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We consider the Landau-de Gennes variational problem on a bounded, two dimensional domain, subject to Dirichlet smooth boundary conditions. We prove that minimizers are maximally biaxial near the singularities, that is, their biaxiality parameter reaches the maximum value 1. Moreover, we discuss the convergence of minimizers in the vanishing elastic constant limit. Our asymptotic analysis is performed in a general setting, which recovers the Landau-de Gennes problem as a specific case.

Introduction

Nematic liquid crystals are an intermediate phase of matter, which shares some properties both with solid and liquid states. They are composed by rigid, rod-shaped molecules which can flow freely, as in a conventional liquid, but tend to align locally along some directions, thus recovering, to some extent, long-range orientational order. As a result, liquid crystals behave mostly like fluids, but exhibit anisotropies with respect to some optical or electromagnetic properties, which makes them suitable for many applications.

In the mathematical and physical literature about liquid crystals, different continuum theories have been proposed. Some of them -like the Oseen-Frank and the Ericksen theories -postulate that, at every point, the locally preferred direction of molecular alignment is unique: such a behavior is commonly referred to as uniaxiality, and materials which exhibit such a property are said to be in the uniaxial phase. In contrast, the Landau-de Gennes theory, which is considered here, allows biaxiality, that is, more than one preferred direction of molecular orientation might coexist at some point. There is experimental evidence for the existence of thermotropic biaxial phases, that is, biaxial phases whose transitions are induced by temperature (see [START_REF] Madsen | Thermotropic biaxial nematic liquid crystals[END_REF][START_REF] Prasad | Thermotropic uniaxial and biaxial nematic and smectic phases in bent-core mesogens[END_REF]).

In the Landau-de Gennes theory (or, as it is sometimes informally called, the Q-tensor theory), the local configuration of the liquid crystal is modeled with a real 3 × 3 symmetric traceless matrix Q(x), depending on the position x. The configurations are classified according to the eigenvalues of Q. More precisely, Q = 0 corresponds to an isotropic phase (i.e., completely lacking of orientational order), matrices Q = 0 with two identical eigenvalues represent uniaxial phases, and matrices whose eigenvalues are pairwise distinct describe biaxial phases. Every Q-tensor can be represented as follows:

(1.1)

Q = s n ⊗2 - 1 3 Id + r m ⊗2 - 1 3 Id
with 0 ≤ r ≤ 1, s ≥ 0 and (n, m) is a positively oriented orthonormal pair in R 3 . The parameters s and r are respectively related to the modulus and the biaxiality of Q (in particular, Q is uniaxial if and only if r ∈ {0, 1}).

Here, we consider a two-dimensional model. The material is contained in a bounded, smooth domain Ω ⊆ R 2 , subject to smooth Dirichlet boundary conditions. The configuration parameter Q is assumed to minimize the Landau-de Gennes energy functional, which can be written, in its Figure 1. The space of Q-tensors. The unit sphere and the uniaxial cones, corresponding to r = 0 and r = 1, are represented. The vacuum manifold is the intersection between the sphere and the cone r = 0. simplest form, as

(1.2) E ε (Q) = Ω 1 2 |∇Q| 2 + 1 ε 2 f (Q) .
Here, |∇Q| 2 = i,j,k Q 2 ij, k is a term penalizing the inhomogeneities in space, and f is the bulk potential, given by

(1.3) f (Q) = α(T -T * ) 2 tr Q 2 -b tr Q 3 + c tr Q 2 2 .
The parameters α, b and c depend on the material, T is the absolute temperature, which we assume to be constant, and T * is a characteristic temperature of the liquid crystal. We work here in the low temperature regime, that is, T < T * . It can be proved (see [START_REF] Ball | Nematic liquid crystals: from maier-saupe to a continuum theory[END_REF]Proposition 9]) that f attains its minimum on a manifold N , termed the vacuum manifold, whose elements are exactly the matrices having s = s * , r = 0 in the representation formula (1.1) (s * is a parameter depending only on α, b, c, T ). The potential energy ε -2 f (Q) can be regarded as a penalization term, associated to the constraint Q ∈ N . In particular, as we will explain further on, biaxiality is penalized. The parameter ε 2 is a material-dependent elastic constant, which is typically very small (of the order of 10 -11 Jm -1 ): this motivates our interest in the limit as ε 0. Due to the form of the functional (1.2), there are some similarities between this problem and the Ginzburg-Landau model for superconductivity, where the configuration space is the complex field C R 2 , the energy is given by

E ε (u) = Ω 1 2 |∇u| 2 + 1 4ε 2 1 -|u|
homotopic properties of the boundary datum, there might be an obstruction to the existence of smooth maps Ω → N . Boundary data for which this obstruction occurs will be referred to as homotopically non trivial (see Subsection 2.1 for a precise definition). In this case, the image of minimizers fails to lie close to the vacuum manifold on some small set which correspond, in the limit as ε 0, to the singularities of the limit map. In the Ginzburg-Landau model, the whole configuration space C can be recovered as a topological cone over the vacuum manifold. In other words, every configuration u ∈ C \ {0} is identified by its modulus and phase, the latter being associated with an element of the vacuum manifold. Defects are characterized as the regions where |u| is small. This structure is found in other models: for instance, let us mention the contibution of D. Chiron ([8]), who replaced C by a cone over a generic compact, connected manifold.

In contrast, this property is lost in the Landau-de Gennes model (1.2)- (1.3). As a result, for the minimizers Q ε of the Landau-de Gennes functional several behaviors near the singularities are possible. For instance, one might ask whether the image of Q ε lies entirely in the cone over the vacuum manifold or not. In view of the representation formula (1.1), these alternatives correspond, respectively, to uniaxiality and biaxiality.

Numerical simulations suggest that we might expect biaxiality in the core of singularities. Schopohl and Sluckin (see [START_REF] Schopohl | Defect core structure in nematic liquid crystals[END_REF]) claimed that the core is heavily biaxial at all temperatures, and that it does not contain isotropic liquid. In the 3D case, a special biaxial configuration, known as "biaxial torus", has been identified in the core of point defects (see [START_REF] Gartland | Instability of radial hedgehog configurations in nematic liquid crystals under Landau-de Gennes free-energy models[END_REF][START_REF] Kralj | Universal fine structure of nematic hedgehogs[END_REF][START_REF] Kralj | Biaxial torus around nematic point defects[END_REF][START_REF] Sonnet | Alignment tensor versus director: Description of defects in nematic liquid crystals[END_REF]). Gartland and Mkaddem ([10]) proved that, when Ω = B(0, R) ⊆ R 3 with R large enough, and the boundary data is radially symmetric, the radially symmetric uniaxial configurations become unstable for sufficiently low temperature, hence minimizers cannot be purely uniaxial. Similar conclusions have been drawn by Henao and Majumdar ([12]), by Ignat et al. ( [START_REF] Ignat | Stability of the vortex defect in the Landau-de Gennes theory for nematic liquid crystals[END_REF]) and, in the 2D case, by Lamy ([16]).

