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Abstract

Within the framework of multi-interaction systems
(MIS), we aim at proposing algorithms for solving
some partial differential equations (PDE), that are com-
monly used for modeling phenomena like transport
or diffusion, as they often occur in a complex system
involving natural phenomena. Unlike classical syn-
chronous ones, schemes for MIS have to be compat-
ible with chaotic asynchronous iterations, which en-
able multi-model/scale, interactive and real-time sim-
ulations. In our context, the notion of asynchronous it-
eration expresses the fact that activities, each modeling
a phenomenon, have their own lifetime and are pro-
cessed one after the other. These activations are pro-
cessed by cycles, in a random order -to avoid compu-
tation bias-, what we name chaotic iterations.
We provide MIS-compatible schemes to simulate trans-
port phenomena, thermal diffusion phenomena and
the spreading phenomenon of a wave packet. Our
schemes are based on interactions that represent sorts
of Maxwell daemons: transfers of flows between sev-
eral separate environments given by a spatial resolu-
tion grid.
We establish formal proofs of convergence for our
transport methods. We experiment an efficient asyn-
chronous diffusion scheme, and couple both schemes
for solving the advection-diffusion problem. We finally
illustrate a multi-interaction method for the spreading
of a wave packet described by the Schrödinger equa-
tion. Results are compared to classical numerical meth-
ods and they show that our methods are as accurate as
classical ones, whilst respecting MIS constraints.

Keywords: Transport; Diffusion; Advection;
Schrödinger equation; Chaotic asynchronous schedul-
ing; Multi-interaction system (MIS)

1 Introduction

The multi-interaction system framework (MIS) is a
computing paradigm for complex system modeling
[10]. Mostly used in virtual reality applications, its role
is to enable multi-model/multi-scale, interactive and
(as close as possible to) real-time simulations. It em-
anates from the multi-agent approach and proposes a
shift of focus from individual-centered to interaction-
centered for studying the living and virtual reality. The
MIS structure depends on the reification of interac-
tions, on chaotic asynchronous iterations and on an
organisation in autonomous systems. More precisely,
a MIS is a set of active autonomous objects model-
ing interactions betwen the passive structural elements
named constituents. Interaction is therefore the au-
tonomous elementary active unit of the MIS, and con-
stituents are the medium by which the interactions
are linked. The couples interaction/set of associated con-
stituents form systems. These elementary systems are
thus structurally coupled to one another whilst the in-
teractions act on the same constituents. In a MIS, inter-
actions are active processes scheduled by chaotic asyn-
chronous iterations. The notion of asynchronous itera-
tion is different from the one commonly used and ex-
plained in [12]. In our context, it expresses the fact that
activities1, each modeling a phenomenon, have their
own lifetime and are processed one after the other: the
constituents are changed after each interaction activ-
ity for the following one. The notion of chaotic itera-
tion deals with activities which are supposed to inter-
vene at the same time: they occur one after the other
(as for asynchronous iterations), but in a random order
to avoid bias in computations [20]. This paradigm in-
volving the reification of interaction and asynchronous
scheduling leads to imagine original algorithms for

1An activity matches a date on the execution of a process.
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solving partial differential equations (PDEs), as they
can appear to model natural phenomena.

Our MIS approach for solving PDEs distinguishes it-
self from classical methods as finite differences meth-
ods, finite element method, finite volume method
(see [14] for hyperbolic problems), spectral method,
meshfree methods, or domain decomposition meth-
ods and multigrid methods. It also stands out more
recent methods, as for example, the generalized fi-
nite difference method (GFDM) [4], the indirect RBFN
method [18] and the numerical meshfree technique
[24, 8], or (for parabolic problems) monotone Jacobi
and Gauss-Seidel methods [7], NIPG/SIPG discon-
tinuous Galerkin methods for time-dependent diffu-
sion equation [19], and for instance conservative local
discontinuous Galerkin methods for time dependent
Schrödinger equation [16]. Indeed, all these methods
are based on synchronous iterations, so that they are
not well adapted to the kind of simulations described
above [2].

Constituents and interactions in a MIS for a PDE resolution
scheme. In (A), the single constituent is the whole mesh or set
of points and the unique interaction instanciated by the PDE-
based phenomenon acts according to the classical scheme. In
(B), the constituents correpond to mesh elements or points and
the PDE-based phenomenon instanciates as much interactions as
interfaces between constituents. Each interaction acts locally as
a sort of Maxwell deamon associated to that phenomenon. The
(B) formulation is much more compatible with MIS assumptions
than the (A).

Figure 1: Two points of view for modeling PDE-based
phenomena into MIS.

Let us illustrate how phenomena modeled by PDEs
can be included into a MIS: by using directly a classical
synchronous scheme or by rewriting the schemes into
asynchronous ones (figure 1).

