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Abstract - Graph vertex coloring with a given number of
colors is a well-known and much-studied NP-complete prob-
lem. The most effective methods to solve this problem are
proved to be hybrid algorithms such as memetic algorithms
or quantum annealing. Those hybrid algorithms use a pow-
erful local search inside a population-based algorithm. This
paper presents a new memetic algorithm based on one of
the most effective algorithms: the Hybrid Evolutionary Al-
gorithm (HEA) from Galinier and Hao (1999). The pro-
posed algorithm, denoted HEAD - for HEA in Duet - works
with a population of only two individuals. Moreover, a new
way of managing diversity is brought by HEAD. These two
main differences greatly improve the results, both in terms
of solution quality and computational time. HEAD has pro-
duced several good results for the popular DIMACS bench-
mark graphs, such as 222-colorings for <dsjc1000.9>, 81-
colorings for <flat1000_76_0> and even 47-colorings for
<dsjc500.5> and 82-colorings for <dsjc1000.5>.

Keywords - Combinatorial optimization, Metaheuristics,
Coloring, Graph, Evolutionary

1 Introduction
Given an undirected graphG = (V,E) with V a set of vertices
and E a set of edges, graph vertex coloring involves assigning
each vertex with a color so that two adjacent vertices (linked by
an edge) feature different colors. The Graph Vertex Coloring
Problem (GVCP) consists in finding the minimum number of
colors, called chromatic number χ(G), required to color the
graph G while respecting these binary constraints. The GVCP
is a well-documented and much-studied problem because this
simple formalization can be applied to various issues such as
frequency assignment problems [1, 2], scheduling problems [3,
4, 5] and flight level allocation problems [6, 7]. Most problems
that involve sharing a rare resource (colors) between different
operators (vertices) can be modeled as a GVCP. The GVCP is
NP-hard [8].

Given k a positive integer corresponding to the number of
colors, a k-coloring of a given graph G is a function c that
assigns to each vertex an integer between 1 and k as follows :

c : V → {1, 2..., k}
v 7→ c(v)

*laurent.moalic@utbm.fr
†alexandre.gondran@enac.fr

The value c(v) is called the color of vertex v. The vertices
assigned to the same color i ∈ {1, 2..., k} define a color class,
denoted Vi. An equivalent view is to consider a k-coloring as
a partition of G into k subsets of vertices: c ≡ {V1, ..., Vk}.

We recall some definitions :

• a k-coloring is called legal or proper k-coloring if it
respects the following binary constraints : ∀(u, v) ∈
E, c(u) 6= c(v). Otherwise the k-coloring is called
non legal or non proper; and edges (u, v) ∈ E such as
c(u) = c(v) are called conflicting edges, and u and v
conflicting vertices.

• A k-coloring is a complete coloring because a color is
assigned to all vertices; if some vertices can remain un-
colored, the coloring is said to be partial.

• An independent set or a stable set is a set of vertices, no
two of which are adjacent. It is possible to assign the
same color to all the vertices of an independent set with-
out producing any conflicting edge. The problem of find-
ing a minimal graph partition of independent sets is then
equivalent to the GVCP.

The k-coloring problem - finding a proper k-coloring of a
given graph G - is NP-complete [9] for k > 2. The best
performing exact algorithms are generally not able to find a
proper k-coloring in reasonable time when the number of ver-
tices is greater than 100 for random graphs [10, 11, 12]. Only
for few bigger graphs, exact approaches can be applied suc-
cessfully [13]. In the general case, for large graphs, one uses
heuristics that partially explore the search-space to occasion-
ally find a proper k-coloring in a reasonable time frame. How-
ever, this partial search does not guarantee that a better solution
does not exist. Heuristics find only an upper bound of χ(G) by
successively solving the k-coloring problem with decreasing
values of k.

This paper proposes two versions of a hybrid metaheuris-
tic algorithm, denoted HEAD’ and HEAD, integrating a tabu
search procedure with an evolutionary algorithm for the k-
coloring problem. This algorithm is built on the well-
known Hybrid Evolutionary Algorithm (HEA) of Galinier and
Hao [14]. However, HEAD is characterized by two original
aspects: the use of a population of only two individuals and
an innovative way to manage the diversity. This new simple
approach of memetic algorithms provides excellent results on
DIMACS benchmark graphs.
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The organization of this paper is as follows. First, Section 2
reviews related works and methods of the literature proposed
for graph coloring and focuses on some heuristics reused in
HEAD. Section 3 describes our memetic algorithm, HEAD
solving the graph k-coloring problem. The experimental re-
sults are presented in Section 4. Section 5 analyzes why HEAD
obtains significantly better results than HEA and investigates
some of the impacts of diversification. Finally, we consider
the conclusions of this study and discuss possible future re-
searches in Section 6.

2 Related works
Comprehensive surveys on the GVCP can be found in [15, 16,
17]. These first two studies classify heuristics according to
the chosen search-space. The Variable Space Search of [18]
is innovative and didactic because it works with three different
search-spaces. Another more classical mean of classifying the
different methods is to consider how these methods explore the
search-space; three types of heuristics are defined: constructive
methods, local searches and population-based approaches.

We recall some important mechanisms of TabuCol and HEA
algorithms because our algorithm HEAD shares common fea-
tures with these algorithms. Moreover, we briefly present some
aspects of the new Quantum Annealing algorithm for graph
coloring denoted QA-col [19, 20, 21] which has produced,
since 2012, most of the best known colorings on DIMACS
benchmark.