However, in all these works, a function is said to be "purely uniaxial" when the parameter r in (1.1) is identically equal either to 0 or 1. Therefore, these results do not exclude the existence of an "almost uniaxial" minimizer, for which r is very close to zero but vanishes nowhere (except, possibly, on a negligible set).

To overcome this issue, the notion of maximally biaxial configuration is introduced in Subsection 3.1. One could define it as a configuration for which r(Q ε (x)) = 1/2 holds, at some point x ∈ Ω. The value 1/2, being equidistant from 0 and 1, might be thought as the maximum degree of biaxiality. We are able to prove that minimizers are maximally biaxial, in the low temperature regime T T * . More precisely, we have the following Theorem 1.1. Assume that the boundary datum is a smooth function g : ∂Ω → N and is not homotopically trivial. Then, there exist t 0 > 0 and ε 0 = ε 0 (α, b, c, T * -T ) such that the two conditions

αc(T * -T ) b 2 ≥ t 0 and ε ≤ ε 0 imply that any minimizer Q ε of the Landau-de Gennes model (1.2)-(1.
3) is maximally biaxial and satisfies

(1.4) inf Ω |Q ε | > 0.
Theorem 1.1 prevents the isotropic phases (Q = 0) from appearing in minimizers, at the low temperature regime. This is a remarkable difference between the Landau-de Gennes theory and the popular Ericksen model for liquid crystals: in the latter, defects are always associated with isotropic melting, since biaxiality is not taken into account. Remark that Theorem 1.1 is in agreement with the conclusions of [START_REF] Schopohl | Defect core structure in nematic liquid crystals[END_REF].

The proof of this result relies on energy estimates. With the help of the coarea formula, we are able to bound from below the energy of any uniaxial configuration. Then, we provide an explicit example of maximally biaxial solution, whose energy is smaller than the bound we have obtained, and we conclude that uniaxial minimizers cannot exist.

Another topic we discuss in this paper is the convergence of minimizers as ε 0. It turns out that a convergence result for the minimizers of (1.2)-(1.3) can be established without any need to exploit the matricial structure of the configuration space, nor the precise shape of f and N . For this reason, we introduce a more general problem, where the set of matrices is replaced by the Euclidean space R d , N is any compact, connected submanifold of R d , and f : R d → [0, +∞) is a smooth function, vanishing on N , which satisfies the assumptions (H1)-(H5) listed in Section 2.

To avoid confusion, we denote by u : Ω → R d the unknown for the new problem, and we let u ε be a minimizer.

Proposition 1.2. Assume that conditions (H1)-(H5) hold.

There exist some ε-independent constants λ 0 , δ 0 > 0 and, for each δ ∈ (0, δ 0 ), a finite set

X ε = X ε (δ) ⊂ Ω, whose cardinality is bounded independently of ε, such that dist(x, X ε ) ≥ λ 0 ε implies that dist(u ε (x), N ) ≤ δ.
The set X ε is empty if and only if the boundary datum is homotopically trivial. In the Landau-de Gennes case (1.2)-(1.3), Proposition 1.2 and Theorem 1.1, combined, show that a minimizer Q ε is "almost uniaxial" everywhere, except on k balls of radius comparable to ε, where biaxiality occurs. Actually, we will prove that k = 1 (see Proposition 1.4).

We can show that the minimizers converge, as ε 0, to a map taking values in N , having a finite number of singularities. Moreover, due to the variational structure of the problem, the limit map is optimal, in some sense, with respect to the Dirichlet integral v → 1 2 Ω |∇v| 2 .

Theorem 1.3. Under the assumptions (H1)-(H5), there exists a subsequence of

ε n 0, a finite set X ⊂ Ω and a function u 0 ∈ C ∞ (Ω \ X, N ) such that u εn → u 0 strongly in H 1 loc ∩ C 0 (Ω \ X, R d ). On every ball B ⊂⊂ Ω \ X, the function u 0 is minimizing harmonic, which means 1 2 B |∇u 0 | 2 = min 1 2 B |∇v| 2 : v ∈ H 1 (B, N ), v = u 0 on ∂B .
In particular, u 0 is a solution of the harmonic map equation

∆u 0 (x) ⊥ T u0(x) N for all x ∈ Ω \ X,
where T u0(x) N is the tangent plane of N at the point u 0 (x) and the symbol ⊥ denotes orthogonality.

We can provide some information about the behavior of u 0 around the singularity. For the sake of simplicity, we assume here that N is the real projective plane P 2 (R) (this is the case, for instance, of the Landau-de Gennes potential (1.3)); however, the analytic tools we employ carry over to a general manifold.

Proposition 1.4. In addition to (H1)-(H4), assume N

P 2 (R) and the boundary datum is not homotopically trivial (see Definition 2.1). Then, X reduces to a singleton {a}. For ρ ∈ (0, dist(a, ∂Ω)), consider the function S 1 → N given by

c ρ : θ → u 0 a + ρe iθ .
Up to a subsequence ρ n 0, c ρn converges uniformly (and in C 0, α for α < 1/2) to a geodesic c 0 in N , which minimizes the length among the non homotopically trivial loops in N .

Unfortunately, we have not been able to prove the convergence for the whole family (c ρ ) ρ>0 , which remains still an open question.

A interesting question, related to the topics we discuss in this paper, is the study of the singularity profile for defects in the Landau-de Gennes model. Consider a singular point a ∈ X, and set P ε (x) := Q ε (a + εx) for all x ∈ R 2 for which this expression is well-defined. Then P ε is a bounded family in L ∞ (see Lemma 4.1) and it is clear, by scaling arguments, that

∇P ε L 2 (K) ≤ C for all K ⊂⊂ R 2 .
Thus, up to a subsequence, P ε converges weakly in H 1 loc (R 2 ) to some P * . It is readily seen that, for each R > 0, P * minimizes in B(0, R) the functional E 1 among the functions P ∈ H 1 (B(0, R)) satisfying P = P * on ∂B(0, R), and consequently it solves in R 2 the Euler-Lagrange equation associated with E 1 .