(1) A first idea could be to take a numerical scheme
associated to the resolution of those PDEs as the inter-
action of that phenomenon acting from t to t + δt on a
single constituent : the whole mesh or the whole set of
points. Since in that case there is a unique constituent
and a unique phenomenon interacting with that con-
stituent, only one interaction will be instanciated in the
simulation. Its activity consists in computing each δt
one step of the associated scheme to transform the sin-
gle constituent from t to t + δt.
If another phenomenon acts on the same constituent,

the corresponding interaction can only act before or
after the previous one. If this last phenomenon is
modeled by PDEs with its own numerical scheme,
the resulting numerical resolution of both phenomena
within asynchronous iterations can be viewed as a sort
of stochastic splitting method applied to both schemes.
Another way to solve this problem could be to write a
new single scheme valid for the PDE system obtained
by both phenomena; this is not very accurate in terms
of structural coupling, thus moves away from the MIS
principles for complex system modeling. Anyway, if
one of the phenomena involved in the complex sys-
tem and acting on such a constituent is not modeled
by PDEs, its intrication with PDE-based models won’t
be possible for time intervals smaller than the time step
δt used by PDE schemes.

(2) The second idea, that we defend, consists in
building asynchronous schemes for interactions at
each interface between two constituents and acting
as Maxwell-daemons to transfer flow between sev-
eral separate environments, namely constituents, ac-
cording to PDEs. The constituents are not the whole
mesh or sets of points but the elements of the mesh
or the points themselves. Each phenomenon instan-
ciates as much interactions as interfaces between con-
stituents. When several PDE-based phenomena are in-
volved, asynchronous scheduling of interaction activ-
ities can be viewed as a sort of generalized stochastic
splitting method at the level of interfaces. The resulting
simulation respects MIS principles and intrication with
no PDE-based models should be facilitated as a conse-
quence of the structural coupling provided by MIS.

This paper aims at proposing asynchronous numeri-
cal schemes for solving transport and diffusion prob-
lems, according to the assumptions of MIS. In this
context, our work applies to the simulation of trans-
port phenomena such as heat transfer, mass trans-
fer, fluid dynamics (momentum transfer), thermal or
chemical diffusion phenomena and the averaging of
a wave packet. Our interactions complete previous
work based on autonomous interface-agents [20, 21]
for reaction-diffusion problems. Furthermore, as we
show in this paper, our approach provides numerical
results which are as relevant as classical methods.

In the next section, we present the chaotic and
chaotic-asynchronous multi-interaction model for the
numerical computation of transport phenomena. In
section 3, we describe a chaotic multi-interaction
model for thermal diffusion phenomena, and we show
how simple it is to intricate such autonomous models
with an application to the phenomenon of transport-
diffusion. Finally (section 4), we introduce a chaotic
multi-interaction model for the averaging of a wave
packet.
NB: we have programmed our methods by using the
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RÉISCOP meta-model which offers an implementation
for MIS [10].

2 Transport models for MIS

2.1 Principle

In physics, chemistry, biology and engineering, a trans-
port phenomenon is any of various mechanisms by
which particles or quantities move from one place to
another. The laws which govern transport connect a
flux with a “motive force". Three common examples
of transport phenomena are diffusion, convection, and
radiation. We consider these three examples to build
our model, called transport-agent model.

Each transport-agent represents a flow of transport
of particles or quantities from one place to another.
-Perception : measuring particles or quantities, and
transport velocity inside each cell of its neighborhood
given by a spatial resolution grid;
-Decision : computing the quantities or the particles
passing from one cell to the other;
-Action : modifying the quantities or the particles in
each cell of its neighborhood.

2.2 Illustration

Let us illustrate our views, and consider three given
functions
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c : (x, t) ∈ [a, b]× [0, T] 7→ c(x, t) ∈ R,
f : (x, t) ∈ [a, b]× [0, T] 7→ f (x, t) ∈ R,
w : x ∈ [a, b] 7→ w(x) ∈ R.

The transport problem that we consider here consists
in seeking a function

u : (x, t) ∈ [a, b]× [0, T] 7→ u(x, t) ∈ R

which satisfies:
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∂u
∂t (x, t) + c(x, t) ∂u

∂x (x, t) = f (x, t), x ∈ [a, b], t ∈ [0, T],
u(x, 0) = w(x), x ∈ [a, b]
u(a) = u(b).

(1)
In the following, we present our transport-agent model
with various methods to approximate the solution u for
the problem (1) above. We establish formal proofs of
convergence for our methods in the simple case where
c(x, t) = c is a positive constant, and f = 0. We be-
gin with a space discretization (xi)0≤i≤N of the sys-
tem, and consider that in the middle of each interval
[xi, xi+1] is located a transport-agent, noted Ai in point
xi+1/2 =

xi+xi+1
2 which has a “lifetime" δti, whose role

will be, when it takes the hand, to update the values of
the solution in cells Ci and Ci+1 with the same length

δx where Ci = [xi−1/2, xi+1/2]. The values in other cells
are unchanged. Suppose that the transport-agent inter-
venes at moment n: it considers the overall state of the
system at this time, updates the values of the solution
of two adjacent cells, and leaves the other values un-
changed.
As in the finite volume method, and integrating into
the control cell Ci × [tn, tn+1] we obtain:

1
δx

(

∫ xi+1/2

xi−1/2

u(x, tn+1)dx −
∫ xi+1/2

xi−1/2

u(x, tn)dx
)

=

−
δt

δx

( 1
δt

∫ tn+1

tn

cu(xi+1/2, s)ds

−
1
δt

∫ tn+1

tn

cu(xi−1/2, s)ds
)

.

