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The cage elasticity and under-field structure of

concentrated magnetic colloids probed by small angle

X-ray scattering

E. Wandersman,ab A. Cēbers,c E. Dubois,a G. Mériguet,a A. Robertde and R. Perzynski*a

In the present study we probe the bulk modulus and the structure of concentratedmagnetic fluids by small

angle X-ray scattering. The electrostatically stabilized nanoparticles experience a repulsive interparticle

potential modulated by dipolar magnetic interactions. On the interparticle distance length scale, we

show that nanoparticles are trapped under-field in oblate cages formed by their first neighbours. We

propose a theoretical model of magnetostriction for the field-induced deformation of the cage. This

model captures the anisotropic features of the experimentally observed scattering pattern on the local

scale in these strongly interacting colloidal dispersions.

1. Introduction

Numerous applications of magnetic uids, such as seals or

eld-assisted dampers,1–4 require concentrated products. Such

concentrated magnetic colloids are also model systems, as the

magnetic eld is a powerful and tunable external parameter,

controlling for example the geometric conformations of

magnetic foams.5,6 The knowledge of the under-eld structure

of these magnetic colloids is mandatory. They are dipolar uids

based on monodomain magnetic nanoparticles (NPs) dispersed

in a liquid carrier with stabilization against aggregation per-

formed either with a steric coating or with an electrostatic

double layer (in polar carriers).3,4 When the dipolar interaction

is dominant, the nanoparticles self-assemble under the eld

into anisotropic structures,7 driven by the formation of dipolar

chains with NPs on contact and attracted together to produce

column formation (like in non-Brownian electrorheologic

uids8). In contrast when the interparticle repulsion is domi-

nating as in the present work, the dipolar interaction (which can

be tuned by applying a magnetic eld through the progressive

alignment of the NP permanent magnetic moment) only

modulates the liquid-like structural organization of the

magnetic uid.9,10 Concentrated magnetic uids then present

an under-eld structure with anisotropic features of the

structure factor S(~q),9,11–13 both on macroscopic scales (at low

scattering vectors~q) and on the local scale close to S(~q) maxima

at ~qmax. The low q anisotropy of S(~q) is well explained. It has

been extensively described with a mean eld model11,14,15 and

with a mean spherical model.16 We focus here on the anisotropy

of S(~q) around its maximum and rst of all, on the anisotropy of

qmax itself. This corresponds to the length scale of the cages

made by the rst neighbours, which entrap the NPs. Numerical

simulations of dipolar so sphere uids17 predict in that case an

anisotropic local organization of the NPs more structured along

the eld than perpendicularly to the eld, forming column-like

structures inside the liquid carrier. Previous experimental

studies9,11,12 performed by Small Angle Neutron Scattering

(SANS) have evidenced an opposite behavior with a structure

more marked in the direction perpendicular to the eld.

However these SANS experiments were not able to evidence any

anisotropy of the mean interparticle position (anisotropy of

qmax). Thanks to the much better spatial resolution of

Small Angle X-ray Scattering (SAXS), the measurements pre-

sented here show a clear anisotropy of qmax. We present here a

simple model based on the eld-induced magnetostriction of

the NP cages at constant volume. It allows reproduction of the

anisotropy of qmax and S(qmax), experimentally measured by

SAXS.

Aer giving the details of our experiment in Section 2, we

present in Section 3 the zero eld experimental results con-

cerning NP cages and the bulk modulus B0 of the magnetic

uids in zero eld, together with the NP mean quadratic

displacement in their cage. The eld-induced results are then

presented in Section 4 before describing our theoretical model

in Section 5. It is then compared with respect to the experi-

mental results in Section 6. Its limitations are then discussed in

Section 7.
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2. Materials and methods

2.1. Samples

The magnetic uids studied here are prepared as described in

ref. 9 and 18. They consist of aqueous dispersions of maghemite

(g-Fe2O3) nanoparticles (typically 10 nm in diameter) coated

with citrate molecules to ensure a negative surface charge at pH

¼ 7 (�2e� per nm2).19 The interaction between NPs is composed

of (i) van der Waals attraction, (ii) electrostatic repulsion that

can be screened by the presence of free ions in the solution, and

(iii) anisotropic dipolar interaction between the magnetic

moments ~m of the NPs which are magnetic monodomains. A

chemical control of the dispersions allows an increase of the

strength of electrostatic repulsion leading to the colloidal

stability of the magnetic uid.13,20

The NP size polydispersity at the end of the chemical

synthesis is reduced thanks to a size-sorting process.21,22 We

retain the largest nanoparticles among the synthesis batch in

order to obtain a rather large magnetic dipolar interaction.