A function P * obtained by this construction is called a singularity profile. Understanding the properties of such a profile will lead to a deeper comprehension of what happens in the core of defects, and vice-versa. Remark that, in view of Theorem 1.1, strong biaxiality has to be found in singularity profiles correpsonding to low temperatures. We believe that the study of these objects will also play an important role in the analysis of the three-dimensional problem. Let us mention here that some results in this direction have been obtained by Henao and Majumdar, in [START_REF] Henao | Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals[END_REF], where a 3D problem with radial symmetry is considered. Restricting the problem to the class of uniaxial Q-tensors, the authors proved convergence to a radial hedgehog profile.

This paper is organized as follows. In Section 2 we present in detail our general problem, we set notations, and we introduce some tools for the subsequent analysis. More precisely, in Subsection 2.1 we define the energy cost of a defect, while we discuss in Subsection 2.2 the nearest point projection on a manifold. Section 3 specifically pertains to the Q-tensor model, and contains the proof of Theorem 1.1. The asymptotic analysis, with the proof of Proposition 1.2 and Theorem 1.3, is provided in Section 4. Finally, Section 5 deals with Proposition 1.4.

Note added in proof. While preparing this paper, we were informed that Golovaty and Montero ( [START_REF] Golovaty | On minimizers of the landau-de gennes energy functional on planar domains[END_REF]) have recently obtained similar results about the convergence of minimizers in the Q-tensor model.

Setting of the general problem and preliminaries

As we mentioned in the introduction, our asymptotic analysis will be carried out in a general setting, which recovers the Landau-de Gennes model (1.2)-(1.3) as a particular case. In this section, we detail the problem under consideration. The unknown is a function Ω → R d , where Ω is a smooth, bounded (and possibly not simply connected) domain in R 2 . Let g : ∂Ω → R d be a boundary datum, and define the Sobolev space H 1 g (Ω, R d ) as the set of maps in H 1 (Ω, R d ) which agrees with g on the boundary, in the sense of traces. We are interested in the problem (2.1) min

u∈H 1 g (Ω; R d ) E ε (u)
where

E ε (u) := E ε (u, Ω) = Ω 1 2 |∇u| 2 + 1 ε 2 f (u) and f : R d →
R is a non negative, smooth function, satisfying the assumptions below.

The existence of a minimizer for Problem (2.1) can be easily inferred via the Direct Method in the calculus of variations, whereas we do not claim uniqueness. If u ε denotes a minimizer for E ε , then u ε is a weak solution of the Euler-Lagrange equation

(2.2) -∆u ε + 1 ε 2 Df (u ε ) = 0 in Ω.
Via elliptic regularity theory, it can be proved that every solution of (2.2) is smooth.

Assumptions on the potential and on the boundary datum. Denote, as usual, by S d-1 the unit sphere of R d , and by dist(v, N ) the distance between a point v ∈ R d and a set N . We assume that f : R d → R is a smooth function (at least of class C 2, 1 ), satisfying the following conditions:

(H1) The function f is non-negative, the set N := f -1 (0) is non-empty, and N is a smooth, compact and connected submanifold of R d , without boundary. We assume that N is contained in the closed unit ball of R d . (H2) There exist some positive constants δ 0 < 1, m 0 such that, for all v ∈ N and all normal vector ν ∈ R d to N at the point v,

Df (v + tν) • ν ≥ m 0 t, if 0 ≤ t ≤ δ 0 . (H3) For all v ∈ R d with |v| > 1, we have f (v) > f v |v| .
The set N will be referred as the vacuum manifold. Concerning the boundary datum, we assume (H4) g : ∂Ω → R d is a smooth function, and g(x) ∈ N for all x ∈ ∂Ω.

For technical reasons, we impose a restriction on the homotopic structure of N . A word of clarification: by conjugacy class in a group G, we mean any set of the form {axa -1 : a ∈ G}, for x ∈ G.

(H5) Every conjugacy class in the fundamental group of N is finite.

Remark 2.1. The assumption (H2) holds true if, at every point v ∈ N , the Hessian matrix D 2 f (v) restricted to the normal space of N at v is positive definite. Hence, (H2) may be interpreted as a non-degeneracy condition for f , in the normal directions.

We can provide a sufficient condition, in terms of the derivative of f , for (H3) as well: namely,

v • Df (v) > 0 for |v| > 1
(indeed, this implies that the derivative of t ∈ [1, +∞) → f (tv) is positive). Hypothesis (H3) is exploited uniquely in the proof of the L ∞ bound for the minimizer u ε . Assumption (H5) is trivially satisfied if the fundamental group π 1 (N ) is abelian or finite. This covers many cases, arising from other models in condensed matter physic: Besides rodshaped molecules in nematic phase, we mention planar spins (N S 1 ) and ordinary spins (N S 2 ), biaxial molecules in nematic phase (N SU (2)/H, where H is the quaternion group), superfluid He-3, both in dipole-free and dipole-locked phases (N (SU (2) × SU (2))/H and N P 3 (R), respectively).

The Landau-de Gennes model. In this model, the configuration parameter belongs to the set S 0 of matrices, given by

S 0 := Q ∈ M 3 (R) : Q T = Q, tr Q = 0 .
This is a real linear space, whose dimension, due to the symmetry and tracelessness constraints, is readily seen to be five. The tensor contraction Q : P = i,j Q ij P ij defines a scalar product on S 0 , and the corresponding norm will be denoted | • |. Clearly S 0 can be identified, up to an equivalent norm, with the Euclidean space R 5 .

The bulk potential is given by

(2.3) f (Q) := k - a 2 tr Q 2 - b 3 tr Q 3 + c 4 tr Q 2 2 for all Q ∈ S 0 ,
where a, b, c are positive parameters and k is a properly chosen constant, such that inf f = 0.

(We have set a := -α(T -T * ) in formula (1.3)). It is clear that the minimization problem (2.1) does not depend on the value of k. This model is considered in detail, for instance, in [START_REF] Majumdar | Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond[END_REF], where Ω is assumed to be a bounded domain of R 3 .