(2)

This writing suggests that:

i) An interesting description is given by: un
i ≃

1
δx

∫ xi+1/2
xi−1/2

u(x, tn)dx, average values of u in each cell of
control. Another benefit of this description is that u can
be undefined in one point, for example when the solu-
tion is discontinuous. However, the solutions are inte-
grable, so that their average value is always defined.

ii) the stock of increase of un
i during a time step is

given by

1
δt

∫ tn+1

tn

cu(xi+1/2, s)ds −
1
δt

∫ tn+1

tn

cu(xi−1/2, s)ds.

The term 1
δt

∫ tn+1
tn

cu(xi+1/2, s)ds is interpreted as the
average flow on time of outgoing or incoming by in-
terface of Ci located in xi+1/2, and the manner of ap-
proaching this average flow determines the activity of
transport-agent Ai.

2.3 Multi-Interaction chaotic model

2.3.1 Chaotic scheduling of activities

Definition: We name cycle of actions a succession of actions
of transport-agents involving each of them only once.

In our model, the cycles of actions follow, but the se-
quence of actions within a cycle is not imposed, and
changes from one cycle to another, randomly. Figure 2
illustrates this scheduling strategy.
Note: Let σ ∈ SN (SN permutation group). We define the
following application, which describes a cycle of action.

φσ = fσ(N) ◦ fσ(N−1) · · · fσ(1)

where N is the number of transport-agents and fi describes
the action of Ai.

Let us see exactly how a transport-agent Ai is in-
volved: at time tn the order of its intervention is σ−1(i),
and when Ai starts to operate, it perceives nearby cells
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Figure 2: Classical and transport-agent points of view
for transports scheduling. Case of 4 transport-agents
ai, 1 ≤ i ≤ 4.

separated by Ai and updates the values of the solution
in these cells according to which approximation we use
for the average flows ; in this paper, our approxima-
tions of the average flow on time are based on the fol-
lowing classical schemes: upwind and Lax-Wendroff
[1].

2.3.2 Approximation inspired by Upwind scheme:
upwind chaotic transport

In the following, u
n+σ−1(i)/N
i is the new value of the

solution in the cell Ci updating by Ai. The action of Ai,
i 6∈ {0, N}, is described by:

u
n+ σ−1(i)

N
i = u

n+ σ−1(i)−1
N

i − c δt
δx u

n+ σ−1(i)−1
N

i

u
n+ σ−1(i)

N
i+1 = u

n+ σ−1(i)−1
N

i+1 + c δt
δx u

n+ σ−1(i)−1
N

i

u
n+ σ−1(i)

N
j = u

n+ σ−1(i)−1
N

j ∀j 6∈ {i, i + 1}

(3)

and the actions of A0 and AN respectively by:

u
n+ σ−1(0)

N
0 = u

n+ σ−1(0)−1
N

0

u
n+ σ−1(0)

N
1 = u

n+ σ−1(0)−1
N

1 + c δt
δx u

n+ σ−1(0)−1
N

0

u
n+ σ−1(0)

N
j = u

n+ σ−1(0)−1
N

j ∀j 6∈ {0, 1}

u
n+ σ−1(N)

N
N−1 = u

n+ σ−1(N)−1
N

N−1 − c δt
δx u

n+ σ−1(N)−1
N

N−1

u
n+ σ−1(N)

N
N = u

n+ σ−1(N)−1
N

N + c δt
δx u

n+ σ−1(N)−1
N

N−1

−c δt
δx u

n+ σ−1(N)−1
N

N

u
n+ σ−1(N)

N
j = u

n+ σ−1(N)−1
N

j ∀j 6∈ {N − 1, N}.

Note: In the following of this section, we use the notation

ω = c δt
δx .

We can describe the actions of Ai by a matrix:

fi = (1 − ω)Eii + ωEi+1,i + ∑
j 6=i

Ejj

where Eij are elementary matrices.
Let us illustrate our point of view by two examples,

and consider at first the following case: at moment n, a
cycle begins, which we assume to be the cycle involv-
ing the Ais, in this order: AN−1,AN−2, ...,A0. Using
the notations of the previous paragraph, we get the fact
that at time n + 1, the state of the system is given by

Un+1 = f0 ◦ f1 ◦ · · · ◦ fN−1 (U
n)

where
Un = (un

0 , un
1 , · · · , un

N) .

Thus, in the choice of the precise sequence of actions
in a cycle, we have for example with N = 4

Un+1 =









1 0 0 0
ω 1 − ω 0 0
0 ω 1 − ω 0
0 0 ω 1 − ω









Un.

Now, let us consider the case where at time n, a cycle
begins, which we assume to be the cycle involving, in
this order, A0, A1,A2, and A3. Using the notations of
the preceeding paragraph, we get the fact that at time
n + 1, the state of the system is given by

Un+1

=
f3 ◦ f2 ◦ f1 ◦ f0 (U

n)
=









1 0 0 0
ω(1 − ω) 1 − ω 0 0
ω2(1 − ω) ω(1 − ω) 1 − ω 0
ω3(1 − ω) ω2(1 − ω) ω(1 − ω) 1 − ω









Un.