High NP concentrations at xed ionic strength are obtained

thanks to the osmotic stress.9,18 The citrate species adsorbed on

the NPs are in equilibrium with free citrate species. The

concentration of these free species [cit]free is xed in the dialysis

bath in order to create a strong enough electrostatic repulsion

to maintain the colloidal stability of the magnetic uid under

an external magnetic eld. We therefore do not observe any

demixing in two phases here20,23,24 but we can observe an

anisotropy of interaction in the small angle scattering spectra.9

Most of the samples probed here are uid samples, however one

(sample B, see Table 1) is close to the colloidal glass

transition.18,25,26 The NP volume fraction F in each sample is

given in Table 1 – together with [cit]free and the NP magnetic

characteristics obtained by magnetization measurements at

room temperature. d0NP is the median NP diameter and s is the

polydispersity index of the log-normal distribution of dNP,

diameters of magnetic NPs (for small s, the standard deviation

of dNP distribution is close to sd0NP). d
0
NP and s are experimentally

determined from the adjustment of MF magnetization at low

volume fractions by a Langevin function weighted by the log-

normal distribution of diameters,1 with a NP saturation

magnetizationms ¼ 3� 105 Am�1.Msat
MF ¼msF is the saturation

magnetization of the different MF samples at the volume frac-

tion F. The dipolar interaction parameter Jdd (characteristic of

the NPs and dened as Jdd ¼ g=F ¼
m0

kBT
ms

2p

6
dNP

3
– see

Appendix I) is experimentally determined in low elds by the

measurement of the initial magnetic susceptibility at low

volume fractions.9,11–13,15 Note that, comparing sample A and

sample E in Table 1, a small difference in s with the same d0NP
value induces a large difference in Jdd and thus in physical

properties of the sample.

2.2. Experimental details

SAXS experiments are realized at the ID02 beamline at the

European Synchrotron Radiation Facility (Grenoble – France)

using 12 keV X-rays and two sample-to-detector distances. It

gives access to scattering vectors in the range 5 � 10�3 Å�1
# q

# 2 � 10�1 Å�1 with an accuracy dq ¼ �5 � 10�5 Å�1. The

intensity is detected on a FReLON CCD. The samples are

prepared in 1 mm diameter quartz-capillaries. A uniform

magnetic eld H, normal to the X-ray beam in the horizontal

scattering plane, can be applied with an intensity ranging from

0 to 800 kA m�1. The spectra are analyzed as in ref. 9 leading in

zero eld to the structure factor S0(q,F) from a radial analysis of

the isotropically scattered intensity. It presents a maximum at

intermediate q marking the most probable interparticle

distance in the isotropic dispersion. Under-eld the scattering

pattern is anisotropic. The intensity is thus analyzed over

angular sectors of 20� width both along the eld leading to

S||(q, F, H) or perpendicular to the eld leading to St(q, F, H)

(see ref. 9). This is illustrated in Fig. 1 which presents the SAXS

Table 1 Chemical and magnetic characteristics of the samples (see the text).

They are in the fluid phase except sample B which is a freshly prepared glass

forming sample (see ref. 18)

Samples [cit]free (M) d0NP (nm) s Jdd F Msat
MF (kA m�1)

A – uid 0.03 9.5 0.35 56 17.5% 53
B – glassy 0.03 9.5 0.35 56 30% 90
C – uid 0.03 9.8 0.25 34 12.5% 38
D – uid 0.01 8.5 0.35 44 16% 48
E – uid 0.01 9.5 0.4 80 13% 39

Fig. 1 SAXS patterns of sample A with F¼ 17.5% in zero field (a) and under a magnetic field ((b) at H¼ 500 kA m�1). Their associated structure factors are presented

in (c); the middle curve S0(q) from (a); field induced structure factors are deduced from the analysis of (b) pattern over �10� sectors respectively centered along the axis

~q k ~H (S||(q) – lower curve) and the axis ~q t ~H (St(q) – upper curve).
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patterns of sample A (see Table 1) in zero eld and under a eld

of 500 kA m�1, together with the associated structure factors.

Under the eld, the structure factors S||(q) and St(q) are

deduced from the analysis of the pattern over sectors respec-

tively centered along the axis~q k ~H and the axis~q t ~H. In both

directions the liquid-like structure factor presents a maximum

respectively located at qmax
k and qmax

t .

In the following Section, we rst compare the experimental

results in zero eld with SANS data9,27–29 obtained under similar

conditions either on PAXY at reactor Orphée – LLB – Saclay –

France or on D22 at ILL – Grenoble – France.

3. Experimental results in zero field

We rst focus on the zero-eld elastic properties of the

magnetic uid obtained at low q's and on the structure factor

shape determined over the whole q-range.

3.1. Bulk modulus in zero eld

Magnetic uids are compressible colloidal dispersions of

magnetic NPs and the bulk modulus B0 of the NP's system can

be determined experimentally by SAXS and SANS. It is related to

the measured isothermal compressibility cT,0 of the magnetic

uid in zero eld9,11 through

cT ;0 ¼ S0ðq ¼ 0Þ ¼
1

d0
3

kBT

B0

(1)

where d0 is the mean interparticle distance. When the system is

in the strongly repulsive regime, then qmax
0 scales as F1/3 and d0

¼ 2p/qmax
0 .

Introducing the mean quadratic displacement s0 of the

nanoparticles, we obtain

s0
2 ¼

kBT

d0B0

: (2)

with

cT ;0 ¼

�

s0

d0

�2

: (3)

Fig. 2 shows the experimental measurements of qmax
0 and

cT,0 for the samples A, B and C of Table 1 and compares them

with previously published SANS results9,27–29 with the same

NP's and [cit]free. Fig. 2a shows that the NP's system is indeed

strongly repulsive here as qmax
0 scales as F1/3. Note in Fig. 2b

that cT,0 can be described up to F � 20% by the Carnahan–

Starling formalism developed in Appendix II while replacing

F with an effective volume fraction Feff taking in account the

screening length of the electrostatically charged NP's.

Above F of the order of 12%, cT,0 becomes smaller than 0.1

and thus the NPs dispersion is only weakly compressible in

zero eld.