In the Euler-Lagrange equation for this model, Df has to be intended as the intrinsic gradient with respect to S 0 . Since the latter is a proper subspace of the 3 × 3 real matrices, Df contains an extra term, which acts as a Lagrange multiplier associated with the tracelessness constraint. Therefore, denoting by Q ε any minimizer, Equation (2.2) reads

(2.4) -ε 2 ∆Q ε -aQ ε -b Q 2 ε - 1 3 (tr Q 2 ε ) Id + cQ ε tr Q 2 ε = 0,
where 1 3 b tr Q 2 ε Id is the Lagrange multiplier. We will show in Subsection 3.1 that this problem fulfills (H1)-(H5), and thus can be recovered in the general setting.

2.1. Energy cost of a defect. By the theory of continuous media, it is well known (see [START_REF] Mermin | The topological theory of defects in ordered media[END_REF]) that topological defects of codimension two are associated with homotopy classes of loops in the vacuum manifold N . Now, following an idea of [START_REF] Chiron | Étude mathématique de modèles issus de la physique de la matière condensée[END_REF], we are going to associate to each homotopy class a non negative number, representing the energy cost of the defect.

Let Γ(N ) be the set of free homotopy classes of loops S 1 → N , that is, the set of the pathconnected components of C 0 (S 1 , N ) -here, "free" means that no condition on the base point is imposed. As is well-known, for a fixed base point v 0 ∈ N there exists a one-to-one and onto correspondence between Γ(N ) and the conjugacy classes of the fundamental group π 1 (N , v 0 ). As the latter might not be abelian, the set Γ(N ) is not a group, in general. Nevertheless, the composition of paths (denoted by * ) induces a map

(2.5) Γ(N ) × Γ(N ) → P (Γ(N )) , (α, β) → α • β
in the following way: for each v ∈ N , fix a path c v connecting v 0 to v. Then, for α, β ∈ Γ(N ) define

α • β := homotopy class of the loop ((c f (1) * f ) * c f (1) ) * ((c g(1) * g) * c g(1) ) : f ∈ α, g ∈ β ,
where c f (1) , c g [START_REF] Ball | Nematic liquid crystals: from maier-saupe to a continuum theory[END_REF] are the reverse paths of c f (1) , c g [START_REF] Ball | Nematic liquid crystals: from maier-saupe to a continuum theory[END_REF] respectively. If we regard α, β as conjugacy classes in π 1 (N , v 0 ), we might check that

α • β = {conjugacy class of ab : a ∈ α, b ∈ β}
(in particular, we see that α • β does not depend on the choice of (c v ) v∈N ). As α, β are finite, due to (H5), the set α * β is finite as well.

The set Γ(N ), equipped with this product, enjoys some algebraic properties, which descend from the group structure of π 1 (N , v 0 ). The resulting structure is referred to as the polygroup of conjugacy classes of π 1 (N , v 0 ), and was first recognized by Campaigne (see [START_REF] Campaigne | Partition hypergroups[END_REF]) and Dietzman (see [START_REF] Dietzman | On the multigroups of complete conjugate sets of elements of a group[END_REF]). We remark that, even if π 1 (N , b) is not abelian, we have α • β = β • α for all α, β ∈ Γ(N ). This follows from ab = a(ba)a -1 , which holds true for all a, b ∈ π 1 (N , v 0 ).

The geometric meaning of the map (2.5) is captured by the following proposition. By convention, let us set 

γ i ∩ k i=h+1 γ i = ∅
holds for some index h, then there exists a smooth function g : D → N , which agrees with g i on every C i . Conversely, if such an extension exists then the condition (2.6) holds for all h ∈ {1, . . . , k}.

Proof. Throughout the proof, given a path c we will denote the reverse path by c.

Assume that (2.6) holds. We claim that the boundary data can be extended continuously on D. It is convenient to work out the construction in the subdomain

D := {x ∈ D : dist(x, D) > δ} ,
where δ > 0 is small, so that D and D have the same homotopy type. Up to a diffeomorphism, we can suppose that D is a disk with k holes, and C 1 is the exterior boundary. It is equally fair to assume that there exists a path B, homeomorphic to a circle, which splits D into two regions, D 1 and D 2 , with

∂D 1 = B ∪ h i=1 C i , ∂D 2 = B ∪ k i=h+1 C i .
This configuration is illustrated in the Figure 2.1. Let b : B → N be a loop whose free homotopy class belongs to

h i=1 γ i ∩ k i=h+1 γ i . D1 D2 B C1 C2 C3 C4 C5 C6 x0 c1 c2 c3 Figure 2. The geometry of D in Lemma 2.2.
We wish, at first, to extend the boundary data to a continuous function defined on D 1 . Let c 1 , . . . , c h be mutually non intersecting paths [0, 1] → D 1 , connecting a fixed base point x 0 ∈ D 1 with C 1 , . . . , C h respectively, and let Σ denote the union of C 1 , . . . , C h and the images of c 1 , . . . , c h . The set Σ can be parametrized by the loop

α := ((c 1 * α 1 ) * c 1 ) * ((c 2 * α 2 ) * c 2 ) * • • • * ((c h * α h ) * c h ) , where α i : [0, 1] → C i is a parametrization of C i proportional to arc length.
Next, we "push forward" α to a loop in N . Since b ∈ h i=1 γ i , there exists a loop σ, freely homotopic to b, which can be written as

σ := ((σ 1 * g 1 ) * σ 1 ) * ((σ 2 * g 2 ) * σ 2 ) * • • • * ((σ h * g h ) * σ h ) ,
where g i ∈ γ i and σ i is a path in N connecting a fixed base point v 0 ∈ N with g i (1), for each i ∈ {1, 2, . . . , h}. We can regard σ as a map Σ → N : more precisely, we can set t ∈ [0, 1] → σ(α -1 (t)) and check that this mapping is well-defined. By construction, there exists a homotopy between b and σ, which provides a continuous extension of the boundary data

g 1 , . . . , g h , b to a mapping v 1 : D 1 → N .
We perform the same construction on the subdomain D 2 , obtaining a continuous function v 2 . Pasting v 1 and v 2 we get a continuous map v : D → N , whose trace on each C i is homotopic to g i . As D \ D is just a small neighborhood of ∂D, it is not difficult to extend v to a continuous function v : D → N , such that v| Ci = g i for all i. Smoothness can be recovered, for instance, via a standard approximation argument.

Conversely, assume that an extension g exists, and let B, D 1 , D 2 , Σ be as before, for h arbitrary. Then, g| D1 provides a free homotopy between g| B and g| Σ , so the homotopy class of g| B belongs to h i=1 γ i . Similarly, the class of g| B belongs to k i=h+1 γ i , and hence the condition 2.6 holds.