Note: If we develop the coefficients of the matrix of the sec-
ond case above into sums of powers of ω , and if we keep only
the terms of order 1, we obtain a similar Upwind scheme.

In the general case the idea is to determine the matrix
that allows us to move from one moment to another by
a column by column computation.

2.3.3 Proof of convergence

From Lax theorem2, since our scheme is linear, the fol-
lowing lemma proves the convergence:

Lemma: The upwind chaotic transport scheme is stable and
consistent with order 1 in space and 1 in time if |c|δt ≤ δx3

Proof. After a simple calculation we find that

un+1
i = (1 − ω)un

i + ωun
i−1 + R1 + R2

where R1 = −ξ1ω2un
i−1 + ξ2ω2un

i−2

2The theorem of Lax provides that in a well-posed mathematical
problem, and with a consistent discretization scheme, stability is a
necessary and sufficient condition for convergence.
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and

R2 =
i−2

∑
k=0

pk.un
k .

Here ξi are equal to 1 or 0, and for all k, pk is a poly-
nomial, and we notice that in this scheme all the coeffi-
cients are positive or zero.
Stability:

We have

|un+1
i | ≤ (1 − ω)|un

i |+ ω|un
i−1|+ ξ1ω2|un

i−1|
+ξ2ω2|un

i−2|+ A

with A =
i−2

∑
k=0

pk.|un
k |

so that

‖un+1‖∞ ≤ (1 + ξ1ω2 + ξ2ω2 +
i−2

∑
k=0

pk)‖un‖∞

and in the conditions of this lemma, there are constants
C2 and C3 such that

ξ1ω2 + ξ2ω2 ≤ C1δtδx and
i−2

∑
k=0

pk ≤ C2δtδx2.

In fact, for all k, pk is a polynomial of degree equal or
higher than 3 whose coefficients of the terms of degree
lower than 3 are null or pk is null.

Thus, pk = O(δtδx3) and more specifically
∀k, |pk| ≤ 2ω3 ≤ 2δx3δt.

Therefore, we get

i−2

∑
k=0

pk ≤ 2|
i−2

∑
k=0

δx3δt ≤ 2δx3δt.

However Nδx ≤ b − a thus ∑
i−2
k=0 pk = O(δtδx2), so

that there exists a constant (small enough) such that:

‖un+1‖∞ ≤ (1 + ρδt)n‖u0‖∞

so that ‖un+1‖∞ ≤ enρδt‖u0‖∞ or nδt ≤ T thus
‖un+1‖∞ ≤ eρT‖u0‖∞.
Thus the scheme is stable for the norm ‖.‖∞.
Consistency and order of the scheme:

Let v be a regular solution of the continuous problem
(1), we will estimate the quantity

ξ = v(t + δt, x)− (1 − ω)v(t, x)− ωv(t, x − δx)
+ξ1ω2v(t, x − δx) + ξ2ωi−2ωv(t, x − 2δx)

−∑
i−2
k=0 pk.v(t, x − kδx)

where ξ1, ξ2 . . . are null or equal to 1. To reduce the
writing we consider the following notations: v(t, x) =
v, vtt(t, x) = vtt and vxx(t, x) = vxx

After an order 2 limited development one obtains:
ξ = δt2

i−1vtt − ωδx2vxx + ξ1ω2v(t, x − δx) +

ξ2ω2v(t, x − 2h)− ∑
i−2
k=0 pk.v(t, x − kδx)

Thus we get the relations:

1. δt2vtt = O(δt2)

2. ξ1ω2v(t, x − δx) + ξ2ω2v(t, x − 2δx) = O(δtδx)

3. ωδx2vxx = O(δtδx)

4. ∑
i−2
k=0 pk.v(t, x − kδx) = O(δtδx2).

Finally, ξ
δt = O(δx) + O(δt).

2.3.4 Numerical illustration

In figure 3, we compare our Transport-Agent approach
(T-A) to upwind scheme (UW) and the exact solu-
tion(EX), with w(x) = e−x2

. We note that our ap-

Figure 3: Comparison between T-A(“lifetime" =9.10−4 and δx = 0.1),
UW(cfl=0.1 and 0.9) and EX.

proach is more accurate than the upwind scheme
for the “small" iteration count (200 interventions of
each transport-agent), and still similar to upwind
scheme(cfl=0.1) for “great" iteration count.

2.3.5 Approximation inspired by Lax-Wendroff
scheme: Lax-Wendroff chaotic transport

Now we approximate the flow by the flow of the Lax-
Wendroff scheme [1]. The orders of intervention of
Ai, A0, AN are respectively σ−1(i), σ−1(0) and σ−1(N)
and their actions are defined respectively by:

u
n+σ−1(i)
i = u

n+ σ−1(i)−1
N

i − c δt
δx

(

u
n+ σ−1(i)−1

N
i

+ 1
2

(

1 − δt
δx

)(

u
n+ σ−1(i)−1

N
i+1 − u

n+ σ−1(i)−1
N

i

)

)

u
n+σ−1(i)
i+1 = u

n+ σ−1(i)−1
N

i+1 + c δt
δx

(

u
n+ σ−1(i)−1

N
i

+ 1
2

(

1 − δt
δx

)(

u
n+ σ−1(i)−1

N
i+1 − u

n+ σ−1(i)−1
N

i

)

