSMA, where mi and Li are the body mass and the

linear body measurement of an individual i, respectively; bSMA is

the scaling exponent estimated by the SMA regression of lnM on

lnL; L0 is an arbitrary value of L (e.g., arithmetic mean value for

the study population); and SMI is the predicted body mass for

individual i when the linear body measure is standardised to L0
[9,10]. For the purpose of homogeneity, somatic indices were built

using an SMA regression. Somatic indices will hereafter be

referred to as the scaled liver index (SLI, for the somatic index of

the liver) and the scaled kidney index (SKI, for the somatic index

of kidneys). In this study, the values of bSMA were 3.14, 1.40, and

0.45 for SMI, SLI, and SKI, respectively. The bSMA value for SMI

slightly varied among sites: 3.50 for individuals from weakly

Figure 1. Study site localisation, Cd contamination (mg/g DM) in soils and landscape types. Study site located around the former
Metaleurop Nord smelter (Nord-Pas de Calais, France); maps present the landscape types in each square and the Cd concentrations in the study area
soils. Selected squares for wood mice sampling are bolded in both maps.
doi:10.1371/journal.pone.0066399.g001
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polluted sites, 2.99 for moderately polluted sites and 3.06 for

highly polluted sites; however, those differences were not

significant (p.0.050). Although Peig and Green [10] suggested

using only data from uncontaminated sites to estimate the bSMA for

the scaled mass index, the entire population bSMA value was used

in the present study because bSMA did not differ among sites. In the

literature, the bSMA value for SMI lies within the range of 2.5–3.2,

which is estimated to be a guideline to identify reliable estimates of

the allometric exponent in mammals [9,10]. The same authors

found a value of 2.71 (95% confidence interval: 2.43–2.99) for 97

wood mice individuals captured in an unpolluted site in

northeastern Spain. The estimated bSMA in both organs was

remarkably constant along the pollution gradient (from 1.31 to

1.40 for SLI, and from 0.44 to 0.48 for the SKI). No comparable

value of ontogenetic allometric exponents for the liver and kidneys

was found in the literature. Correlations between SMI, SLI, and

SKI were studied using a Pearson correlation test.

Linear mixed models were used to analyse the relationship

between SMI or somatic indices and predictor variables. The

spatial dependence of body condition and somatic indices was

studied by computing omnidirectional empirical variograms with

variographic envelops obtained by permutation (99 simulations,

Monte-Carlo method [24]). None of the variograms showed a

spatial structure, and no significant spatial auto-correlation was

detected. Therefore, spatial correlation structures were not

included in further models. Individuals from the same sampling

square were assumed to be exposed to the same environmental

constraints acting on indices, and the indices were highly variable

between sampling squares; therefore, a variable ‘‘sampling square’’

was included as a random effect in the models. Even though the

SMA regression used to calculate the indices is supposed to

consider allometry, age and gender were still included in the

models. Age, gender, landscape, and TM concentrations in organs

and soil were included in the models as fixed predictor variables

using the following procedure: age and gender were first

considered in the models as single and second order interaction

terms. The effect of age on indices was tested as a linear

relationship to indices throughout life and as a polynomial

function of degree 2 (increasing until adulthood and then

decreasing for oldest ages). Finally, TM concentrations in organs,

as well as their second order interactions with age, gender,

landscape, and TM concentrations in soil, were included in the

models. Random and fixed effects were tested with a likelihood

ratio test (LRT, p,0.050). Fixed effects residuals of the final

models were graphically checked for normality and variance

homoscedasticity. The likelihood ratio R2 [25] was calculated to

determine which part of the index variability was due to fixed

effects. The proportion of random effects variance (hereafter

referred to as V2) explained by the sampling square was estimated

to evaluate the individual index variability between sampling

squares.

All statistical analyses were performed with R 2.15.1 software

with the additional libraries ‘‘lmmfit’’, ‘‘lmodel2’’, ‘‘nlme’’, and

‘‘pgirmess’’ [26].