Fig. 3 presents the F-dependence of d0, s0 and B0 deduced

from Fig. 2 using eqn (1)–(3). While both d0 and s0 progressively

decrease with F, B0 increases by two orders of magnitude over

the whole range of volume fractionsF. Let us note in Fig. 3a that

if at low F the interparticle distance d0 and the mean quadratic

displacement s0 of NPs are of the same order, it is no more the

case at large F's. When the system is becoming glassy (here for

F T 30% (ref. 9 and 18)) we observe that s0/d0 ( 0.2 but also

that B0 does not present any strong discontinuity. It smoothly

becomes of the order of 105 Pa, which is also the order of

magnitude of the osmotic pressure of the NP's system.

The values of d0, s0 and B0 resulting from the analysis of the

SAXS spectra of samples in Table 1 are summarized in Table 2.

Samples with similar volume fractions (A and D on the one

hand and C and E on the other hand – see Table 1) present close

B0 values, independently from [cit]free. The B0 value of the glass-

forming sample B can be compared with that obtained for glass-

forming systems based on different microscopic objects. Indeed

we can rewrite eqn (1) as cT ;0 ¼
1

ðd0
NPÞ

3

FkBT

B0
. At equivalent

1

F

cT ;0

kBT
, B0 should scale as the inverse of the volume of the

dispersed objects. The value B0 ¼ 6.2� 104 Pa found here scales

well with the elastic modulus of the suspension of micron sized

silica particles close to the glass transition at 0.1 Pa given in ref.

30 since the ratio of the characteristic sizes for these two

systems is approximately equal to 100.

3.2. Paracrystal structure in zero eld

Another way to determine the NP's mean quadratic displace-

ment and the bulk elastic modulus is to adjust the zero-eld

structure factor S0(q) of the dispersions by the following

Fig. 2 F-dependence of qmax
0 (a) and cT,0 (b) as deduced either from SANS (open

symbols) or SAXSmeasurements (full symbols) for the series of samples from ref. 9

and 27–29, which are based on the samemagnetic NPs and prepared at the same

[cit]free as samples A, B and C of Table 1; squares correspond to the same NPs

as samples A and B; discs correspond to the same NPs as sample C. Dashed line of

(a): adjustment of qmax
0 (F) with qmax

0 ¼ 0.1(F/2)1/3 corresponding to d0 ¼

2p/qmax
0 andF¼ pdNP

3/6d0
3with dNP¼ 9.8 nm; dashed line of (b): adjustment of

cT,0(F) with the Carnahan–Starling formalism of Appendix II.
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expression standardly used for colloidal dispersions of (mono-

disperse) nanoparticles:31

SðqÞ ¼
sinh

�

s0
2q2=2

�

coshðs0
2q2=2Þ � cosðqdÞ

(4)

where �d is a parameter, which equals d0¼ 2p/qmax
0 only if �s0/�d�

1. We call �s0 and �B0 the NP's mean quadratic displacement and

the bulk elastic modulus determined by this method. Eqn (4)

has been used for example for describing the structure of latex

solutions31 or the uctuations of multivalent ions adsorbed on a

linear polyelectrolyte chain.32,33 With eqn (4) the compressibility

expresses as S(q ¼ 0) ¼ (�s0/�d)
2.

In the present case, the condition �s0/�d � 1 is not always

fullled and �d has to be tted. Therefore S(q) is rewritten as a

function of the two parameters �s0/�d and q�d which are both

adjusted, �s0/�d controlling the shape of S(q) and q�d controlling

the position of the S(q) maximum. The values of �s0 and
�B0 obtained with such ts are summarized in Table 2 and

plotted in Fig. 3. They are rather close to the values previously

obtained from cT,0 and qmax
0 . Fig. 4 shows the quality of the

adjustment of S0(q) with eqn (4) for samples A and C.

Despite the fact that eqn (4) does not take into account the

polydispersity of the NPs, we can show a very good self-consis-

tency between the measurements of various parameters for the

system in zero eld from either the S(q) prole adjustment or

from the compressibility determination at low q's. Indeed this

model is essentially a “rst neighbor” model which is weakly

sensitive to polydispersity. Besides, the polydispersity which

does not appear here explicitly, is hidden in the same way

for both kinds of measurements through the adjustments to

qmax
0 and S(q ¼ 0).

Fig. 3 F-dependence of d0, s0 (a) and B0 (b) deduced from the data of Fig. 2 –

the same symbols as in Fig. 2; �d, �s0 (a) and �B0 (b) deduced from the analysis of

SAXS profiles S(q) by eqn (4) for samples A, B (full downward triangles) and C (full

upward triangle). Dashed line in (a) corresponds to d0(nm) ¼ 9.8(p/6F)1/3 (the

same adjustment as in (b)).