)

u
n+σ−1(i)
j = u

n+ σ−1(i)−1
N

j ∀j 6∈ {i, i + 1}
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u
n+ σ−1(0)

N
0 = u

n+ σ−1(0)−1
N

0

u
n+σ−1(0)/N
1 = u

n+ σ−1(0)−1
N

1 + c δt
δx

(

u
n+ σ−1(0)−1

N
i

+ 1
2 (1 −

δt
δx )(u

n+ σ−1(0)−1
N

i+1 − u
n+ σ−1(0)−1

N
i )

)

u
n+σ−1(0)/N
j = u

n+ σ−1(0)−1
N

j ∀j 6∈ {0, 1}

u
n+σ−1(N)/N
N−1 = u

n+ σ−1(N)−1
N

N−1 − c δt
δx

(

u
n+ σ−1(N)−1

N
N−1

+ 1
2 (1 −

δt
δx )(u

n+ σ−1(N)−1
N

N − u
n+ σ−1(N)−1

N
N−1 )

)

u
n+σ−1(N)/N
N = u

n+ σ−1(N)−1
N

N + c δt
δx

(

un
N−1

+u
n+ σ−1(N)−1

N
N − 1

2 (1 −
δt
δx )u

n+ σ−1(N)−1
N

N−1

)

u
n+σ−1(N)/N
j = u

n+ σ−1(N)−1
N

j ∀j 6∈ {N − 1, N}

(4)

In figures 4 and 5, we compare our Transport-Agent
(T-A) approach to upwind scheme (UW) and the exact
solution(Ex), with w(x) = e−x2

.

Figure 4: Comparison between T-A(“lifetime"=0.005 and δx = 0.05),
UW (cfl=0.1) and Ex.

We note that our approach is more accurate than the
upwind scheme for the “small" values of cfl, but for
values of cfl ≥ 0.3 accuracy decreases (cf figure 5).

2.4 Multi-interactions chaotic asynchro-
nous method

2.4.1 Formalization of actions of transport-agents

In this section,we keep all the previous notations
and consider that the order of interventions of the
transport-agents is carried out by temporal cycles, con-
taining at least one intervention of each transport-
agent (and thus at least two updates for each value in
a given cell).
Here again, the cycles of actions follow each other, but

Figure 5: Comparison between T-A(“lifetime"=0.015 and δx = 0.05) ,
UW (cfl=0.3) and EX.

the sequence of actions within a cycle is not imposed,
and changes from one cycle to another, randomly.

We thus consider a time step δt as the unit time
for the transport-agents, and that each Ai operates pi

times, and has one “lifetime" piδt = δti ; we also con-
sider the relation pδt ≤ δx3, with p = maxi(pi) and
thus the time step of our system is naturally △t =
mδt where m = lcm(p1, . . . , pN−1), where lcm is the
Least Common Multiple. Figure 6 illustrates this asyn-
chronous scheduling strategy.

Figure 6: Classical and transport-agent points of view
for transports asynchronous scheduling. Case of 3
transport-agents ai, 1 ≤ i ≤ 3, δt1 = δt2 = δt and
δt2 = 2δt thus ∆t = 2δt.

Note: Let σ ∈ Sm, (Sm permutation group) and

ρ : {1, 2, · · · , m} −→ {AN , AN−1, · · · , A0}

an application with: card(σ−1(Ai)) = m
pi

, the number of

times Ai operates during one cycle.

We define the following application, which describes a cy-
cle of actions.

φρ◦σ = gσ(ρ−1(AN)) ◦ gσ(ρ−1(AN−1))
· · · gσ(ρ−1(A1))

where g is a function such that gσ(ρ−1(Ai))
= f

σ(a)
i ◦ f

σ(b)
i ◦

· · · ◦ f
σ(e)
i when ρ−1(AN) = {a, b, · · · , e} and f

j
i describes

the action of transport-agent Ai and order of intervention j.
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2.4.2 Approximation inspired by upwind scheme:
upwind chaotic asynchronous transport

By the same reasoning as in the previous section, we
will define the action of the transport-agents follow-
ing Upwind and Lax-Wendroff schemes. We start with
upwind scheme, and consider at time tn the order of
interventions of Ai A0 and AN are respectively j ∈
σ(ρ−1(Ai)), k ∈ σ(ρ−1(A0)) and l ∈ σ(ρ−1(AN)):

u
n+j/m
i = u

n+(j−1)/m
i +−c δti

δx u
n+(j−1)/m
i

u
n+j/m
i+1 = u

n+(j−1)/m
i+1 + c δti

δx u
n+(j−1)/m
i

u
n+j/m
j = u

n+(j−1)/m
j ∀j 6∈ {i, i + 1}

un+k/m
0 = u

n+(k−1)/m
0

un+k/m
1 = u

n+(k−1)/m
1 + c δt0

δx u
n+(k−1)/m
0

un+k/m
j = u

n+(k−1)/m
j ∀j 6∈ {0, 1}

un+l/m
N−1 = u

n+(l−1)/m
N−1 − c

δtN−1
δx u

n+(l−1)/m
N−1

un+l/m
N = u

n+(l−1)/m
N + c

δtN−1
δx u

n+(l−1)/m
N−1

− δtN−1
δx u

n+(l−1)/m
N

un+l/m
j = u

n+(l−1)/m
j ∀j 6∈ {N − 1, N}.