Results

Sample Size and Wood Mice Population Structure
During the field session, 859 wood mice were trapped. Although

the global population was slightly dominated by males (54%), no

difference in sex ratios was observed in different landscape types

(x2=4.5, ddl = 3, p=0.210) or contamination levels (x2=0.25,

ddl = 2, p=0.882). The capture success was 9.4% (n=274), 11.7%

(n = 68), 5.6% (n=147) and 14.2% (n=370) in the landscape types

of agricultural land, shrubland, urban area, and woodland,

respectively. Capture success differed between landscape types

(x2=109.9, ddl = 3, p,0.001); fewer wood mice were captured in

urban landscapes than in woodland landscapes. Capture success

differed along the soil pollution gradient; success was higher in

squares considered to be highly polluted than in moderately and

lightly polluted squares (x2=55.1, ddl = 2, p,0.001). Mean age

differences (estimated by crystalline lens mass) were observed along

the contamination gradient (p=0.009); individuals from the

moderately polluted site had a lower average age than in the

other sites. Mean age differed between the four landscape types

(p,0.001). On average, captured individuals were younger in

agricultural and urban areas than in the two other landscape types.

Figure 2. Predicted relationships between indices and metal concentrations in organs (mg/g DM). Predictions between indices and TM
concentrations are performed on wood mice from the former Metaleurop Nord smelter; (a) between SMI and [Cd]liver; (b) between SMI and [Cd]kidneys;
(c) between SLI and [Cd]liver; (d) between SLI and [Cd]kidneys; (e) between SLI and [Pb]liver; and (f) between SKI and [Cd]kidneys. For all figures, the age of
individuals was fixed (7 mg of crystalline lens mass, which corresponds to adulthood). For graphical representation, the ‘‘highly polluted’’ class was
subdivided into two classes of contamination, ‘‘highly polluted’’ (10# [Cd]soil $20 mg/g DM) and ‘‘extremely polluted’’ (20# [Cd]soil $70 mg/g DM) in
figures (a) to (d). For figures (a) and (b), predicted relationships are shown only for males. For figures (a) to (d), relationships between indices and TM
concentrations are represented at different levels of soil contamination (lightly, moderately, highly and extremely polluted). Because interactions
between concentrations in organs and soil were not significant in figures (e) and (f), predicted relationships are drawn for all contaminations levels.
doi:10.1371/journal.pone.0066399.g002

Table 1. Pollution level, median Cd and Pb soil concentrations (mg/g DM), and the number of sampling squares for each landscape
type studied.

Landscape type

Agricultural lands Shrublands Urban areas Woodlands

Pollution level + ++ +++ + ++ +++ + ++ +++ + ++ +++

Number of sampling
squares

3 4 5 0 0 2 1 2 3 6 2 2

Median [Cd]soil (mg/g) 3.7 5.3 13.8 54.1 3.9 4.8 16.3 1.5 8.3 10.1

Median [Pb]soil (mg/g) 189 337 710 1851 259 313 1392 179 548 416

doi:10.1371/journal.pone.0066399.t001
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Accumulation of TMs in Wood Mice
Due to technical and time constraints, 560 individuals out of the

859 were randomly chosen for TM concentration measurements

in organs. The concentrations of Cd and Pb measured in the liver

and kidneys showed a high variability along the pollution gradient;

the values ranged from 0.01 to 332 mg/g DM for Cd and from

0.06 to 1,282 mg/g DM for Pb (Table 2). Cadmium and Pb

concentrations were positively correlated between the liver and

kidneys (respectively, r = 0.77 for Cd, and r = 0.78 for Pb,

p,0.001). Average Cd and Pb concentrations were 2.4 and 12

times higher, respectively, in kidneys than in the liver. Organ

concentrations of Cd and Pb increased with increasing TM soil

concentrations (rCdkidneys=0.24, p,0.001; rCdliver=0.14,

p=0.001; rPbkidneys=0.53, p,0.001; rPbliver=0.50, p,0.001).

The percentage of individuals at risk for metal-induced stress

increased along the contamination gradient (Table 2) and ranged

from 0 to 3.3% in lightly polluted squares, 0.6 to 9% in moderately

polluted squares, and 1.5 to 24% in most polluted squares. The

percentage of individuals at risk for metal-induced adverse effects

was largely influenced by high Pb concentrations in kidneys.