2.1 TabuCol
In 1987, Hertz and de Werra [22] presented the TabuCol algo-
rithm, one year after Fred Glover introduced the tabu search.
This algorithm, which solves k-coloring problems, was en-
hanced in 1999 by [14] and in 2008 by [18]. The three basic
features of this local search algorithm are as follows:

• Search-Space and Objective Function: the algorithm is
a k-fixed penalty strategy. This means that the number
of colors is fixed and non-proper colorings are taken into
account. The aim is to find a coloring that minimizes the
number of conflicting edges under the constraints of the
number of given colors and of completed coloring (see
[16] for more details on the different strategies used in
graph coloring).

• Neighborhood: a k-coloring solution is a neighbor of an-
other k-coloring solution if the color of only one con-
flicting vertex is different. This move is called a critic
1-move. A 1-move is characterized by an integer couple
(v, c) where v ∈ {1, ..., |V |} is the vertex number and
c ∈ {1, ..., k} the new color of v. Therefore the neighbor-
hood size depends on the number of conflicting vertices.

• Move Strategy: the move strategy is the standard tabu
search strategy. Even if the objective function is worse,
at each iteration, one of the best neighbors which are not
inside the tabu list is chosen. Note that all the neighbor-
hood is explored. If there are several best moves, one
chooses one of them at random. The tabu list is not the

list of each already-visited solution because this is com-
putationally expensive. It is more efficient to place only
the reverse moves inside the tabu list. Indeed, the aim is to
prevent returning to previous solutions, and it is possible
to reach this goal by forbidding the reverse moves during
a given number of iterations (i.e. the tabu tenure). The
tabu tenure is dynamic: it depends on the neighborhood
size. A basic aspiration criterion is also implemented: it
accepts a tabu move to a k-coloring, which has a better
objective function than the best k-coloring encountered
so far.

Data structures have a major impact on algorithm efficiency,
constituting one of the main differences between the Hertz and
de Werra version of TabuCol [22] and the Galinier and Hao
version [14]. Checking that a 1-move is tabu or not and up-
dating the tabu list are operations performed in constant time.
TabuCol also uses an incremental evaluation [23]: the objec-
tive function of the neighbors is not computed from scratch,
but only the difference between the two solutions is computed.
This is a very important feature for local search efficiency.
Finding the best 1-move corresponds to find the maximum
value of a |V | × k integer matrix. An efficient implementa-
tion of incremental data structures is well explained in [15].

Another benefit of this version of TabuCol is that it has only
two parameters, L and λ to adjust in order to control the tabu
tenure, d, by:

d = L+ λF (s)

where F (s) is the number of conflicting vertices in the curent
solution s. Moreover, [14] has demonstrated on a very large
number of instances that with the same setting (L a random
integer inside [0; 9] and λ = 0.6), TabuCol obtained very
good k-colorings. Indeed, one of the main disadvantages of
heuristics is that the number of parameters to set is high and
difficult to adjust. This version of TabuCol is very robust. Thus
we retained the setting of [14] in all our tests.

2.2 Memetic Algorithms for graph coloring and
HEA

Memetic Algorithms [24] (MA) are hybrid metaheuristics us-
ing a local search algorithm inside a population-based algo-
rithm. They can also be viewed as specific Evolutionary Algo-
rithms (EAs) where all individuals of the population are local
minimums (of a specific neighborhood). In MA, the mutation
of the EA is replaced by a local search algorithm. It is very im-
portant to note that most of the running time of a MA is spent in
the local search. These hybridizations combine the benefits of
population-based methods, which are better for diversification
by means of a crossover operator, and local search methods,
which are better for intensification.

In graph coloring, the Hybrid Evolutionary Algorithm
(HEA) of Galinier and Hao [14] is a MA; the mutation of
the EA is replaced by the tabu search TabuCol. HEA is one
of the best algorithms for solving the GVCP; From 1999 un-
til 2012, it provided most of the best results for DIMACS
benchmark graphs [25], particularly for difficult graphs such
as <dsjc500.5> and <dsjc1000.5> (see table 1). These
results were obtained with a population of 10 individuals.
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Figure 1: An example of GPX crossover for a graph of 10
vertices (A, B, C, D, E, F, G, H, I and J) and three colors (red,
blue and green). This example comes from [14].

The crossover used in HEA is called the Greedy Partition
Crossover (GPX). The two main principles of GPX are: 1)
a coloring is a partition of vertices into color classes and not
an assignment of colors to vertices, and 2) large color classes
should be transmitted to the child. Figure 1 gives an example
of GPX for a problem with three colors (red, blue and green)
and 10 vertices (A, B, C, D, E, F, G, H, I and J). The first step is
to transmit to the child the largest color class of the first parent.
If there are several largest color classes, one of them is chosen
at random. After having withdrawn those vertices in the sec-
ond parent, one proceeds to step 2 where one transmits to the
child the largest color class of the second parent. This process
is repeated until all the colors are used. There are most prob-
ably still some uncolored vertices in the child solution. The
final step (step k + 1) is to randomly add those vertices to the
color classes. Notice that GPX is asymmetrical: the order of
the parents is important; starting the crossover with parent 1
or parent 2 can produce very different offsprings. Notice also
that GPX is a random crossover: applying GPX twice with the
same parents does not produce the same offspring. The final
step is very important because it produces many conflicts. In-
deed if the two parents have very different structures (in terms
of color classes), then a large number of vertices remain uncol-
ored at step k + 1, and there are many conflicting edges in the
offspring (cf. figure 4). We investigate some modifications of
GPX in section 5.

2.3 QA-col: Quantum Annealing for graph col-
oring

In 2012 Olawale Titiloye and Alan Crispin [19, 20, 21] pro-
posed a Quantum Annealing algorithm for graph coloring, de-
noted QA-col. QA-col produces most of the best-known col-
orings for the DIMACS benchmark. In order to achieve this
level of performance, QA-col is based on parallel computing.
We briefly present some aspects of this new type of algorithm.