To reduce the writings we adopt the notation: ωi =

a
piδt
δx , ω = ap δt

δx and each Ai is represented by the linear
application fi.

Consider for instance the following case: at time n, a
cycle begins, we assume to be the cycle involving, A0 ,
A1 2 times and A2 within the same cycle, in this order:
A0, A1,A2 and A1. Using the notations of the previous
paragraph, we get the fact that at time n + 1, the state
of the system is given by

Un+1

=








1 0 0 0
ω0 (1 − ω1)

2 0 0
0 2ω1 − (ω1)

2 − ω1ω2 1 − ω2 0
0 ω1ω2 ω2 1 − ω2









Un.

2.4.3 Proof of convergence

As in the previous case, the matrix making it possible
to go from one time step to the following is lower tri-
angular, so that to determine the form of the result-
ing numerical scheme it is enough to determine col-
umn by column the matrix by taking account of the fact
that fi(ei) = (1 − ωi)ei + ωiei+1 where (ei)1≤i≤N is the
canonical basis of R

N .

In this case, the scheme is written in the following
form:

un+1
i = αun

i + βun
i−1 + γun

i−2 + R1 + R2

After a simple calculation one finds α = 1 −
m/piωi, β = m/pi−1ωi−1, |R1| ≤ C1ω2(|un

i | +

|un
i−1|) and |R2| ≤ C2ω3(∑i

k=0 un
k ) where C1 and C2

are constants. Knowing that m/piωi = m/pi−1ωi−1
and with the same type of calculation that the previous
paragraph one proves the stability and the consistency
of order 1 in time and space, and thus the convergence.

2.4.4 Numerical illustration

The graphs on figure 7 represent the results
of this method (transport-agent asynchronous-
chaotic method). We compare our Transport-Agent
asynchronous-chaotic method (T-A) to upwind scheme
(UW) and the exact solution (Ex), with w(x) = e−x2

.
NB: Each Ai has its own “ lifetime" δti. As in the

Figure 7: Comparison between (T-A)( δtmin = 2.10−4, δtmax = 9.10−4

and δx = 0.05) , UW (cfl=0.1 and 0.9) and EX.

previous paragraph, we note that our approach is
more accurate than the upwind scheme for the “small"
iteration count (200 interventions of each transport-
agent), and still similar to upwind scheme(cfl=0.1) for
“great" iteration count.

2.4.5 Approximation inspired by Lax-Wendroff
scheme: Lax-Wendroff chaotic asynchronous
transport

Now we will illustrate (figure 8) the results of
this method (transport-agent chaotic asynchronous
method), for which the approximation of action
of a transport-agent is inspired by the scheme of
Lax-Wendroff. We compare our transport-agent
asynchronous-chaotic method (T-A) to upwind scheme
(UW) and the exact solution(Ex).

7



Figure 8: Convective transport of the function e−x2

(Comparison between (T-A), UW and EX).

Figure 9: Convective transport of the function e−x2

(Comparison between (T-A), UW and EX)

Therefore, as in the previous case we have a better
accuracy than the upwind scheme for the values of
c f lmax below 0.3, but beyond this value it loses accu-
racy (cf figure 9).

3 Diffusion model for MIS

3.1 Principle

In this section, we present an alternative to the tradi-
tional approach, for the resolution of the phenomenon
of thermal transfer within a homogeneous environ-
ment. This approach is an extension of the one exposed
in [20], it is based on the multi-interactions approach,
whose main role is the transfer of energy. Firstly
each diffusion-agent perceives its environment, then
decides on what it must do, taking into account the
laws of behavior, which are allocated to him. Finally
the diffusion-agent acts by modifying its environment.
We describe in the continuation of this section, the ac-
tion of the diffusion-agents.

3.2 Illustration

The parabolic problem considered here consists in
seeking a function u : (x, t) ∈ [a, b]× R

+ → u(x, t) ∈
R, giving the temperature of a metal bar, such that:

∣

∣

∣

∣

∣

∣

∣

∣

∂u

∂t
(x, t)− k

∂2u

∂x2 (x, t) = f (x, t), ∀x ∈]a, b[, t > 0,

u(a, t) = u(b, t) = 0, ∀t > 0,
u(x, 0) = w(x), ∀x ∈]a, b[,

(5)
where w : x ∈ [0, 1] → w(x) ∈ R is a given initial

condition, k and f are respectively thermal conductiv-
ity and the power per unit of length provided to the
bar, both of them are divided by the voluminal density
and the mass specific heat.In the following, we present
diffusion-agents model to approach the solution u of
the problem described above. We compare the numer-
ical solutions with the Finite volume method within a
simple framework where f are identically null (no heat
source brought to the bar). It is necessary to note that
the parabolic equations corresponding to the phenom-
ena of diffusion admit well known analytical solutions
[22], and can in the same way be solved numerically by
various methods (DF, EFF, Monte Carlo [15]).