For each γ ∈ Γ(N ), we define its length as

(2.7) λ(γ) := inf 2π S 1 |c (θ)| 2 dθ 1/2 : c ∈ γ ∩ H 1 (S 1 , N ) .
First, the set γ ∩ H 1 (S 1 , N ) is not empty since the embedding H 1 (S 1 , N ) → C 0 (S 1 , N ) is compact and dense. Then, notice the infimum in (2.7) is achieved, and all the minimizers c are geodesics. Thus, |c | is constant, and λ(γ) = 2π |c | coincides with the length of a minimizing geodesic.

In the definition of the energy cost of a defect, it is convenient take into account the product we have endowed Γ(N ) with. For each γ ∈ Γ(N ) we set

(2.8) λ * (γ) := inf 1 4π k i=1 λ(γ i ) 2 : k ∈ N, γ i ∈ Γ(N ), γ ∈ k i=1 γ i ,
where the order of the product is not relevant. It is worth pointing out that the infimum in (2.8) is, in fact, a minimum. Indeed, since N is compact manifold, its fundamental group is finitely generated; on the other hand, γ contains only a finite number of elements of π 1 (N, v 0 ), by (H5).

As a result, we see that the infimum in (2.8) is computed over finitely many k-uples (γ 1 , . . . , γ k ).

Roughly speaking, the number λ * (γ) can be regarded as the energy cost of the defect γ. For example, when N = S 1 we have Γ(S 1 ) π 1 (S 1 ) Z, that is, the homotopy classes in Γ(S 1 ) are completely determined by their degree d ∈ Z. Besides, λ(d) = 2π |d| and λ * (d) = π |d|, the infimum in (2.8) being reached by the decomposition

γ 1 = γ 2 = • • • = γ |d| = sign d = ±1.
Hence, in this case decomposing the defect is energetically favorable. This is related to the quantization of singularities in the Ginzburg-Landau model (see [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF]).

By definition, λ * enjoys the useful property

(2.9) λ * (γ) ≤ k i=1 λ * (γ i ) if γ ∈ k i=1 γ i with γ i ∈ Γ(N ).
We conclude this subsection by coming back to our main problem (2.1), and fixing some notation that will be used throughout this work. Definition 2.1. A continuous function g : ∂Ω → N will be called homotopically trivial if and only if it can be extended to a continuous function Ω → N .

In case Ω is a simply connected domain, thus homeomorphic to a disk, being homotopically trivial is equivalent to being null-homotopic, that is, being homotopic to a constant. By contrast, these notions do not coincide any longer for a general domain. For instance, suppose that Ω is an annulus, bounded by two circles C 1 and C 2 , and that g 1 , g 2 are smooth data, defined on C 1 , C 2 respectively and taking values in N . If g 1 , g 2 are in the same homotopy class, then the boundary datum is homotopically trivial in the sense of the previous definition, although each g i , considered in itself, might not be null-homotopic. We will provide a characterization of homotopically trivial boundary data, for general domains, with the help of the tools we have described in this section.

Label the connected components of ∂Ω as C 1 , . . . , C k , and denote by γ i , for i ∈ {1, . . . , k}, the free homotopy class of the boundary datum g restricted to C i . Define

κ * := inf λ * (γ) : γ ∈ k i=0 γ i ,
where λ * has been introduced in (2.8). By definition of λ * , we have

(2.10) κ * = inf    1 4π m j=1 λ(η j ) 2 : m ∈ N, η j ∈ Γ(N ), m j=1 η j ∩ k i=1 γ i = ∅    .
In both formulae, the infima are taken over finite sets, and hence are minima. As a straightforward consequence of Lemma 2.2, we obtain the following result, characterizing trivial boundary data. The proof is left to the reader. Corollary 2.3. Let D ⊆ R 2 be a smooth, bounded domain, and let g i , γ i be as in Lemma 2.2. Then, the following conditions are equivalent:

(i) the boundary datum (g i ) k
i=1 is homotopically trivial; (ii) denoting by the free homotopy class of any constant map in N , we have

∈ k i=1 γ i ; (iii) κ * = 0.
2.2. The nearest point projection onto a manifold. In this subsection, we discuss briefly a geometric tool which will be exploited in our analysis: the nearest point projection on a manifold.

Let N be a compact, smooth submanifold of R d , of dimension n and codimension k (that is, d = n + k). It is well known (see, for instance, [22, Chapter 3, p. 57]) that there exists a neighborhood U of N with the following property: for all v ∈ U , there exists a unique point

π(v) ∈ N such that (2.11) |v -π(v)| = dist(v, N ).
The mapping v ∈ U → π(v), called the nearest point projection onto N , is smooth, provided that U is small enough. Moreover, v -π(v) is a normal vector to N at each point v ∈ N (all this facts are proved, e.g., in [START_REF] Moser | Partial regularity for harmonic maps and related problems[END_REF]).

Throughout this work, we will assume that π is well-defined and smooth on the δ 0 -neighborhood of N , where δ 0 is introduced in (H2).

Remark 2.4. With the help of π, we can easily derive from (H2) some useful properties of f and its derivatives.

Let v ∈ R d be such that dist(v, N ) ≤ δ 0 . Then, m 0 dist(u, N ) ≤ Df (u) • (u -π(u)) ≤ M 0 dist(u, N ).
Indeed, the lower bound is given by (H2), whereas the upper bound is obtained by a Taylor expansion of Df around the point π(u) (remind that Df (π(u)) = 0 because f is minimized on N ). As N is compact, the constant M 0 can be chosen independently of v. Via the fundamental theorem of calculus, we infer also

1 2 m 0 dist 2 (u, N ) ≤ f (u) = 1 0 Df (π(u) + t(u -π(u))) • (u -π(u)) dt ≤ 1 2 M 0 dist 2 (u, N ).
The following lemma establishes a gradient estimate for the projection of mappings.