Table 2 Characteristics of the samples deduced from SAXS measurements; d0 is the mean interparticle distance in zero field and cT,0 is the experimental isothermal

compressibility; s0 and B0 are experimentally deduced from d0 and cT,0 using eqn (1)–(3); �d, �s0 and �B0 are deduced from the adjustment of S(q) with eqn (4); The under-

field interparticle distances ~dk ¼ dk(Hmax) and ~dt ¼ dt(Hmax) are deduced from qmax values at the maximum field; KelH is deduced from the under-field model in Section

5 (eqn (20), Fig. 6) and the magnetic characteristics in Table 1

Sample d0 (nm) cT,0 s0 (nm) B0 (Pa) �d (nm) �s0 (nm) �B0 (Pa) ~dk (nm) ~dt (nm) Kel
H (Pa)

A 15.7 0.1 5.0 1.0 � 104 14.9 4.7 1.1 � 104 14.8 16.2 2.6 � 104

B 11.7 0.04 2.3 6.2 � 104 11.3 2.8 4.4 � 104 11.1 12 9.4 � 104

C 16.7 0.15 6.5 5.7 � 103 15.2 5.9 6.9 � 103 16.2 17 2.7 � 104

D 17.6 0.06 4.3 1.2 � 104 17 4.8 1.0 � 104 16.1 18.3 1.7 � 104

E 22.2 0.05 5.0 7.3 � 103 21.4 6.0 5.0 � 103 20.9 22.8 1.4 � 104

Fig. 4 Zero-field S(q) profiles of sample A (a) and sample C (b) adjusted with eqn

(4) (solid line) with respectively (�s0/d0)
2 ¼ 0.09 and 0.125.
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4. Under-field results

The scattering proles present a strong anisotropy when an

external magnetic eld is applied (cf. Fig. 1). We focus here on

the analysis of the structure factor in the directions parallel and

perpendicular to the eld.

First of all we nd that experimentally qmax
k (H) is always

larger than qmax
t (H), meaning that the interparticle distance dk¼

2p/qmax
k is always smaller than dt ¼ 2p/qmax

t . If the cage formed

by the rst neighbours around a given nanoparticle is approx-

imated by an ellipsoid, this means that the zero-eld spherical

cage always deforms under-eld as an oblate ellipsoid. More-

over at the rst order, the deformation of this cage occurs at a

constant volume. Indeed experimentally the ratio dk(H)

dt
2(H)/d0

3 is found to be equal to 1� 0.02 for every applied eld

and whatever the sample.

Fig. 5 shows for sample A the eld dependence of qmax
k and

qmax
t and that of Smax

k and Smax
t . Their under-eld anisotropy

goes in opposite ways and saturates in high elds. The values of
~dk ¼ dk(Hmax) ¼ 2p/qmax

k (Hmax) and ~dt ¼ dt(Hmax) ¼ 2p/

qmax
t (Hmax) are reported in Table 2.

5. Theoretical model

In these dispersions, each NP bears a permanent magnetic

dipole~m. If the dispersion is dilute, the magnetization MMF can

be described by a Langevin formalism and results from the

progressive reduction of the orientational uctuations of the

magnetic dipole~m around the direction of the applied eld ~H. In

a concentrated dispersion, these dipoles interact together

through the magnetic dipolar interaction. Between two parallel

dipoles~m at distance d from each other, this dipolar interaction

is anisotropic and manifests itself as attractive along the

direction of the magnetic dipoles and repulsive in the perpen-

dicular direction. It can be written at the rst order as:

u
k
dd ¼ �

m0m
2

2pd3
and utdd ¼

m0m
2

4pd3
(5)

The model of Appendix I (from ref. 11 and 15) describes the

H-dependence of MMF in concentrated magnetic uids. Under

an applied eld, the dipolar interaction induces a uniaxial

stress between NP's, leading to a magnetostriction at constant

volume, without compression. Macroscopically the magneto-

strictive contribution to the energy density of the magnetic

colloid may be obtained considering the total eld acting on the

dipoles, as in the mean eld model of ref. 14. This latter model

describes well the effect of the dipolar interaction on the ther-

modynamic properties of the magnetic colloids that are

measured in the limit of q/ 0.9,11,15 On a more local scale, each

NP in a concentratedmagnetic uid can be seen as entrapped in

a cage constituted by its rst neighbouring NPs. Because of the

eld-inducedmagnetostriction, the cage around amagnetic NP,

while keeping a constant volume, becomes anisotropic with a

dimension d|| smaller than dt. Considering the experimental

observations described in Section 4, we approximate the cage by

an oblate ellipsoid of eccentricity e and constant volume

Vcage ¼
p

6
dkdt

2
x

p

6
d0

2, with its symmetry axis along its

magnetization ~Mcage. Inside the ellipsoidal cage, ~Mcage is

assumed to be homogeneous and each cage is associated with a

magnetic moment ~m, mean projection along ~H of the uctu-

ating moment ~m in the cage. ~m is eld dependent with m(H) ¼

MMF(H)dkdt
2 ¼ Mcage(H)Vcage. The energy per particle associ-

ated with the demagnetizing eld is then:

E ¼ �
m0

2
NðeÞMcage

2Vcage (6)

where m0 is the vacuum permeability and N(e) is the demag-

netizing factor of the ellipsoidal cage. At small deformations

(the z axis is along the direction of the magnetization; x and y

axes are perpendicular to it), the eccentricity of the oblate

ellipsoid is:

e2 ¼ (ux,x + uy,y) � 2uz,z (7)

where~u¼ (ux, uy, uz) is the displacement vector with respect toH

¼ 0 position, the second subscript of ui,i denoting the partial

derivative with respect to the corresponding variable of ui.