3.3 Main Results

3.3.1 Multi-interaction chaotic model

In the following of this section, we adopt the notation : λ =

k δt
δx2.

Keeping the same ratings as before, we define the ac-
tion of diffusion-agent Ai by:

u
n+j/n
i = u

n+(j−1)/N
i + λ

(

u
n+j/n
i+1 − u

n+j/n
i

)

u
n+j/n
i+1 = u

n+(j−1)/N
i+1 − λ

(

u
n+j/n
i+1 − u

n+j/n
i

)

u
n+j/n
j = u

n+(j−1)/N
j ∀j 6∈ {i, i + 1}

(6)

where j denotes the order of intervention of Ai inside
the cycle starting at tn.

In figure 10 we compare our Diffusion-Agent ap-
proach (D-A) to the finite difference method (FDM).

3.3.2 Intricating transport and diffusion models

We show here how can be intricated previous choatic
schemes for transport and diffusion into a new scheme
for the mixed transport-diffusion problem:

∂u

∂t
(x, t) + c

∂u

∂x
(x, t)− k

∂2u

∂x2 (x, t) = 0.

We provide Ai with two methods, transport and dif-
fusion:

8



Figure 10: Comparison between (D-A) and (FDM), ac-
cording to the values of cfl and in several moments for
w(x) = e−x2

.

1. for the transport method, we use the scheme de-
scribed by equations (4) ;

2. for the diffusion method, we take equations (6).

Each of these methods is associated to an activity with
the same frequency. Activities are scheduled by chaotic
iterations.

By this way, we relocalise at the level of each
transport-dissusion-agent the method of splitting [23].

For the splitting method, we consider the system as

du

dt
= OA(u) + OD(u) (7)

where u is the solution vector and OA and OD are the
advection and diffusion terms. We then split the terms,
creating two systems of equations. Thus, a single step
of a first-order splitting method advancing the solution
from tn to tn+1 = tn + ∆t amounts to an application of
time discretization applied to the system

du∗

dt
= OA(u

∗) on [tn, tn+1], u∗(tn) = un, (8)

du∗∗

dt
= OD(u

∗∗) on[tn, tn+1], u∗∗(tn) = u∗(tn+1), (9)

with un+1 = u∗∗(tn+1).
Using operators notation we denote the solution of

a step as u∗ = SX , where X = A or D to denote the
different substep solution operators. Thus, the above
method can be written as un+1 = SA ◦ SDun.

Our model goes further than the splitting method be-
cause transport and diffusion activities are fully mixed.
Each transport-diffusion-agent is able to apply its role
of transport-agent and/or diffusion-agent in random
order exactly once per cycle. Figure 11 compares our
transport-diffusion-agent (T-D-A) method with finite
volume (VF). Although we did not demonstrate it for-
mally, for both c f l = 0.1 and 0.2, our T-D-A model
seems to behave as well as the VF scheme does.

Figure 11: Comparison between (T-D-A) and (VF), ac-
cording to the values of cfl, at several moments.

4 The averaging of a wave packet

4.1 Principle

After having studied the problem of diffusion, we want
now to extend the work to the spreading phenomenon
of a wave packet. We are interested in Schrödinger
equation, which describes the temporal evolution of
the wave function ψ which characterizes a system
whose squared module, assessed at position x and time

9



t, |ψ(x, t)|2, is interpreted as the probability density of
occurrence of the position x and time t. Schrödinger
equation is a partial differential equation in the form

ıh̄∂tψ = Hψ

where H is the Hamiltonian operator of the system (the
sum of operators of kinetic and potential energy)

H(t) = T + V(t).

The Hamiltonian operator depends on time if the po-
tentials involved are explicitly dependent themselves
on time, for example in such case of dealing with some
problems in the semi-classical way [25, 17] or when
we study the effect on an atom or molecule of an ex-
ternal electric field variable [11]. However when the
operator H does not depend on time it is reduced to
an Eigenvalue equation called stationary Schrödinger
equation. From the properties of the Schrödinger equa-
tion we can show that there is an operator of evolution
which applied to the state of a system at a given time,
provides later system state [3]. The resolution of the
Schrödinger equation is then reduced to the search for
this operator which is itself solution of an evolution
equation. But except for rare cases, the Schrödinger
equation has no analytical solutions. The numerical
resolution of Schrödinger equation allows to circum-
vent this problem. Additionally, a numerical approach
allows a concrete representation of the probability den-
sity which gives it an educational aspect.
There are several ways for this numerical resolution:
the scheme due to Delfour, Fortin and Payre [9], relax-
ation scheme [6], the variational method of Lagrange
networks for solving the stationary Schrödinger equa-
tion [13] and splitting schemes [5].

4.2 Illustration

The Schrödinger equation for a free particle (V = 0) in
one dimension is:

ıh̄∂tψ(x, t) = −h̄2/2m∂xxψ(x, t).

The general solution of this equation can be expressed
by a linear combination of solutions which are defined
by plane wave

ψ(x, t) = A exp i(kx − ω(k)t) where ω(k) = h̄k2/2m.