Influence of Individual and Environmental Factors on
Body Condition and Somatic Indices
The SMI varied negatively with the age of wood mice (0.15,

R2
age ,0.17, p,0.001, Table 3) and did not have a better fit with

a polynomial relationship than with a linear one (LRT, p=0.063).

SMI for males were slightly higher than for females (mean SMI

adjusted on age: females =20.49, males = 0.06; p = 0.035). The

SMI decrease with age was sharper for females than for males

(p,0.001). Landscape type did not influence the SMI (p=0.066).

After considering age, gender, and their second order interaction,

the interaction between TMs in soil and TMs in organs was

included in the models. The relationship between SMI and hepatic

Cd concentrations varied depending on soil pollution, and a

significant second order interaction existed between Cd concen-

trations in the liver and soil (R2
[Cdsoil]:[Cdliver]=0.05, p,0.050).

SMI increased with Cd concentrations in the liver for animals

sampled in lightly and moderately polluted sites ([Cd]soil #10 mg/

g DM) and decreased for the most polluted sites (mean [Cd]soil
.10 mg/g DM; Figure 2a, Table 3). The same pattern was

observed for the relationship between SMI and renal Cd

concentration (R2
[Cdsoil]:[Cdkidneys]=0.06, p,0.050; Figure 2b,

Table 3); the SMI of specimens from extremely contaminated

sites decreased. Organ Pb concentrations were not related to SMI

or their interaction with Pb soil concentrations. In all selected

models, the proportion of random effects variance explained by

the sampling square was large (0.36 to 0.41), showing a high

individual SMI variability between sampling squares.

The SLI was positively related to age (0.04, R2
age ,0.13,

0.001,p,0.002), but no gender-related differences were detected.

The landscape did not significantly influence SLI. After consid-

ering the effect of age, the same pattern described above for SMI

was observed for the SLI. SLI and interactions between Cd liver

and Cd soil and between Cd kidneys and Cd soil were significant

(respectively, R2
[Cdsoil]:[Cdliver]=0.04, p=0.004 and R2

[Cdsoil]:[Cd-

kidneys =0.10, p,0.010; Figure 2c and 2d, Table 3). SLI decreased

with Pb concentrations in the liver regardless of Pb concentrations

in soil (Figure 2e, Table 3). Finally, neither Pb concentration in

kidneys nor its interaction with Pb concentration in the soil was

related to SLI.

The SKI was positively influenced by age (0.25, R2
age ,0.27,

p,0.001), indicating that older wood mice had heavier relative

kidney mass than young ones. None of the tested predictor

variables and second order interactions were related to SKI for Cd
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concentrations in the liver or Pb concentrations in the liver and

kidneys. However, SKI increased with Cd concentrations in

kidneys (Figure 2f, Table 3).

Landscape types and second order interactions between TM

concentrations in organs and age or gender were not related to the

studied indices.

SMI, SLI, and SKI all positively correlated with each other

(rSMI/SLI=0.30, p,0.001; rSMI/SKI=0.30, p,0.001; rSLI/

SKI=0.61, p,0.001).

Discussion

Influence of Individual Variables on Body Condition and
Somatic Indices: Methodological Considerations
Body condition and somatic indices are a much debated issue in