Accounting for the expression of the demagnetizing factor of an

ellipsoid of small eccentricity:

NðeÞ ¼
1

3

�

1þ
2

5
e2
�

; (8)

and neglecting the constant term, we obtain the magnetostric-

tion energy:

Fig. 5 Field dependence of qmax
k and qmax

t (a) and of Smax
k and Smax

t (b) for (fluid)

sample A (the same sample as in Fig. 1 – see characteristics in Table 1). Symbols:

squares in the direction parallel to the applied field and circles in the perpen-

dicular direction. The dashed lines (see Section 6) correspond to best adjustments

of the data to eqn (20) and (22) using for MMF the effective mean field model of

Appendix I with dNP ¼ 11.5 nm. It leads to KelH ¼ 2.6 � 104 Pa.
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Em ¼
4m0

5p
MMF

2d0
3

�

uz;z �
1

2

�

ux;x þ uy;y
�

�

: (9)

In the absence of overall under-eld compression (DVcage/

Vcage ¼ 0 and thus Siui,i ¼ 0 whatever H) uz,z ¼ �(ux,x + uy,y), eqn

(9) has thus a form equivalent to that of the magnetostriction

energy considered in ref. 34 in the case of the ferromagnetics.

For the present uniaxial deformation along the z axis let us note

uz,z ¼ (zj+1 � zj � d0)/d0, with zj being the average position of the

jth particle along the z axis. We obtain for the energy per particle

Em ¼
6m0

5p
MMF

2d0
2
�

zjþ1 � zj � d0
�

: (10)

Eqn (10) is close to the energy Uk
dd of two parallel dipoles with

the radius vector along their magnetic moment ~m:

U
k
dd ¼ �

m0m
2ðHÞ

2p
�

zjþ1 � zj
�3
x�

m0m
2

2pd0
3
þ
3m0m

2

2pd0
4

�

zjþ1 � zj � d0
�

(11)

Here the magnetic moment ~m being eld-dependent with m(H)

¼ d0
3MMF(H), we see that the magnetostrictive part of eqn (11),

except for a coefficient of 0.8, coincides with the general eqn

(10). Further on we use the estimate given by eqn (11).

In concentrated uid samples the under-eld interaction at

the mean distance d between the colloidal particles is related to

the elastic deformation of their surroundings. Denoting the

mean quadratic displacement of the particles around their

mean position under-eld by sH
2 and assuming that it does not

depend on the eld value nor on its direction, we have for the

global energy of a sequence of N particles along the eld

direction:

EH

kBT
¼
X

N�1

j¼0

 

1

2sH
2

�

zjþ1 � zj � d0
�2

þ
3m0m

2ðHÞ

2pkBTd0
4

�

zjþ1 � zj � d0
�

!

:

(12)

Providing that 3m0m
2(H)sH

2 � 4pkBTd0
5, the effective energy

of the particle interaction in the sequence of N particles can be

rewritten in these terms:

EH

kBT
¼

1

2sH
2

X

N�1

j¼0

�

zjþ1 � zj � dk
�2

þ const (13)

with

dk ¼ d0

 

1�
3m0m

2ðHÞsH
2

2pkBTd0
5

!

(14)

giving the renormalization of the mean distance between the

particles due to the magnetostriction. Eqn (13) leads to the

under-eld elastic energy per unit volume

eelas;H ¼
1

2

kBT

sH
2d0

uz;z
2 (15)

and gives, in a way similar to eqn (2), the following estimate for

the under-eld elastic modulus Kel
H:

Kel
H ¼

kBT

sH
2d0

: (16)

Kel
H is analogous to a Young's modulus in this anisotropic

elastic medium. It is different from the compression modulus

B0 measured at H ¼ 0. We thus obtain:

dk

d0
¼ 1�

3m0MMF
2

2pKel
H

: (17)

We note that the relative decrease of the mean distance

between the particles in the direction of the magnetization is

eld-dependent through the eld-dependence of MMF and that

it does not depend explicitly on d0. It might depend on d0
through the d0-dependence of the elastic modulus Kel

H and

magnetization MMF.

Let us note that the condition to write eqn 14 and 15 now

reads 3m0MMF
2 � 4pKel

H.

In a similar way considering the interaction energy of two

parallel dipoles with the radius vector perpendicular to their

direction

Ut

dd ¼
m0m

2

4p
�

xjþ1 � xj

�3
x

m0m
2

4pd0
3
�
3m0m

2

4pd0
4

�

xjþ1 � xj � d0
�

; (18)

we obtain the mean distance between particles in the direction

perpendicular to the magnetization of the sample

dt

d0
¼ 1þ

3m0MMF
2

4pKel
H

: (19)

6. Test of the model – a comparison with
the experiment

At the highest elds of the experiment MMF is saturated what-

ever the sample. Kel
H can thus be easily evaluated from the

relationship Kel
H ¼ 9m0M

sat2

MF d0=4pð~dt � ~dkÞ deduced from eqn

(17) and (19). The values of Kel
H (summarized in Table 2) are

obtained for each sample from the adjustment of the global

H-dependence of qmax
k and qmax

t experimentally measured with

the following expression:

qmax
k ðHÞ ¼ qmax

0

��

1�
3m0MMF

2ðHÞ

2pKel
H

�

and

qmax
t

ðHÞ ¼ qmax
0

��

1þ
3m0MMF

2ðHÞ

4pKel
H

�

(20)

Eqn (20) is also deduced from eqn (17) and (19). The

H-dependence of MMF in the concentrated colloids investigated

here can be calculated with the characteristics of Table 1 and by

using the effective eld model11,15 detailed in Appendix I. As in

the mean-eld model the NP polydispersity is not taken into

account, an averaged magnetic NP diameter
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hdNP
3i3

p

is used

here (¼ 11.5 nm for sample A for example in Fig. 5) because the

magnetic moment m entering in the reduced variable x is

proportional to the NP volume. The model describes our data

well. In Fig. 5a the same value Kel
H ¼ 2.6 � 104 Pa is used for the

adjustments of qmax
k (H) and qmax

t (H) in both directions parallel

and perpendicular to the applied eld. Table 2 shows the Kel
H

values determined in this way for all the samples tested here.