Lemma 2.5. Let u ∈ C 1 (Ω, R d ) be such that dist(u(x), N ) ≤ δ 0 for all x ∈ Ω, and define σ(x) := dist(u(x), N ), v(x) := π(u(x))
for all x ∈ Ω. Then, the estimates

(2.12) (1 -M σ) |∇v| 2 ≤ |∇u| 2 ≤ (1 + M σ) |∇v| 2 + |∇σ| 2 hold, for a constant M depending only on N , k.
Proof. Fix a point x ∈ Ω. Let ν 1 , ν 2 , . . . , ν k be a moving orthonormal frame for the normal space to N , defined on a neighborhood of v(x). (Even if N is not orientable, such a frame is locally well-defined). Then, for all y in a neighborhood of x, there exist some numbers α 1 (y), α 2 (y), . . . , α k (y) such that

(2.13) u(y) = v(y) + k i=1 α i (y)ν i (v(y)).
The functions v, α i are as regular as u. Differentiating the equation (2.13), and raising to the square each side of the equality, we obtain (2.14)

|∇u| 2 -|∇v| 2 = k i=1 α 2 i |∇ν i (v)| 2 + |∇α i | 2 + 2α i ∇v : ∇ν i (v) + 2∇v : (ν i (v) ⊗ ∇α i ) + 2α i ∇ν i (v) : (ν i (v) ⊗ ∇α i ) .
The fourth term in the right-hand side vanishes, because ∇v is tangent to N . The last term vanishes as well since, differentiating ν i = 1, we have (∇ν i )ν i = 0. For the first term of the right-hand side, we set

M := 1 + sup 1≤i≤k ∇ν i 2 L ∞
and we remark that

k i=1 α 2 i |∇ν i (v)| 2 ≤ M k i=1 α 2 i |∇v| 2 = M σ 2 |∇v| 2 .
By the Cauchy-Schwarz inequality and

k i=1 α i ≤ C k k i=1 α 2 i 1/2
, we can write

(2.15) k i=1 α i ∇v : ∇ν i (v) ≤ M k i=1 α i |∇v| 2 ≤ M σ |∇v| 2 ,
up to modifying the value of M in order to absorb the factor C k . Furthermore, since σ ≤ δ 0 < 1, from (2.14) and (2.15) we infer

(2.16) (1 -M σ) |∇v| 2 + k i=1 |∇α i | 2 ≤ |∇u| 2 ≤ (1 + M σ) |∇v| 2 + k i=1 |∇α i | 2 .
The lower bound in (2.12) follows immediately, and we only need to estimate the derivatives of α i to conclude. It follows from (2.13) that α i = (u -v) • ν i (v). Differentiating and raising to the square this identity, and taking into account that (∇ν i )ν i = 0, we deduce

k i=1 |∇α i | 2 = k i=1 |∇(u -v) • ν i (v)| 2 + |(u -v) • ∇ν i (v)| 2 .
Then (2.17)

k i=1 |∇α i | 2 ≤ M |∇(u -v)| 2 + σ 2 |∇v| 2 .
Computing the gradient of σ = |u -v| by the chain rule yields |∇σ| = |∇(u -v)|. Therefore, the estimates (2.15) and (2.17) imply the upper bound in (2.12). Notice that our choice of the constant M depends on the neighborhood where the frame (ν i ) 1≤i≤k is defined. However, since N is compact, we can find a constant for which the inequality (2.12) holds globally.

Biaxiality phenomena in the Landau-de Gennes model

We focus here on the Landau-de Gennes model (2.1)-(2.3). To stress that this discussion pertains to a specific case, throughout the section we use Q instead of u to denote the unknown. In constrast, the other notations -the symbols for the potential and the vacuum manifold, in particular -are still valid.

In this section, we aim to prove Theorem 1.1. This can be achieved independently of the asymptotic analysis: we need only to recall a well-known property of minimizers.

Property 3.1. Any minimizer

Q ε for problem (2.1)-(2.3) is of class C ∞ and fulfills Q ε L ∞ (Ω) ≤ 2 3 s * ,
where s * is the constant defined in (3.4).

The proof will be given further on (see Lemma 4.1).

3.1. Useful properties of Q-tensors. Our first goal is to show that the Landau-de Gennes model satisfies (H1)-(H5), so that it fits to our general setting. In doing so, we recall some classical, useful facts about Q-tensors. Let us start by the following well-known definition: we set

β(Q) := 1 -6 tr Q 3 2 (tr Q 2 ) 3 for Q ∈ S 0 \ {0}.
This defines a smooth, homogeneous function β, which will be termed the biaxiality parameter.

It could be proved that 0 ≤ β ≤ 1 (see, for instance, [19, Lemma 1 and Appendix] and the references therein). Now, we can precise what we mean by "maximally biaxial minimizers", an expression we have defined informally in the Introduction.

Definition 3.1. Let Q be a function in H 1 g (Ω, S 0 ). We say that Q is almost uniaxial if and only if max Ω β(Q) < 1.
Otherwise, we say that Q is maximally biaxial.

Another classical fact about Q-tensors is the following representation formula, which turns out to be useful in several occasions. Lemma 3.2. For all fixed Q ∈ S 0 \ {0}, there exist two numbers s ∈ (0, +∞), r ∈ [0, 1] and an orthonormal pair of vectors (n, m) in R 3 such that

(3.1) Q = s n ⊗2 - 1 3 Id +r m ⊗2 - 1 3 Id .
Furthermore, labeling the eigenvalues of Q as λ 1 ≥ λ 2 ≥ λ 3 , if (s, r, n, m) satisfies the conditions above then

(3.2) s = 2λ 1 + λ 2 , r = λ 1 + 2λ 2 2λ 1 + λ 2 ,
and n, m are eigenvectors associated to λ 1 , λ 2 respectively.

Sketch of the proof. Let (s, r, n, m) be a set of parameters with the desired properties, and denote by p the vector product of n and m, so that (n, m, p) is a positive orthonormal basis of R 3 . Exploiting the identity Id = n ⊗2 + m ⊗2 + p ⊗2 , we can rewrite (3.1) as

Q = s 3 (2 -r)n ⊗2 + s 3 (r -1)m ⊗2 - s 3 (1 + r)p ⊗2 . The constraints s ≥ 0, 0 ≤ r ≤ 1 entail s 3 (2 -r) ≥ s 3 (r -1) ≥ - s 3 (1 + r).
We conclude that

λ 1 = s 3 (2 -r), λ 2 = s 3 (r -1), λ 3 = - s 3 (1 + r),
and that n, m, p are eigenvectors associated to λ 1 , λ 2 , λ 3 respectively. The identities (3.2) follow by straightforward computations. Conversely, it is easily checked that the parameters defined by (3.2) satisfy (3.1).

Remark 3.3. The limiting cases r = 0 and r = 1 correspond, respectively, to λ 1 = λ 2 and λ 2 = λ 3 . In the literature, these cases are sometimes referred to as prolate and oblate uniaxiality, respectively. The modulus and the biaxiality parameter of Q can be expressed in terms of s, r as follows (compare, for instance, [19, Equation (187)]):

|Q| 2 = 2 3 s 2 r 2 -r + 1 , β(Q) = 27r 2 (1 -r) 2 4 (r 2 -r + 1) 3 .
In particular, one has

(3.3) s(Q) ≥ 3 2 |Q| .
Also, remark that Q is maximally biaxial if and only if there exists a point

x ∈ Ω such that r(Q(x)) = 1/2.
With the help of (3.1), the set of minimizers of the potential f can be described as follows.