In a standard Simulating Annealing algorithm (SA), the

probability of accepting a candidate solution is managed
through a temperature criterion. The value of the tempera-
ture decreases during the SA iterations. As MA, a Quantum
Annealing (QA) is a population-based algorithm, but it does
not perform crossovers and the local search is an SA. The
only interaction between the individuals of the population oc-
curs through a specific local attraction-repulsion process. The
SA used in QA-col algorithm is a k-fixed penalty strategy like
TabuCol: the individuals are non-proper k-colorings. The ob-
jective function of each SA minimizes a linear combination of
the number of conflicting edges and a given population diver-
sity criterion as detailed later. The neighborhood used is de-
fined by critic 1-moves like TabuCol. More precisely, in QA-
col, the k-colorings of the population are arbitrarily ordered
in a ring topology: each k-coloring has two neighbors associ-
ated with it. The second term of the objective function (called
Hamiltonian cf. equation (1) of [19]) can be seen as a diversity
criterion based on a specific distance applicable to partitions.
Given two k-colorings (i.e. partitions) ci and cj , the distance,
which we called pairwise partition distance, between ci and cj
is the following :

dP (ci, cj) =
∑

(u,v)∈V 2, u 6=v

[ci(u) = ci(v)]⊕ [cj(u) = cj(v)]

where ⊕ is the XOR operation and [ ] is Iverson bracket:
[ci(u) = ci(v)] = 1 if ci(u) = ci(v) is true and equals 0 oth-
erwise. Then, given one k-coloring ci of the population, the
diversity criterion D(ci) is defined as the sum of the pairwise
partition distances between ci and its two neighbors ci+1 and
ci−1 in the ring topology : D(ci) = dP (ci, ci−1)+dP (ci, ci+1)
which ranges from 0 to 2n(n − 1); The value of this diver-
sity is integrated into the objective function of each SA. As
with the temperature, if the distance increases, there will be a
higher probability that the solution will be accepted (attractive
process). If the distance decreases, then there will be a lower
probability that the solution will be accepted (repulsive pro-
cess). Therefore in QA-col the only interaction between the
k-colorings of the population is realized through this distance
process.

Although previous approaches are very efficient the reasons
for this are difficult to assess. They use many parameters and
several intensification and diversification operators and thus
the benefit of each item is not easily evaluated. Our approach
has been to identify which elements of HEA are the most sig-
nificant in order to define a more efficient algorithm.

3 HEAD: Hybrid Evolutionary Algo-
rithm in Duet

The basic components of HEA are the TabuCol algorithm,
which is a very powerful local search for intensification, and
the GPX crossover, which adds some diversity. The intensi-
fication/diversification balance is difficult to achieve. In or-
der to simplify the numerous parameters involved in EAs, we
have chosen to consider a population with only two individu-
als. We present two versions of our algorithm denoted HEAD’
and HEAD for HEA in Duet.
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3.1 First hybrid algorithm: HEAD’

Algorithm 1 describes the pseudo code of the first version of
the proposed algorithm, denoted HEAD’. This algorithm can

Algorithm 1: - HEAD’ - first version of HEAD: HEA in
Duet for k-coloring problem

Input: k, the number of colors; IterTC , the number of TabuCol
iterations.

Output: the best k-coloring found: best
1 p1, p2, best← init() /* initialize with random
k-colorings */

2 generation← 0
3 do
4 c1 ← GPX(p1, p2)
5 c2 ← GPX(p2, p1)
6 p1 ← TabuCol(c1,IterTC )
7 p2 ← TabuCol(c2,IterTC )
8 best← saveBest(p1, p2, best)
9 generation++

10 while nbConflicts(best) > 0 and p1 6= p2

be seen as two parallel TabuCol algorithms which periodically
interact by crossover.

After randomly initializing the two solutions (with init()
function), the algorithm repeats an instructions loop until a
stop criterion occurs. First, we introduce some diversity with
the crossover operator, then the two offspring c1 and c2 are im-
proved by means of the TabuCol algorithm. Next, we register
the best solution and we systematically replace the parents by
the two children. An iteration of this algorithm is called a gen-
eration. The main parameter of TabuCol is IterTC , the num-
ber of iterations performed by the algorithm, the other TabuCol
parameters L and λ are used to define the tabu tenure and are
considered fixed in our algorithm. Algorithm 1 stops either
because a legal k-coloring is found (nbConflicts(best) = 0)
or because the two k-colorings are equal in terms of the set-
theoretic partition distance (cf. Section 5).

A major risk is a premature convergence of HEAD’. Algo-
rithm 1 stops sometimes too quickly: the two individuals are
equal before finding a legal coloring. It is then necessary to
reintroduce diversity into the population. In conventional EAs,
the search space exploration is largely brought by the size of
the population: the greater the size, the greater the search di-
versity. In the next section we propose an alternative to the
population size in order to reinforce diversification.

3.2 Improved hybrid algorithm: HEAD

Algorithm 2 summarizes the second version of our algorithm,
simply denoted HEAD. We add two other candidate solutions
(similar to elite solutions), elite1 and elite2, in order to rein-
troduce some diversity to the duet. Indeed, after a given num-
ber of generations, the two individuals of the population be-
come increasingly similar within the search-space. To main-
tain the population diversity, the idea is to replace one of the
two candidates solutions by a solution previously encountered
by the algorithm. We define one cycle as a number of Itercycle
generations. Solution elite1 is the best solution found during
the current cycle and solution elite2 the best solution found
during the previous cycle. At the end of each cycle, the elite2

Algorithm 2: HEAD - second version of HEAD with two
extra elite solutions

Input: k, the number of colors; IterTC , the number of TabuCol
iterations; Itercycle = 10, the number of generations into one
cycle.