These under-eld Kel
H values are of the same order of magnitude

as the bulk modulus B0 determined in zero eld in Section 3.
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They are however systematically larger by a factor of the order of

a few units.

The under-eld anisotropy of the magnetic dipolar interac-

tion between adjacent NPs in the magnetic uid can be

expressed in terms of SAXS determined quantities as:

Ut

dd �U
k
dd

kBT
¼

3m0

4p

MMF
2ðHÞd0

2

kBT
¼

Kel
H

3kBT
d0

2
�

dt � dk
�

(21)

Fig. 6 shows the plots of Smax
t (H) � Smax

k (H) as a function of

Kel
Hd0

2(dt � dk)/3kBT for the uid samples in Table 1. It shows

that the anisotropy of Smax(H) is proportional to the anisotropy

of Udd(H) with Smax
t (H) � Smax

k (H) ¼ a(Ut

dd � Uk
dd) and the same

experimental coefficient a � 0.7 whatever [cit]free in the

dispersion. This coefficient decreases to 0.3 in the case of the

glass forming sample B (data not shown). Another sample

comparable to sample C was studied under a magnetic eld by

SANS in ref. 9. It scales the same way with a � 0.7.

In Fig. 5b, Smax
k and Smax

t are tted with:

Smax
k ðHÞ ¼ Smax

0 � a
m0MMF

2ðHÞ

2pkBT
d0

3 and

Smax
t

ðHÞ ¼ Smax
0 þ a

m0MMF
2ðHÞ

4pkBT
d0

3

(22)

with a ¼ 0.7 and MMF(H) adjusted as in Fig 5a.

Another graphical representation of these results, strictly

equivalent to the previous analysis, consists of plotting the

different ways of deducing the quantity
3m0MMF

2

2pKel
H

as eqn (17),

(19) and (22) can be rewritten as:

3m0MMF
2

2pKel
H

¼ 1�
dk

d0
¼ 2

�

dt

d0
� 1

�

¼
2kBT

�

Smax
t

ðHÞ � Smax
k ðHÞ

	

aKel
Hd0

3

(23)

Fig. 7 shows the comparison, for sample A in Fig 7a and

sample C in Fig 7b, of the H-dependence of the three experi-

mental quantities:

(i) 1�
dk

d0

� �

deduced from the H-dependence of q||(H),

(ii) 2
dt

d0
� 1

� �

deduced from the H-dependence of qt(H),

(iii) 2kBT(S
max
t (H) � Smax

k (H))/0.7Kel
Hd0

3.

All three superimpose with 3m0MMF
2/2pKel

H as deduced from

the effective eld model of Appendix I with the Kel
H values of

Table 2 (full line in Fig. 7). In this gure it is easy to verify that

the condition 3m0MMF
2 � 2pKel

H, which allows us to write eqn

14–17, is here fullled for samples A and B. This is true for all

the samples in Table 2. This representation also clearly shows

the great coherence of the experimental data in parallel and

perpendicular directions both for the qmax position of the S(q)

peak and for the value of its maximum Smax.

7. Discussion – limits of the model

Let us go back to the under-eld proles of St(q) and S||(q) of

Fig. 1b from sample A at H ¼ 500 kA m�1. Besides the anisot-

ropy of qmax and Smax, the bump of S(q) obviously presents also a

width anisotropy. This could eventually originate from an

Fig. 6 Smax
k � Smax

t as a function of the reduced quantity

Ut

dd � U
k
dd

kBT
¼

Kel
H

3kBT
d0

2ðdt � dkÞ calculated with the experimental values of d0, dt

and d|| and with KelH from Table 2. Symbols: sample A (closed discs), sample C

(closed squares), sample D (closed diamonds), and sample E (open squares). The

dashed line corresponds to Smax
k � Smax

t
¼ 0:7

Ut

dd � U
k
dd

kBT
.

Fig. 7 Field dependence of 3m0MMF
2/2pKelH for sample A (a) and for sample C (b)

obtained in different ways (see eqn (23)): (i) as equal to 1 � d||/d0 using qmax
k and

qmax
0 measurements (open squares), (ii) as equal to 2(dt/d0 � 1) using qmax

t and

qmax
0 measurements (open discs) and (iii) as equal to ðSmax

t
ðHÞ � Smax

k ðHÞÞ
2kBT

aKel
Hd0

3

using Smax
t and Smax

k measurements (closed diamonds with a ¼ 0.7 and KelH from

Table 2). The full lines correspond to the calculation of 3m0MMF
2/2pKelH withMMF

2

calculated with the effective field model of Appendix I (with dNP ¼ 11.5 nm for

both samples A and C) and the values of KelH from Table 2.
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experimental under-eld anisotropy of s in contrast to what is

assumed in the model of Sections 5 and 6.