ecology [2,4,9,10]. Calculation methods and interpretations of

these indices are subjects of numerous discussions, including those

on conceptual (relationships between indices and fitness) and

applied (for instance, the use of BCI as useful non-lethal tools for

wildlife and conservation studies) issues. In the ecotoxicology of

wild small mammals, such indices have been scarcely used and

have given inconsistent, if not contradictory, results. In the present

work, we calculated the indices using the SMA method that has

been shown to represent a better indicator of the relative size of

energy reserves and other body components than the ordinary

least square residuals, which was the most widely accepted

calculation of condition indices until recently [9,10]. To enable

meaningful comparison between individuals, this method of

calculation of condition indices should remove the effects of

ontogenetic growth (age) on the relationship between size and

mass through standardisation [10]. Similarly, if males and females

of a species exhibit a similar body shape, then differences in body

condition indices between genders should not occur, even in the

case of size dimorphism [10]. Contrary to the expected result of

this new calculation, all the indices were influenced by age, and

SMI was additionally influenced by gender. If the relationships of

indices to age or gender are not due to experimental inaccuracies

(e.g., measurements errors or prediction of body length from foot

length), then the use of SMA models to consider allometric effects

is insufficient to fully consider age- and gender-related patterns of

mass/length relationships. It is reasonable to keep age and gender

variables in models in an attempt to relate the indices, even

‘‘scaled mass’’ ones, to environmental variables of interest such as

landscape and TM concentrations in the liver, kidneys and soil in

the present case.

Influence of Environmental Characteristics on the Indices
Our results showed that landscape type did not have a

significant influence on SMI and somatic indices. To our

knowledge, data considering the effect of landscape and/or

habitat on body condition and somatic indices are scarce. The

only relevant study we found is Tattersall et al. [27]: after cessation

of breeding, male wood mice trapped in two sampling sites with

the same characteristics had significant differences in body weight.

The wood mice were significantly heavier in woodlands than along

crop boundaries. In Peromyscus leucopus, an American species

ecologically equivalent to A. sylvaticus, body condition (assessed as

the proportion of body mass to body size) was influenced by

habitat succession induced by the use of herbicide and/or burning,

with better conditions in artificially induced early successional

habitats [28]. The authors suggest that an overall improvement in

the nutritional quality of habitats might be involved rather than an

increase of quantity of food, and the authors notice that an

interaction with season often influences the effect of habitat on

body condition and body mass. To our knowledge, SLI and SKI

variations have not been studied in relation to landscape. Some

studies, however, have used food quality or multiannual popula-

tion cycle phases in the wild to investigate the indirect effects of

habitat on somatic indices. For instance, Klemola et al. [29] tested

the hypothesis of Seldal et al. [30], which states that chemical

(proteinase inhibitors) plant defence induced by intensive grazing

may cause cyclic fluctuations in the densities of small mammals

and other herbivores. For this purpose, these authors studied the

size of internal organs (pancreas and liver) as an indicator of

nutritional state. These authors, however, did not observe obvious

Table 3. Model outputs presenting partial RLR
2 and p-values in brackets (F-statistics) for each variable and for the entire model.

TMs

variable Age Gender [TM]soil [TM]organ Age:gender

[TM]soil:

[TM]organ

RLR
2

(fixed

effects)

V2

(random

effects)

SMI Cd liver 0.15 (p,0.001) 0.01 (p=0.030) 0.02 (p=0.028) 0.00 (p=0.197) 0.05 (p,0.001) 0.03 (p = 0.005) 0.26 0.38

Cd kidneys 0.15 (p,0.001) 0.01 (p=0.027) 0.02 (p=0.005) 0.02 (p=0.004) 0.05 (p,0.001) 0.02 (p=0.011) 0.28 0.36

Pb liver 0.17 (p,0.001) 0.02 (p=0.035) NS NS 0.06 (p,0.001) NS 0.25 0.41

Pb kidneys 0.17 (p,0.001) 0.02 (p=0.035) NS NS 0.06 (p,0.001) NS 0.25 0.41

SLI Cd liver 0.05 (p=0.001) NS 0.00 (p=0.170) 0.00 (p=0.989) NS 0.04 (p=0.004) 0.11 0.32

Cd kidneys 0.04 (p=0.001) NS 0.00 (p=0.563) 0.07 (p,0.001) NS 0.03 (p=0.004) 0.14 0.30