Output: the best k-coloring found: best
1 p1, p2, elite1, elite2, best← init() /* initialize with
random k-colorings */

2 generation, cycle← 0
3 do
4 c1 ← GPX(p1, p2)
5 c2 ← GPX(p2, p1)
6 p1 ← TabuCol(c1,IterTC )
7 p2 ← TabuCol(c2,IterTC )
8 elite1 ← saveBest(p1, p2, elite1) /* best k-coloring of

the current cycle */
9 best← saveBest(elite1, best)

10 if generation%Itercycle = 0 then
11 p1 ← elite2 /* best k-coloring of the

previous cycle */
12 elite2 ← elite1
13 elite1 ← init()
14 cycle++

15 generation++

16 while nbConflicts(best) > 0 and p1 6= p2
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Figure 2: Diagram of HEAD

solution replaces one of the population individuals. Figure 2
presents the graphic view of algorithm 2.

This elitist mechanism provides relevant behaviors to the al-
gorithm as it can be observed in the computational results of
section 4.2. Indeed, elite solutions have the best fitness value
of each cycle. It is clearly interesting in terms of intensifica-
tion. Moreover, when the elite solution is reintroduced, it is
generally different enough from the other individuals to be rel-
evant in terms of diversification. In the next section, we show
how the use of this elitist mechanism can enhance the results.

4 Experimental Results

In this section we present the results obtained with the two
versions of the proposed memetic algorithm. To validate the
proposed approach, the results of HEAD are compared with
the results obtained by the best methods currently known.
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4.1 Instances and Benchmarks
Test instances are selected among the most studied graphs
since the 1990s, which are known to be very difficult (the sec-
ond DIMACS challenge of 1992-1993 [25]1).

We focus during the study on some types of graphs from
the DIMACS benchmark: <dsjc>, <dsjr>, <flat>, <r>,
<le> and <C> which are randomly or quasi-randomly gener-
ated graphs. <dsjcn.d> graphs and <Cn.d> graphs are ran-
dom graphs with n vertices, with each vertex connected to an
average of n × 0.d vertices; 0.d is the graph density. The
chromatic number of these graphs is unknown. Likewise for
<rn.d[c]> and <dsjrn.d> graphs which are geometric ran-
dom graphs with n vertices and a density equal to 0.d. [c]
denotes the complement of such a graph. <flat> and <le>
graphs have another structure: they are built for a known chro-
matic number. The <flatn_χ> graph or <len_χ[abcd]>
graph has n vertices and χ is the chromatic number.

4.2 Computational Results
HEAD and HEAD’ were coded in C++. The results were ob-
tained with an Intel Core i5 3.30GHz processor - 4 cores and
16GB of RAM. Note that the RAM size has no impact on the
calculations: even for large graphs such as <dsjc1000.9>
(with 1000 vertices and a high density of 0.9), the use of mem-
ory does not exceed 125 MB. The main characteristic is the
processor speed.

As shown in Section 3, the proposed algorithms have two
successive calls to local search (lines 6 and 7 of the algo-
rithms 1 and 2), one for each child of the current generation.
Almost all of the time is spent on performing the local search.
Both local searches can be parallelized when using a multi-
core processor architecture. This is what we have done using
the OpenMP API (Open Multi-Processing), which has the ad-
vantage of being a cross-platform (Linux, Windows, MacOS,
etc.) and simple to use. Thus, when an execution of 15 minutes
is given, the required CPU time is actually close to 30 minutes
if using only one processing core.

Table 1 presents results of the principal methods known to
date for 19 difficult graphs. For each graph, the lowest number
of colors found by each algorithm is indicated (upper bound of
χ). For TabuCol [22] the reported results are from [18] (2008)
which are better than those of 1987. The most recent algo-
rithms, QA-col (Quantum Annealing for graph coloring [21])
and IE2COL (Improving the Extraction and Expansion method
for large graph COLoring [26]), provide the best results but
QA-col is based on a cluster of PC using 10 processing cores
simultaneously and IE2COL is profiled for large graphs (> 900
vertices). Note that HEA [14], AmaCol [27], MACOL [28],
EXTRACOL [29] and IE2COL are also population-based algo-
rithms using TabuCol and GPX crossover or an improvement
of GPX (GPX with n > 2 parents for MACOL and EXTRACOL
and the GPX process is replaced in AmaCol by a selection of k
color classes among a very large pool of color classes). Only
QA-col has another approach based on several parallel simu-
lated annealing algorithms interacting together with an attrac-
tive/repulsive process (cf. section 2.3).

1ftp://dimacs.rutgers.edu/pub/challenge/graph/
benchmarks/color/

Table 2 presents the results obtained with HEAD’, the first
version of HEAD (without elite). This simplest version finds
the best known results for most of the studied graphs (13/19);
Only QA-col (and IE2COL for <C> graphs) occasionally finds
a solution with less color. The column IterTC indicates the
number of iterations of the TabuCol algorithm (this is the stop
criterion of TabuCol). This parameter has been determined for
each graph after an empirical analysis for finding the most suit-
able value. The column GPX refers to the GPX used inside
HEAD’. Indeed, in section 5, we define two modifications of
the standard GPX (Std): the unbalanced GPX (U([0 ; 1])) and
the random GPX (R(J0 ; kK)). One can notice that the choice of
the unbalanced or the random crossover is based on the study
of the algorithm in the standard mode (standard GPX). If the
algorithm needs too many generations for converging we in-
troduce the unbalanced GPX. At the opposite, if the algorithm
converges quickly without finding any legal k-coloring we in-
troduce the random crossover. Section 5 details the modifica-
tions of the GPX crossover (section 5.2.1 for the random GPX
and section 5.2.2 for the unbalanced GPX).

The column Success evaluates the robustness of this
method, providing the success rate: success_runs/total_runs.
A success run is one which finds a legal k-coloring. The av-
erage number of generations or crossovers performed during
one success run is given by the Cross value. The total average
number of iterations of TabuCol preformed during HEAD’ is

Iter = IterTC ×Cross× 2.