Proposition 3.4. Let f be given by (2.3), and set

(3.4) s * := 1 4c b + b 2 + 24ac .
Then, the minimizers for f are exactly the matrices which can be expressed as

Q = s * n ⊗2 - 1 3 Id for some unit vector n ∈ R 3 .
The set of minimizers is a smooth submanifold of S 0 , homeomorphic to the projective plane P 2 (R), contained in the sphere

Q ∈ S 0 : |Q| = s * 2/3 . In addition, β(Q) = 0 if Q is a minimizer for f .
The reader is referred to [START_REF] Majumdar | Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond[END_REF]Propositions 9 and 15] for the proof. Here, we mention only that a diffeomorphism P 2 (R) → N can be constructed by considering the map

(3.5) φ : n ∈ S 2 → s * n ⊗2 - 1 3 Id
and quotienting it out by the universal covering S 2 → P 2 (R), which is possible because φ(n) = φ(-n). Remark also that, for all n ∈ S 2 and all tangent vector v ∈ T n S 2 , we have

(3.6) dφ(n), v = s * (n ⊗ v + v ⊗ n) ,
as it is readily seen differentiating the function t → φ(n + tv).

It is well-known that the fundamental group of the real projective plane consists of two elements only. Therefore, Γ(P 2 (R)) π 1 (P 2 (R)) Z/2Z, and (H5) is trivially satisfied. Hypothesis (H1) is fulfilled as well, up to rescaling the norm in the parameter space, so that the vacuum manifold is contained in the unit sphere. Let us perform such a scaling: we associate to each map

Q ∈ H 1 (Ω, S 0 ) a rescaled function Q * , by Q(x) = 2 3 s * Q * (x) for all x ∈ Ω.
It is easily computed that

E ε (Q) = 2s 2 * 3 Ω 1 2 |∇Q * | 2 + 1 ε 2 f * (Q * ) ,
where f * is given by

(3.7) f * (Q * ) := 3 2s 2 * f 2 3 s * Q * = - a * 2 tr Q 2 * - b * 3 tr Q 3 * + c * 4 tr Q 2 * 2 and a * := a, b * := 2 3 s * b, c * := 2 3 s 2 * c.
Notice that f * is minimized by s = 3/2, r = 0. Thus, we can assume that the vacuum manifold is contained in the unit sphere of S 0 , up to substituting f * for f in the minimization problem (2.1).

Lemma 3.5. The potential f * defined by (3.7) fulfills (H1)-(H3).

Proof. We know by Proposition 3.4 that (H1) is satisfied. We compute the gradient of f * :

Df * (Q) = -a * Q -b * Q 2 - 1 3 b * (tr Q 2 ) Id +c * Q tr Q 2 ,
where the term -b * (tr Q 2 ) Id /3 is a Lagrange multiplier, accounting for the tracelessness constant in the definition of S 0 . With the help of Remark 2.1, we show that (H3) is fulfilled as well. Indeed, one cas use the inequality

√ 6 tr Q 3 ≤ |Q| 3 to derive Df * (Q) : Q = -a * |Q| 2 -b * tr Q 3 + c * |Q| 4 ≥ -a |Q| 2 - s * b 3 |Q| 3 + 2s 2 * c 3 |Q| 4 .
It is readily seen that the right-hand side is positive, for |Q| 2 > 1. Finally, let us check the condition (H2). For a fixed Q ∈ N , there exists n ∈ S 2 such that Q = φ(n), where φ is the smooth mapping defined by (3.5). Up to rotating the coordinate frame, we can assume without loss of generality that n = e 3 . By formula (3.6), we see that the vectors

X k = 3 2 (e k ⊗ e 3 + e 3 ⊗ e k ), k ∈ {1, 2}
form a basis for the the tangent plane to N at the point Q. As a consequence, P ∈ S 0 is a normal vector to N at Q if and only if P : X 1 = P : X 2 = 0 or, equivalently, iff it has the form

(3.8) P =   p 1 p 2 0 p 2 p 3 0 0 0 -p 1 -p 3   .
It is easily checked that P Q = QP . Now, we compute

Df * (Q + tP ) : P = -a * (Q + tP ) : P -b * (Q + tP ) 2 : P + c * tr(Q + tP ) 2 (Q + tP ) : P = t -a * |P | 2 -2b * (P Q) : P + 2c * (tr P Q) 2 + c * |P | 2 + O(t 2 )
(we have used that Df * (Q) = 0 and that Q : P = tr P Q). By (3.8), we have

(P Q) : P = 1 3 3 2 2(p 1 + p 3 ) 2 -p 2 1 -p 2 3 -2p 2 2 ≤ 1 2 3 2 (p 1 + p 3 ) 2 , tr P Q = - 3 2 (p 1 + p 3 )
and hence

Df * (Q + tP ) : P ≥ t (-a * + c * ) |P | 2 + t 3c * - 3 2 b * (p 1 + p 3 ) 2 + O(t 2 ).
The coefficients in the right-hand side are readily shown to be non negative: more precisely,

-a * + c * = 1 12c b 2 + b b 2 + 24ac > 0, 3c * - 3 2 b * = 1 2 s * b 2 + 24ac -b ≥ 0.
Thus, we have proved that

∂ 2 P f (Q) ≥ -a * + c * > 0.
Finally, let us point out a metric property of N . We know that the parameter κ * , defined by (2.10), can take a unique positive value, corresponding to a geodesic loop in N which generates π 1 (N ). Since we aim to calculate it, we need to characterize the geodesic of N . Some help is provided by the mapping φ that we have introduced in (3.5). Lemma 3.6. For all n ∈ S 2 and all tangent vector v ∈ T n S 2 , it holds that

(3.9) | dφ(n), v | = √ 2s * |v| ,
that is, the differential of φ is a homothety at every point. In addition, the geodesics of N are exactly the images via φ of the geodesics of S 2 , that is, great circles parametrized proportionally to arc length.