We thus make the hypothesis that we can analyze the under-

eld proles in Fig. 1b with eqn (4) and dene s||(H) and st(H)

in the two directions. Adjusting the coordinates of the maxima

of S||(H) and St(H) while tting them with eqn (4), we nd for

sample A at H ¼ 500 kA m�1 (see Fig. 8) s|| ¼ 5.56 nm and st ¼

4.35 nm. For every eld H we nd a reasonable agreement for

3(s0/d0)
2 � (s||/d||)

2 + 2(st/dt)2. The eld-dependence of s||

and st is presented in Fig. 9 where it is tentatively adjusted to

MMF
2 (see the gure caption).

Note that the s values (s0, s|| and st) are all of the same

order of magnitude, but systematically larger than the width

sH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=K
el
H d0

p

¼ 3:1 nm that is deduced from the under-

eld model in Section 6 for this sample (using eqn (16) and the

sample characteristics in Table 2, particularly the value of Kel
H).

This subsidiary H-dependence of s could eventually be due

to the long range dipolar interaction which introduces a

supplementary force in the direction parallel to the

eld.9,11,12,14,15 Indeed at very low q's, thus on the macroscopic

scale, this supplementary force explains well the experimental

structure factor anisotropy Sk
�1(q ¼ 0) � St

�1(q ¼ 0) and its H-

dependence. Here Sk
�1(q ¼ 0) � St

�1(q ¼ 0) is maximum in

large elds where it equals�11. This value is comparable to g¼

JddF¼ 9.8 (see Table 1 and Appendix I) as expected from ref. 9,

11, 12, 14 and 15. Note that the ts of S||(q) and St(q) by eqn (4)

are adjusted here to the maximum of S(q). As shown in Fig. 8

they are unable to model the low-q's anisotropy observed in the

experiments.

We now compare sample A and sample B. They are based on

the same nanoparticles but sample A is a uid sample9 while

sample B is a (freshly prepared) glass-forming one as in ref. 18

and 35 with a much larger compression modulus B0. Table 3

shows the comparison, for these two samples, of the large eld

anisotropies of d, Smax and s.

If a comparable anisotropy of d (and qmax) is observed with

both samples, the anisotropy of Smax is reduced by a factor of 2

in sample B with respect to that of the uid sample A. By

adjusting the under-eld S(q) proles of sample B with eqn (4),

we observe that the under-eld s-anisotropy is also strongly

reduced (see Table 3). Moreover we can note that the under-eld

anisotropy of S(q¼ 0), if any, is not detected experimentally and

that the value s0 ¼ 2.3 nm deduced from the compressibility

determination is here close to the value s ¼ 1.9 nm deduced

from our under-eld model in Sections 5 and 6.

The cage model developed in Sections 5 and 6 is thus very

well adapted to an almost “solid” sample as sample B which

presents a very low compressibility (cT,0 ¼ 0.04). This point has

been checked with several “fresh” solid samples. However

under these glassy conditions, such “freshly prepared”

samples18 present ageing with time and slow dynamics26 which

are also anisotropic under an applied eld.35 The heterogeneous

nature of this dynamics has been demonstrated in zero eld.36

One could eventually hypothesize that, in that case, the under-

eld anisotropy of s transforms into an anisotropy of the

heterogeneities. This remains to be studied in close relation-

ship with the local anisotropies evidenced here in the probed

concentrated systems.

Fig. 8 Under-field S(q) profiles of sample A: St(q) in (a) and S||(q) in (b) adjusted

with eqn (4) with respectively (st/dt)2 ¼ 0.07 and (s||/d||)
2 ¼ 0.14. (Open dots

are the experimental data, full lines are their theoretical adjustment with eqn (4)).

Fig. 9 Under-field s-anisotropy of sample A deduced from fitting the profiles

St(H) and S||(H) by eqn (4) with an adjustment of Smax
t (H) and Smax

k (H). Symbols:

st (open discs) and s|| (open squares); the dashed line corresponds to s|| � s0 ¼

2(s0 � st) f MMF
2 adjusted with a constant coefficient and with the field

dependence of MMF deduced from the effective field model of Appendix I as in

Fig. 5 and 7a.

Table 3 Maximum anisotropies of d, Smax and s determined in large magnetic

fields from the scattering patterns for samples A and B and deduced from the

adjustment of the S(q) profiles with eqn (4)

Sample

~dt � ~dk

d0

~S
max

t
� ~S

max

k

Smax
0

~st � ~sk

s0

A – uid 8.9% 37% 30%
B – glass forming 7.7% 18% 3%

This journal is ª The Royal Society of Chemistry 2013 Soft Matter, 2013, 9, 11480–11489 | 11487

Paper Soft Matter

Pu
bl

is
he

d 
on

 0
8 

N
ov

em
be

r 
20

13
. D

ow
nl

oa
de

d 
on

 0
8/

01
/2

01
4 

16
:3

8:
00

. 
View Article Online

http://dx.doi.org/10.1039/c3sm51961a


8. Conclusion

The structure factor S(~q) of concentrated aqueous magnetic

uids is here experimentally determined by SAXS and SANS in

the case where the interparticle interactions are repulsive on

average. The various experiments are performed under

controlled conditions of electrostatic repulsion (constant ionic

strength) and NP size (using several samples of similar NP

diameter). By comparing, in zero applied eld, the compress-

ibility of the system and the qmax value associated with the S(q)

maximum we determine (i) the cage dimension (spherical on

average), (ii) the mean quadratic displacement of the NPs and

(iii) the bulk modulus of the system as a function of the NP

volume fraction. Under an applied eld, the interparticle

interaction remains always repulsive but becomes anisotropic

because of the magnetic dipolar interaction contribution and

the structure factor then presents anisotropic features on the

scale of 2p/qmax. SAXS experiments show that the cage becomes

anisotropic and presents an oblate deformation at almost

constant volume.