The column Time indicates the average CPU time in minutes
of success runs.

HEAD’ success rate is rarely 100%, but in case of success,
the running time is generally very short. The main drawback
of HEAD’ is that it sometimes converges too quickly. In such
instances it cannot find a legal solution before the two indi-
viduals in a generation become identical. The first option to
correct this rapid convergence, is to increase the number of it-
erations IterTC of each TabuCol. The second option is to use
the random GPX instead of the standard one (section 5.2.1).
However, these options are not considered sufficient. The sec-
ond version, HEAD, adds more diversity while performing an
intensifying role.

Table 3 shows the results obtained with HEAD. For
all the studied graphs except four (<flat300_28_0>,
<r1000.5>, <C2000.5> and <C4000.5>), HEAD finds
the best known results. Only the Quantum Annealing al-
gorithm, using ten CPU cores simultaneously, and IE2COL
for large graphs, achieve this level of performance. In par-
ticular, <dsjc500.5> is solved with only 47 colors and
<flat1000_76_0> with 81 colors.

The computation time of HEAD is generally close to that
of HEAD’ but the former algorithm is more robust with a
success rate of almost 100%. In particular, the two graphs
<dsjc500.5> and <dsjc1000.1> with 48 and 20 colors
respectively are resolved each time, and in less than one CPU
minute on average (CPU 3.3GHz). Using a multicore CPU,
these instances are solved in less than 30 seconds on average,
often in less than 10 seconds. As a comparison, the shortest
time reported in the literature for <dsjc1000.1> is 32 min-
utes for QA-col [20] (2011) with a 3GHz processor, 65 min-
utes for IE2COL (2012) with a 2.8GHz processor, 93 minutes
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LS Hybrid algorithm
1987/2008 1999 2008 2010 2011 2012 2012

Graphs HEAD TabuCol HEA AmaCol MACOL EXTRACOL IE2COL QA-col
[22, 18] [14] [27] [28] [29] [26] [21]

dsjc250.5 28 28 28 28 28 - - 28
dsjc500.1 12 13 - 12 12 - - -
dsjc500.5 47 49 48 48 48 - - 47
dsjc500.9 126 127 - 126 126 - - 126
dsjc1000.1 20 - 20 20 20 20 20 20
dsjc1000.5 82 89 83 84 83 83 83 82
dsjc1000.9 222 227 224 224 223 222 222 222
r250.5 65 - - - 65 - - 65
r1000.1c 98 - - - 98 101 98 98
r1000.5 245 - - - 245 249 245 234

dsjr500.1c 85 85 - 86 85 - - 85
le450_25c 25 26 26 26 25 - - 25
le450_25d 25 26 - 26 25 - - 25

flat300_28_0 31 31 31 31 29 - - 31
flat1000_50_0 50 50 - 50 50 50 50 -
flat1000_60_0 60 60 - 60 60 60 60 -
flat1000_76_0 81 88 83 84 82 82 81 81

C2000.5 146 - - - 148 146 145 145
C4000.5 266 - - - 272 260 259 259

Table 1: Best coloring found

for EXTRACOL [29] (2011) with a 2.8GHz processor and 108
minutes for MACOL [28] (2010) with a 3.4GHz processor.

5 Analysis of diversification
HEAD shares common features with HEA, but it obtains signif-
icantly better results with respect to solution quality and com-
puting time. It is beneficial to analyze why the new mecha-
nisms introduced with HEAD gives rise to such a large change.

A first answer can be formulated with regard to computing
time. It can be observed that 99% of the running time of HEA,
Amacol, MACOL and HEAD is spent during calculating Tabu-
Col algorithms. Considering a population of 10 k-colorings in
the case of HEA and Amacol (20 in case of MACOL) requires
more time than only two such individuals for HEAD.

In our study HEAD is not considered as a standard MA,
but rather as two separated TabuCol algorithms. After a given
number of iterations, instead of stopping the two TabuCol, we
reintroduce diversity with the crossover operator GPX. The dif-
ficulty is to reintroduce the correct dose of diversity. Indeed
the danger of the crossover is that of completely destroying
the solution structure. GPX is a powerful crossover operator
compared to others [23] because it transmits the biggest color
classes of the two parents, thus keeping a large part of the par-
ents’ structures. Very interesting and relevant studies about
how to manage diversity for graph coloring heuristics can be
found in [30, 31].

We present in this section an analysis of GPX crossover in-
dicating that it is more accurate to have parents that are not
too far away in the search-space - according to the distance
presented below (section 5.1).

Several tests are also performed in this section in order to
analyze the role of diversification in the HEAD algorithm. The
two main mechanisms leading to diversification in HEAD are
the GPX crossover and the population update process. In a first
set of tests (section 5.2), we slightly modify the dose of diver-
sification in the GPX crossover and analyze the results. In a
second set of tests (section 5.3), we focus on the population
update process: in HEAD, the two produced children system-

atically replace both parents, even if they have worse fitness
values than their parents. If the replacement is not systematic,
the diversification decreases.

5.1 Distance between parents and GPX
crossover

GPX crossover is a diversification operator: it generates solu-
tions in numerous uncharted regions of the search-space. How-
ever, there is a risk of providing too much diversity, and thus
breaking the structure of the current solution. This is the prin-
cipal failing of basic crossovers used before GPX [23].

An interesting feature of GPX is its ability to explore new
areas of the search-space without breaking the structures of
current k-colorings. There are many parameters that affect the
dose of diversity of GPX. One of the easily identifiable param-
eters is the distance between the two parents.