Pb liver 0.07 (p=0.002) NS NS 0.05 (p=0.008) NS NS 0.13 0.37

Pb kidneys 0.13 (p=0.002) NS NS NS NS NS 0.13 0.35

SKI Cd liver 0.27 (p,0.001) NS NS NS NS NS 0.27 0.34

Cd kidneys 0.25 (p,0.001) NS NS 0.01 (p=0.023) NS NS 0.26 0.33

Pb liver 0.27 (p,0.001) NS NS NS NS NS 0.27 0.34

Pb kidneys 0.27 (p,0.001) NS NS NS NS NS 0.27 0.34

Models were constructed as follows: Index ,

age+gender+[TM]soil+landscape+[TM]organ+age:gender+age:[TM]organ+gender:[TM]organ+[TM]soil:[TM]organ+landscape:[TM]organ. Because landscape and two-
way interactions between [TMs] in organs and age or gender were not significantly related to the studied indices in all tested models (LRT, p.0.050), these variables
were not included in the table. When a two-way interaction was significant, all terms (even not significant ones) included in this interaction are presented in the table.
doi:10.1371/journal.pone.0066399.t003
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differences in the relative size of organs related to cycle phase [29].

Nonetheless, laboratory studies have found that the quality of food

might lead to organ hypertrophy or hypotrophy. Harju and

Tahvanainen [31] showed that when adult field voles, Microtus

agrestis, were fed for two weeks with diets with increased levels of

the birch Betula pendula, a diet item consumed by voles in times of

high population densities, the field voles exhibited increased liver

size. In their study on P. leucopus, McMurry et al. [28] found

heavier livers and spleens in adult males from artificially induced

early successional habitats. Taken together, these results suggest

that habitat, most likely through food quality, may influence both

body condition and somatic indices in wild small mammals.

Our results additionally showed that indices were largely

variable between sites, which may be related to local unknown

environmental features and ecological factors. Inclusion of the

random effect of model sampling squares allowed consideration of

site-specific index variability. This result raises questions regarding

the number of sampling sites required and the number of animals

that should be trapped in each site to consider site-specific

variability of the markers under study. In fact, comparison of

individuals from only one contaminated site versus one reference

site (as commonly observed in the literature), could lead to

misinterpretation of results even if the sites are selected for their

apparent similarities.

Use of Somatic and Condition Indices as Contamination
and Health Status Indicator
As the maximal internal Cd and Pb concentrations observed in

this study are among the highest reported in wild rodents [6,32–

34], one could argue that deleterious effects, and thus responses of

the indices, would be obvious in such a contaminated site. This

work considered individual (age, and gender for SMI models)

variables and found slight but significant relationships between

both condition and somatic indices and contamination variables

(Cd and Pb) in the liver, in the kidneys, and in the environment.

The relationships between SMI and Cd concentrations in the liver

and kidneys differed depending on the level of soil contamination.

SMI increased with Cd concentrations in both the liver and

kidneys of animals living in lightly and moderately polluted areas,

suggesting that these animals did not exhibit any adverse effects of

internal contamination. However, the relationship became nega-

tive for animals trapped in highly polluted sites ([Cd] $10 mg/g

DM soil). Previous studies have shown diminution or reduction

tendency in body weight, carcass weight, and/or body condition in

individuals from small mammal species that inhabit polluted sites

[6,8,34,35]. Interpreted with other studied parameters, the

decrease of this index in highly exposed animals was interpreted

as a sign of poor health compared to the individuals living in a less

polluted site. However, the attribution of these effects to TMs,

other pollutants, or a combination of both remained speculative.

The authors of several other studies failed to detect any significant

differences in body condition/body weight in small mammals from

polluted and reference sites [36,37]. The present results reveal

complex relationships of SMI with both individual (age, gender,

TM concentrations in tissues) and environmental (high intra- and

inter-site variability) variables. Confounding variables included in

this study contribute to an explanation of the discrepancies

observed in the literature.

As for the SMI, results showed a slight but significant

relationship between SLI and the Cd concentrations in kidneys;

this relationship was dependent on the level of soil contamination.

SLI increased with Cd in both the liver and kidneys of animals

trapped in lightly and moderately polluted sites and decreased for

animals trapped in highly polluted sites. The SLI was negatively

influenced by Pb concentrations in the liver. Finally, the SKI was

positively linked to Cd concentrations in the kidneys. An increase

of the relative liver and/or kidney mass has been found in

individuals from different species that live in contaminated sites

compared to individuals from control sites [6,7,35,36,38]. The

higher relative masses of the liver and kidneys were interpreted as

structural alterations and oedema formations caused by exposure

to elements or compounds at toxic levels [6,35,38]. However,

some authors failed to detect an adverse effect on relative organ

mass [39]. We even found one study showing a reduced relative

kidney mass in individuals from polluted sites compared to animals

from reference populations [8]. Those findings highlight the

difficulty of interpreting somatic indices as markers of TM toxicity.