To describe these local anisotropic features, we develop a

formalism connecting the magnetic and under-eld elastic

characteristics of the magnetic NP system with the values of the

scattering vector qmax
k ¼

2p

dk
and qmax

t
¼

2p

dt
at the maxima of

S(~q), dened respectively in the direction of and normal to the

applied eld ~H. This formalism is based on the elastic defor-

mation of the cage at constant volume under the applied eld.

On the scale of the maximum of the structure factor, this model

catches the essence of the qmax and Smax anisotropies observed

here and allows us to deduce the (Young's) elastic modulus of

the magnetic uid associated with its under-eld deformation.

This Young's modulus is of the same order of magnitude as the

zero-eld bulk modulus and is larger by a factor of the order of a

few units.

However under-eld we experimentally observe the anisot-

ropy of the mean quadratic displacement of the NPs around

their mean position, which is not captured by the model. At very

high volume fraction this feature is strongly damped and

almost disappears as the sample is becoming glass-forming

with a very low compressibility and a large bulk modulus. It will

be interesting in the near future to probe the slow dynamics of

such glassy systems, perturbed in an anisotropic way with an

applied magnetic eld.

Appendix I: an effective field model of the
magnetic fluid magnetization MMF

To take into account the magnetic interparticle interaction

under a magnetic eld, an effective eld model has been

developed in the framework of a mean eld approximation11,15

to describe the magnetization MMF of concentrated magnetic

uids:

MMF ¼ FmSL(xe) (24)

where F is the MF volume fraction, mS is the nanoparticle

saturation magnetization, L(xe) ¼ coth(xe) � xe
�1 the Langevin

function with xe being the effective Langevin parameter given by

the self-consistent equation:

xe ¼ x + lgL(xe) (25)

with x¼ m0msHpdNP
3/6kBT, l is the effective eld constant and g

is the dipolar interaction parameter of the dispersion dened

here as g¼ m0ms
2FpdNP

3/6kBT. In x, we use the average
ffiffiffiffiffiffiffiffiffiffiffiffiffi

hdNP
3i3

p

computed over the whole diameter distribution in each sample,

as x scales as dNP
3. The effective eld constant l has been

determined to be 0.22 in previous experimental studies on

similar magnetic uids,11,15 as well in numerical simulations.38

The parameterJdd ¼ g/F is characteristic of the nanoparticles.

It is experimentally determined in ref. 13 (see Table 1) by the

measurement of the initial susceptibility c0 ¼ M/H of disper-

sions at low concentrations for which g ¼ 3c0 andJdd ¼ 3c0/F.

Appendix II: Carnahan–Starling osmotic
compressibility

The NP's in this work bear a negative supercial charge which

produces a strong electrostatic interparticle repulsion. The

Carnahan–Starling formalism37 is usually used to describe hard

sphere systems (HS). In the present case the osmotic pressure of

the NP's system can be also described in this framework, if

effective spheres are introduced in the term correcting the

perfect gas expression of the osmotic pressure.18,20 By intro-

ducing the screening length k
�1 of the NP's system, the volume

of these effective spheres is
p

6
ðdNP þ 2k�1Þ3 (instead of

VNP ¼
p

6
dNP

3) and their volume fraction is Feff (instead of F).

The osmotic pressure then is expressed as:

PVNP ¼ kBTFZCS

�

Feff

�

with

ZCS

�

Feff

�

¼
1þ Feff þ Feff

2 � Feff
3

�

1� Feff

�3
:

(26)

with Feff � F
�

1þ
2k�1

dNP

�3

. The osmotic compressibility, being

dened as:

cT ;0 ¼
kBT

ðvPVNP=vFÞT
¼

1

ZCS

�

1þ
Feff

ZCS

vZCS

vFeff

� (27)

can be written as a function of Feff as:

cT ;0 ¼

�

1� Feff

�4

1þ 4Feff þ 4Feff
2 � 4Feff

3 þ Feff
4
: (28)

This expression is compared in Fig. 2b with the experimental

determination of cT,0 using Feff � 1.9F and k�1 � 1.2 nm, close

to the evaluations in ref. 18. It ts well with the experimental

values up to F � 20% thus up to Feff � 38%, close to the

customary value for such an effective H. S. model.39
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7 M. Klokkenburg, B. H. Erné, A. Wiedenmann, A. V. Petukhov

and A. P. Philipse, Phys. Rev. E: Stat., Nonlinear, So Matter

Phys., 2007, 75, 051408.

8 R. Stanway, J. L. Sproston and A. K. El-Wahed, Smart Mater.

Struct., 1996, 5, 464.
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28 G. Mériguet, PhD dissertation, Univ. Paris 6-France, 2005.

29 E. Wandersman, PhD dissertation, Univ. Paris 6-France,

2007.

30 P. Schall, D. A. Weitz and F. Spaepen, Science, 2007, 318,

1895.

31 H. Matsuoka, H. Tanaka, T. Hashimoto and N. Ise, Phys.

Rev. B: Condens. Matter Mater. Phys., 1987, 36,

1754.

32 P. M. Chaikin, and T. C. Lubensky, Principles of condensed

matter physics, Cambridge University Press, Cambridge,

1995.
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