The set-theoretic partition distance [14, 32] between two k-
colorings c1 and c2 is defined as the least number of 1-move
steps (i.e. a color change of one vertex) for transforming c1 to
c2. This distance has to be independent of the permutation of
the color classes, then before counting the number of 1-moves,
we have to match each color class of c1 with the nearest color
class of c2. This problem is a maximum weighted bipartite
matching if we consider each color class of c1 and c2 as the
vertices of a bipartite graph; an edge links a color class of c1
with a color class of c2 with an associated value correspond-
ing to the number of vertices shared by those classes. The
set-theoretic partition distance is then calculated as follows:
dH(c1, c2) = n − q where n is the number of vertices of the
initial graph and q the result of the matching; i.e. the maximal
total number of sharing vertices in the same class for c1 and c2.
Figure 3 gives an example of the computation of this distance
between two 3-colorings. The possible values range from 0 to
less than n. Indeed it is not possible to have totally different
k-coloring.

If we highlight two k-colorings that have very low objec-
tive functions but that are very different (in terms of the dH
distance), then they would have a high probability of pro-
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Instances k IterTC GPX Success Iter Cross Time
dsjc250.5 28 6000 Std 17/20 1× 106 79 0.01 min
dsjc500.1 12 8000 Std 15/20 2.5× 106 158 0.03 min
dsjc500.5 48 8000 Std 9/20 5.3× 106 334 0.2 min
dsjc500.9 126 25000 Std 10/20 2.5× 107 517 1 min
dsjc1000.1 20 7000 Std 7/20 8.2× 106 588 0.2 min
dsjc1000.5 83 40000 Std 16/20 1.37× 108 1723 10 min
dsjc1000.9 222 60000 Std 1/20 4.45× 108 3711 33 min

223 30000 Std 4/20 6.6× 107 1114 5 min
r250.5 65 12000 Std 1/20 8.11× 108 33828 12 min

65 2000 R(20) 6/20 5.31× 108 132773 10 min
r1000.1c 98 65000 Std 1/20 2.32× 106 18 0.1 min

98 25000 R(98) 20/20 6.5× 106 130 0.4 min
r1000.5 245 360000 Std 20/20 2.6× 109 3636 135 min

245 240000 U(0.98) 17/20 6.48× 108 1352 39 min
dsjr500.1c 85 4200000 Std 1/20 5.8× 106 1 0.2 min

85 1000 R(85) 13/20 5× 105 279 0.02 min
le450_25c 25 21000000 Std 20/20 3.5× 109 57 38 min

25 300000 U(0.98) 10/20 2.86× 108 477 2.4 min
le450_25d 25 21000000 Std 20/20 5.7× 109 135 64 min

25 340000 U(0.98) 10/20 2.15× 108 317 2 min
flat300_28_0 31 4000 Std 20/20 1× 106 117 0.02 min
flat1000_50_0 50 130000 Std 20/20 1.1× 106 4 0.3 min
flat1000_60_0 60 130000 Std 20/20 2.3× 106 9 0.5 min
flat1000_76_0 81 40000 Std 1/20 1.49× 109 18577 137 min

82 40000 Std 18/20 1.57× 108 1969 11 min
C2000.5 148 140000 Std 10/10 1.7× 109 6308 794 min
C4000.5 275 140000 Std 8/10 1.1× 109 4091 3496 min

Table 2: Results of HEAD’, the first version of HEAD algorithm (without elites)

11

1

A B C C D E G

color class blue D E F G

color class green H I J

A F I

B H J

color class red 1

1

2

3
color class red

coloring 1 coloring 2

Figure 3: A graph with 10 vertices (A, B, C, D, E, F, G, H, I
and J), three colors (red, blue and green) and two 3-colorings:
coloring 1 and coloring 2. We defined the weighted bipartite
graph corresponding to the number of vertices shared by color
classes of coloring 1 and coloring 2. The bold lines correspond
to the maximum weighted bipartite matching. The maximal
total number of sharing vertices in the same class is equal to
q = 3 + 2 + 1 = 6. Then the set-theoretic partition distance
between those two 3-colorings is equal to: dH(coloring 1, col-
oring 2) = n− q = 10− 6 = 4. This distance is independent
of the permutation of the color classes.

ducing children with very high objective functions following
crossover. The danger of the crossover is of completely de-
stroying the k-coloring structure. On the other hand, two very
close k-colorings (in terms of the dH distance) produce a child
with an almost identical objective function. Chart 4 shows the
correlation between the distance separating two k-colorings
having the same number of conflicting edges (objective func-
tions equal to 40) and the number of conflicting edges of the
child produced after GPX crossover. This chart is obtained
considering k = 48 colors into the <dsjc500.5> graph.
More precisely, this chart results of the following steps: 1)
First, 100 non legal 48-colorings, called parents, are randomly
generated with a fitness (that is a number of conflicting edges)
equal to 40. Tabucol algorithm is used to generate these 100

parents (Tabucol is stopped when exactly 40 conflicted edges
are found). 2) A GPX crossover is performed on all possible
pairs of parents, generating for each pair two new non legal
48-colorings, called children. Indeed, GPX is asymmetrical,
then the order of the parents is important. By this way, 9900
(= 100× 99) children are generated. 3) We perform twice the
steps 1) and 2), therefore the total number of generated chil-
dren is equal to 19800. Each point of the chart corresponds to
one child. The y-axis indicates the fitness of the child. The
x-axis indicates the distance dH in the search-space between
the two parents of the child. There is a quasi-linear correlation
between these two parameters (Pearson correlation coefficient
equals to 0.973). Moreover, chart 4 shows that a crossover
never improves a k-coloring. As stated in section 2.2, the
last step of GPX produces many conflicts. Indeed, if the two
parents are very far in terms of dH , then a large number of ver-
tices remain uncolored at the final step of GPX. Those vertices
are then randomly added to the color classes, producing many
conflicting edges in the offspring. This explains why in MA, a
local search always follows a crossover operator.