Such a solution, called wave packet, takes the follow-
ing form:

ψ(x, t) =
∫ ∞

−∞
g(k) exp i(kx − ω(k)t)

where g(k) is an arbitrary square sommable complex
function. The wave packet is said Gaussian if g(k) is a
Gaussian centered around k0 :

g(k) = exp
(

−α2(k − k0)
)

.

The squared module of the wave function is:

|ψ(x, t)|2 =
π

√

α4 + h̄2t2

4m2

exp



−
α2(x − vt)2

α4 + h̄2t2

4m2





where v = h̄k0
m .

Subsequently we consider that the spreading-agents
Ai all have the same “lifetime" δt, and that their or-
der of intervention is carried out by temporal cy-
cles containing one intervention and only one of each
spreading-agent (and thus two updates for each value
in a given cell of control).

4.3 Formalization and main results

Let us see precisely how a spreading-agent Ak inter-
venes : this spreading-agent separates two cells Ck and
Ck+1.
We suppose that the spreading-agent intervenes at mo-
ment n, the updates of ψk and ψk+1 are carried out as
follows:
Integrating on the cell of control Ck × [tn, tn+1], and
choosing an implicit estimate of the term on the right,
one obtains:

1
h

∫ xi+1/2

xi−1/2

iψ(x, tn+1)dx −
1
h

∫ xi+1/2

xi−1/2

iψ(x, tn)dx =

−
δt

h

h̄2

2m

( 1
δt

∫ tn+1

tn

∂xψ(xi+1/2, s)ds

− 1
δt

∫ tn+1

tn

∂xψ(xi−1/2, s)ds
)

(10)
We now follow the same reasoning for the construc-

tion of the model as in the previous part, and make of
it an implicit approximation of the gradient of function
ψ. The action of the spreading-agents Ak, A0 and AN is
defined by

ψ
n+ok/N
k = ψ

n+(ok−1)/N
k + i δt

δx2 (ψ
n+ok/N
k+1 − ψ

n+ok/N
k )

ψ
n+ok/N
k+1 = ψ

n+(ok−1)/N
k+1 − i δt

δx2 (ψ
n+ok/N
k+1 − ψ

n+ok/N
k )

ψ
n+ok/N
d = ψ

n+(ok−1)/N
d ∀d 6∈ {k, k + 1}

ψn+o0/N
0 = 0

ψn+o0/N
k+1 = ψ

n+(o0−1)/N
k+1 − i δt

δx2 ψn+o0/N
k+1

ψn+o0/N
j = ψ

n+(o0−1)/N
j ∀j 6∈ {0, 1}

ψn+oN /N
N−1 = ψ

n+(oN−1)/N
N−1 − i δt

δx2 ψn+oN /N
N−1

ψn+oN /N
N = 0

ψn+oN /N
j = ψ

n+(oN−1)/N
j ∀j 6∈ {N − 1, N}

10



where oi, o0 and oN are respectively the order of in-
tervention of Ai, A0 and AN inside the cycle starting at
tn.

Notation 4.3.1. Subsequently, we adopt the notation

κ = i
δt

δx2 .

We can describe this action by the matrix

fk = 1+κ
1+2κ (Ekk + Ek+1,k+1)

+ κ
1+2κ (Ek,k+1 + Ek+1,k) + ∑j 6=k Ejj

The matrices fi, f0 and fN are explicitly given by:

fi =

























1 0 · · · 0 0
0 1 · · · 0 0
...

. . . 0
1+κ

1+2κ
κ

1+2κ
κ

1+2κ
1+κ

1+2κ
. . .

1

























f0 =

























0 0 · · · 0 0
0 1

1+κ · · · 0 0
...

. . . 0
1

1
. . .

1

























fN =

























1 0 · · · 0
0 1 · · · 0
...

. . . 0
1

. . .
1

1+κ 0
0 0 0

























Figure 12 shows the evolution of Gaussian wave
packet. This simulation was conducted in an interval
[−5, 5] with a step space discretization δx = 0.1 and
the duration of each spreading-agent is δt = 0.01

5 Conclusion and outlook

In the framework of the simutation of complex sys-
tems, we need numerical schemes for solving PDEs,
resting on asynchronous iterations. We have pro-
posed a model which is adapted to such simulations

Figure 12: Evolution of Gaussian wave packet:
|ψ(x, t)|2 according to x for different values of t (h̄ =
m = 1, α = 2, k0 = 1).

for transport phenomena, thermal diffusion phenom-
ena, transport-diffusion phenomena and the spreading
phenomenon of a wave packet.

We have demonstrated the convergence for the
transport-agent method when its action is inspired by
the upwind scheme, using both an asynchronous and a
chaotic-asynchronous method. As we dispose of local
conditions of stability, each interaction chooses activ-
ities in a way which is compatible with these condi-
tions. We have illustrated numerically the relevance
of our method for diffusion phenomena. We have
shown through the transport-diffusion problem that
such asynchronous models can be coupled easily. Fi-
nally we achieved a numerical explanation of a wave
packet spreading, using an asynchronous model.

We plan to demonstrate convergence properties for
diffusion-agent and transport-diffusion-agent meth-
ods. Furthermore, we will add an activity within each
mesh which role is to take into account the potential in
the Schrödinger equation, and aim at demonstrating
the convergence of our scheme for Schrödinger equa-
tion.
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