Apart from the strong site-specific variability of indices, one of

the most relevant study findings is that both body condition and

somatic indices were related to TM concentration in organs and

the degree of environmental contamination. The negative

relationship between internal TM concentrations and indices in

highly polluted sites has not been studied, but one could

hypothesise that this negative effect is due to the reduction of

food quality or food availability in the most contaminated sites.

Conclusion
Most previous studies used body condition and somatic indices

to discriminate populations inhabiting reference and polluted sites.

In such a framework, most studies found lower body condition

indices in individuals from polluted sites, suggesting a globally

lower nutritional status in populations from contaminated areas.

Similarly, liver and kidney indices usually showed higher relative

organ masses in individuals from contaminated areas compared to

those of reference animals, suggesting histopathological alterations

or oedema. However, no direct evidence related those differences

to pollution rather than other disturbances, such as food

availability, food quality, or other variables that are rarely (if

ever) studied in ecotoxicological studies. The present work used a

large sample size of 560 individuals from 30 sites around a former

Pb and Zn smelter, and we found slight yet significant relationships

between body condition and liver indices, with interactions

between Cd in the environment and Cd in the liver and kidneys.

Relationships were significant between the liver index and Pb in

the liver and between the kidney index and Cd in kidneys.

Landscape, a variable used as an indirect indicator of habitat

suitability, did not influence the indices, but the variability of

indices between individuals sampled in different sites of capture

was important. Studies based on the comparison of one reference

and one contaminated site may be biased, with site-specific effects

that may lead to misinterpretation of the results. Our work used

indices calculated with a method that should consider allometry

(due to gender dimorphism and growth) better than more classical

methods (residuals form an ordinary least square regression), yet

our indices were still influenced by the age of individuals (and

gender for the body condition). Literature data show that indices

may be influenced by season, food quality, or reproductive status.

Based on the present results and literature data, we argue that

indices are highly influenced by many biological and environ-

mental parameters, and caution should be observed during index

interpretation as an indicator of exposure to toxic elements or

compounds. Even when used as part of a battery of parameters

(histology, haematology, or biochemical biomarkers), the causal

relationship between those indices and exposure to pollutants is

rarely straightforward. For instance, it is well known that many

histological alterations or haematological parameter variations

may be due to infectious diseases, parasitism, or low quality and/

or quantity of food [13]. Causal relationships between classical
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biomarkers used in wildlife ecotoxicology and various natural and

anthropogenic stressors with which animals have to cope are

greatly needed further research topics. Such research is the

purpose of stress ecology, an area of research for which several

authors have advocated [40–42].
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24. Bivand RS, Pebesma EJ, Gómez-Rubio V (2008) Applied spatial data analysis
with R. Use R! series, Springer Business Media, LLC, New York, USA. 374 p.

25. Magee L (1990) R2 measures based on wald and likelihood ratio joint
significance tests. Am Stat 44(3): 250–253.

26. R Development Core Team (2012) R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.
Available: http://www.R-project.org.

27. Tattersall FH, Macdonald DW, Hart BJ, Manley WJ, Feber RE (2001) Habitat
use by wood mice (Apodemus sylvaticus) in a changeable arable landscape. J Zool
(1987) 255: 487–494.

28. McMurry ST, Lochmiller RL, Boggs JF, Leslie Jr DM, Engle DM (1996)
Demography and condition of populations of white-footed mice (Peromyscus
leucopus) in late and early successional habitats. J Mammal 77: 335–345.

29. Klemola T, Koivula M, Korpimaki E, Norrdahl K (1997) Size of internal organs
and forage quality of herbivores: are there differences between cycle phases in
Microtus voles? Oikos 80: 61–66.
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