Figure 5 presents the evolution of the objective function (i.e.
the number of conflicting edges) of the two k-colorings of the
population at each generation of HEAD. It also indicates the
dH distance between the two k-colorings. This figure is ob-
tained by considering one typical run to find one 48-coloring
of <dsjc500.5> graph. The objective function of the two
k-colorings (f(p1) and f(p2)) are very close during the whole
run: the average of the difference f(p1) − f(p2) on the 779
generations is equal to−0.11 with a variance of 2.44. Figure 5
shows that there is a significant correlation between the qual-
ity of the two k-colorings (in terms of fitness values) and the
distance dH between them before the GPX crossover: the Pear-
son correlation coefficient is equal to 0.927 (respectively equal
to 0.930) between f(p1) and dH(p1, p2) (resp. between f(p2)
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Instances k IterTC GPX Success Iter Cross Time
dsjc250.5 28 6000 Std 20/20 9× 105 77 0.01 min
dsjc500.1 12 4000 Std 20/20 3.8× 106 483 0.1 min
dsjc500.5 47 8000 Std 2/10000 2.4× 107 1517 0.8 min

48 8000 Std 20/20 7.6× 106 479 0.2 min
dsjc500.9 126 15000 Std 13/20 2.9× 107 970 1.2 min
dsjc1000.1 20 3000 Std 20/20 3.4× 106 567 0.2 min
dsjc1000.5 82 60000 Std 3/20 1× 109 8366 48 min

83 40000 Std 20/20 9.6× 107 1200 6 min
dsjc1000.9 222 50000 Std 2/20 1.2× 109 11662 86 min

223 30000 Std 19/20 1.26× 108 2107 10 min
r250.5 65 10000 Std 1/20 6.98× 108 34898 13 min

65 4000 R(20) 20/20 3.91× 108 48918 6.3 min
r1000.1c 98 45000 Std 3/20 3.7× 106 42 0.2 min

98 25000 R(98) 20/20 3.9× 106 78 0.24 min
r1000.5 245 360000 Std 20/20 4.6× 109 6491 244 min

245 240000 U(0.98) 20/20 5.3× 108 1104 25 min
dsjr500.1c 85 4200000 Std 1/20 5.8× 106 1 0.2 min

85 400 R(85) 20/20 4× 105 408 0.02 min
le450_25c 25 22000000 Std 20/20 2.7× 109 62 30 min

25 220000 U(0.98) 20/20 3.89× 108 885 5 min
le450_25d 25 21000000 Std 20/20 7× 109 161 90 min

25 220000 U(0.98) 20/20 2.35× 108 534 2 min
flat300_28_0 31 4000 Std 20/20 9× 105 120 0.02 min
flat1000_50_0 50 130000 Std 20/20 1.2× 106 5 0.3 min
flat1000_60_0 60 130000 Std 20/20 2.3× 106 9 0.5 min
flat1000_76_0 81 60000 Std 3/20 1× 109 8795 60 min

82 40000 Std 20/20 8.4× 107 1052 5 min
C2000.5 146 140000 Std 8/10 1.78× 109 6358 281 min

147 140000 Std 10/10 7.26× 108 2595 124 min
C4000.5 266 140000 Std 4/10 2.5× 109 9034 1923 min

267 140000 Std 8/10 1.6× 109 5723 1433 min

Table 3: Results of the second version of HEAD algorithm (with elites) including the indication of CPU time

and dH(p1, p2)). Those plots give the main key for understand-
ing why HEAD is more effective than HEA: the linear anti-
correlation between the two k-colorings with approximately
same objective function values f(p1) ' f(p2) is around equal
to 500−10 × dH(p1, p2). The same level of correlation with
a population of 10 individuals using HEA cannot be obtained
except with sophisticated sharing process.

Diversity is necessary when an algorithm is trapped in a lo-
cal minimum but diversity should be avoided in other case.
The next subsections analyze several levers which may able to
increase or decrease the diversity in HEAD.

5.2 Dose of diversification in the GPX crossover

Some modifications are performed on the GPX crossover in
order to increase (as for the first test) or decrease (as for the
second test) the dose of diversification within this operator.

5.2.1 Test on GPX with increased randomness: random
draw of a number of color classes

In order to increase the level of randomness within the GPX
crossover, we randomize the GPX. It should be remembered
(cf. section 2.2) that at each step of the GPX, the selected par-
ent transmits the largest color class to the child. In this test,
we begin by randomly transmitting x ∈ J0 ; kK color classes
chosen from the parents to the child; after those x steps, we
start again by alternately transmitting the largest color class
from each parent (x is the random level). If x = 0, then the
crossover is the same as the initial GPX. If x increases, then
the randomness and the diversity also increase. To evaluate

this modification of the crossover, we count the cumulative it-
erations number of TabuCol that one HEAD run requires in
order to find a legal k-coloring. For each x value, the algo-
rithm is run ten times in order to produce more robust results.
For the test, we consider the 48-coloring problem for graph
<dsjc500.5> of the DIMACS benchmark. Figure 6 shows
in abscissa the random level x and in ordinate the average num-
ber of iterations required to find a legal 48-coloring.

First, 0 6 x 6 k, where k is the number of colors, but
we stop the computation for x > 15, because from x = 15,
the algorithm does not find a 48-coloring within an acceptable
computing time limit. This means that when we introduce too
much diversification, the algorithm cannot find a legal solution.
Indeed, for a high x value, the crossover does not transmit the
good features of the parents, therefore the child appears to be a
random initial solution. When 0 6 x 6 8, the algorithm finds
a legal coloring in more or less 10 million iterations. It is not
easy to decide which x-value obtains the quickest result. How-
ever this parameter enables an increase of diversity in HEAD.
This version of GPX is called random GPX and noted R(x)
with x ∈ J0 ; kK in tables 2 and 3. It is used for three graphs
<r250.5>, <r1000.1c> and <dsjr500.1c> because the
standard GPX does not operate effectively. The fact that these
three graphs are more structured that the others may explain
why the random GPX works better.

5.2.2 Test on GPX with decreased randomness: imbal-
anced crossover

In the standard GPX, the role of each parent is balanced: they
alternatively transmit their largest color class to the child. Of
course, the parent which first transmits its largest class, has
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Figure 4: Each point of the chart, called child-solution, cor-
responds to one non-legal 48-coloring of the <dsjc500.5>
graph; It has been produced by the GPX crossover of two other
non-legal 48-colorings, called parents-solutions. Both parents
are randomly generated with the same fitness value (the same
number of conflicting edges). Their distance dH in the search-
space is indicated on the abscissa axis. The number of conflict-
ing edges of the child is indicated on the ordinate axis.

more importance than the other; this is why it is an asymmet-
ric crossover. In this test, we give a higher importance to one of
the parents. At each step of the crossover, we randomly draw
the parent that transmits its largest color class with a different
probability for each parent. We introduce x ∈ [0 ; 1], the prob-
ability of selecting the first parent; 1 − x is the probability of
selecting the second parent. For example, if x = 0.75, then, at
each step of GPX, parent 1 has a 3 in 4 chance of being selected
to transmit its largest color class (parent 2 has a 1 in 4 chance).
If x = 0.5, it means that both parents have an equal probability
(a fifty-fifty chance to be chosen); this almost corresponds to
the standard GPX. If x = 1, it means that the child is a copy
of parent 1; there are no more crossovers and therefore HEAD
is a TabuCol with two initial solutions. When x becomes fur-
ther from the value 0.5, the chance and diversity brought by the
crossover decrease. Figure 7 shows in abscissa the probability
x and in ordinate the average number of necessary iterations
required to find a legal 48-coloring (as in the previous test).

It can be remarked initially that the results are clearly sym-
metrical with respect to x. The best results are obtained for
0.4 6 x 6 0.6. The impact of this parameter is weaker than
that of the previous one: the control of the reduction in diver-
sification is finer. This version of GPX is called unbalanced
GPX and noted U(x) with x ∈ [0 ; 1] in tables 2 and 3. It
is used for three graphs <le450_25c>, <le450_25d> and
<r1000.5> since the standard GPX does not operate effec-
tively.

5.3 Test on parent replacement: systematic or
not

In HEAD, the two children systematically replace both parents,
even if they have worse fitness values than their parents. This
replacement rule is modified in this test. If the fitness value

Figure 5: Red and green lines indicate the number of con-
flicting edges of the two 48-colorings of the population: f(p1)
and f(p2) (left ordinate axis) at each generation of one run of
HEAD applied on <dsjc500.5> graph (abscissa axis). The blue
line indicates the distance between the two k-colorings during
the run: dH(p1, p2) (right ordinate axis).

Figure 6: Average iteration number required to find a legal
48-coloring for the <dsjc500.5> graph in function of the
randomness level; abscissa: x, the randomness level; ordinate:
the average iteration number

of the child is lower than that of its parents, the child auto-
matically replaces one of the parents. Otherwise, we introduce
a probability x corresponding to the probability of the parent
replacement, even if the child is worse than his parents. If
x = 1, the replacement is systematic as in standard HEAD and
if x = 0, the replacement is performed only if the children are
better (lower fitness value). When the x-value decreases, the
diversity also decreases. Figure 8 shows in abscissa the parent
replacement probability x and in ordinate the average number
of iterations required to find a legal 48-coloring (as in the previ-
ous test). If the parent replacement probability x = 0 or a very
low 0.1, then more time is required to produce the results. The
absence or the lack of diversification is shown to penalize the
search. However, for a large range of values: 0.3 6 x 6 1, it is
not possible to define the best policy for x criterion. The dra-
matic change in behavior of HEAD occurs very quickly around
0.2.

These studies enable a clearer understanding of the role of
the diversification operators (crossover and parent updating).
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Figure 7: Average number of iterations required to find a le-
gal 48-coloring for <dsjc500.5> graph according to the im-
balanced crossover; abscissa: x, probability to select the first
parent at each step of GPX; ordinate: average iteration number

Figure 8: Average number of iterations required to find a legal
48-coloring for <dsjc500.5> graph in function of the par-
ents’ replacement policy; abscissa: parent replacement proba-
bility; ordinate: average number of iterations

The criteria presented here, such as the random level of the
crossover or the imbalanced level of the crossover, have shown
their efficiency on some graphs. These GPX modifications
could successfully be applied into future algorithms in order to
manage the diversity dynamically.

6 Conclusion
We proposed a new algorithm for the graph coloring prob-
lem, called HEAD. This memetic algorithm combines the local
search algorithm TabuCol as an intensification operator with
the crossover operator GPX as a way to escape from local min-
ima. Its originality is that it works with a simple population
of only two individuals. In order to prevent premature conver-
gence, the proposed approach introduces an innovative way for
managing the diversification based on elite solutions.

The computational experiments, carried out on a set of
challenging DIMACS graphs, show that HEAD produces ac-
curate results, such as 222-colorings for <dsjc1000.9>,
81-colorings for <flat1000_76_0> and even 47-colorings
for <dsjc500.5> and 82-colorings for <dsjc1000.5>,
which have up to this point only been found by quantum an-
nealing [21] with a massive multi-CPU. The results achieved

by HEAD let us think that this scheme could be successfully
applied to other problems, where a stochastic or asymmetric
crossover can be defined.

We performed an in-depth analysis on the crossover opera-
tor in order to better understand its role in the diversification
process. Some interesting criteria have been identified, such
as the crossover’s levels of randomness and imbalance. Those
criteria pave the way for further researches.
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