Proof. It follows plainly from (3.6) that

| dφ(n), v | 2 = 2s 2 * i, j (n i v j n i v j + n i v j v i n j ) .
As v is tangent to the sphere at the point n, we have v • n = 0, so the second term in the summation vanishes, and we recover (3.9). Denote by g, h the first fundamental forms on S 2 , N respectively (that is, the metrics these manifolds inherit from being embedded in an Euclidean space). In terms of pull-back metrics, Equation (3.9) reads φ * h = 2s 2 * g and, since the scaling factor 2s 2 * is constant, the Levi-Civita connections associated with φ * h and g coincide: this can be argued, for instance, from the standard expression for Christoffel symbols

Γ i jk = 1 2 g il ∂g lj ∂x k + ∂g lk ∂x j - ∂g jk ∂x l .
As a consequence, we derive the characterization of geodesics in N .

Proving the following result is not difficult, once we know what the geodesics in N are. The proof is left to the reader.

Corollary 3.7. The curve

(3.10) c * : θ ∈ [0, 2π] → 3 2 n 0 (θ) ⊗2 - 1 3 Id ,
where n 0 (θ) = [cos(θ/2), sin(θ/2), 0] T , minimizes the functional

c ∈ H 1 (S 1 , N ) → 1 2 2π 0 |c (θ)| 2 dθ
among the non-homotopically trivial loops in N . In particular,

κ * = 3 4 π.

Energy estimates for an almost uniaxial map.

In this subsection, we aim to establish a lower estimate for the energy of uniaxial maps. As a first step, we examine the potential f * , and we provide the following result, which improves slightly [19, Proposition 9].

Lemma 3.8. For all Q ∈ S 0 with |Q| ≤ 1, the bulk potential is bounded by

(3.11) f * (Q) ≥ µ 1 (1 -|Q|) 2 + σβ(Q) |Q| 3 and (3.12) f * (Q) ≤ µ 2 (1 -|Q|) 2 + 2σβ(Q) |Q| 3 ,
where σ = σ(a, b, c), µ i = µ i (a, b, c) for i ∈ {1, 2} are explicitly computable positive constants. Moreover, setting t := ac/b 2 we have

(3.13) σ a (t) = O(t -1/2 ) and µ 1 a (t) = O(1) as t → +∞.
Proof. Set X := 1 -|Q| and Y := s * 2/3 -|Q|, for simplicity. We focus, at first, on the lower bound. The non-rescaled bulk potential f satisfies the inequality

(3.14) f (Q) ≥ Y 2 a 2 + s 2 * c 3 + b 3 √ 6 -c 2 3 s * Y + c 4 Y 2 + b 6 √ 6 β(Q) |Q| 3 ,
which is a byproduct of the proof of [START_REF] Majumdar | Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond[END_REF]Proposition 9]. Thus, f * fulfills

f * (Q) ≥ X 2 a 2 + s 2 * c 3 + bs * 9 - 2s 2 * c 3 X + s 2 * c 6 X 2 + bs * 18 β(Q) |Q| 3
We set σ := bs * /18. Now, we pay attention to the terms in brace: our goal is to minimize the mapping φ :

X ∈ [0, 1] → A + BX + CX 2 ,
where we have set

A = a 2 + s 2 * c 3 , B = bs * 9 - 2s 2 * c 3 , C = s 2 * c 6 ,
in order to recover the lower estimate (3.11) with µ 1 := min [0, 1] φ. It can be easily computed that φ attains its global minimum on R at the point

- B 2C = 2 - b 3s * c = 2 - 4 3 √ 1 + 24t + 3 ,
and that µ 1 ≥ φ(-B/2C) > 0, for all the possible values of a, b, c. We have proved the lower bound for f * . We can argue analogously to bound f * from above. We consider the proof of [19, Proposition 9], and use the inequality

tr Q 3 = ± |Q| 3 1 -β(Q) 6 ≤ |Q| 3 √ 6 (1 -β(Q))
in Equations ( 133)-(134). With the same calculations as in (135)-(138), we obtain

f (Q) ≤ Y 2 a 2 + cs 2 * 3 + b 3 √ 6 -c 2 3 s * Y + c 4 Y 2 + b 3 √ 6 β(Q) |Q| 3 ,
in place of the inequality (3.14). Thus, we can establish the upper estimate (3.12), with µ 2 := max [0, 1] φ. Now, we investigate the behavior of µ 1 and σ as t = ac/b 2 → +∞. When t is large enough, -B/2C > 1 and

µ 1 = φ(1) = A + B + C,
where the last expression can be explicitly calculated through simple algebra:

µ 1 = a 2 - s 2 * c 6 + s * b 9 = 36ac + b √ b 2 + 24ac + b 2 144c = a 36t + √ 1 + 24t + 1 144t .
On the other hand,

σ = s * b 18 = b 2 + b √ b 2 + 24ac 72c = a 1 + √ 1 + 24t 72t ,
and we conclude (3.13).

We see from the estimates (3.11) and (3.12) that µ 1 , µ 2 and σ can be understood as parameters governing the energy cost of uniaxiality and biaxiality, respectively. Furthermore, (3.13) suggests that biaxial solutions are energetically favorable when t is large, that is, when b is small, compared to ac. Remark 3.9. In the limiting case b = 0, we can write f as a function of |Q| only:

f (Q) = k - a 2 |Q| 2 + c 4 |Q| 4 .
The associated vacuum manifold is the unit sphere of S 0 , which we still denote by S 4 . Since the latter is simply connected, the set H 1 g (Ω, S 4 ) is non empty for every choice of boundary datum. Thus, the solutions of Problem (2.1) are the harmonic maps Ω → S 4 .

The following lemma shows that almost uniaxial maps, just as uniaxial ones, must vanish at some point. This property will help us to obtain a lower bound for their energy. Proof. We argue by contradiction, and assume that s 0 := 3/2 min Ω |Q| > 0. The almost uniaxiality hypothesis entails, in view of Remark 3.3, that λ(Q(x)) = 1/2 for all x ∈ Ω. Since the image of g lies in the vacuum manifold, by a connectedness argument we conclude that r 0 := max Ω r(Q) < 1/2. By (3.3), the image of Q is contained in the set

N 0 := {P ∈ S 0 : s(P ) ≥ s 0 , r(P ) ≤ r 0 < 1/2} .
In particular, the boundary datum g is homotopically trivial in N 0 .

We claim that N 0 retracts by deformation on the vacuum manifold N . This entails the conclusion of the proof: composing Q with the retraction yields a continuous extension of g to a map Ω → N , which contradicts the nontriviality of g.

To construct a retraction, we exploit the representation formula of Lemma 3.2, and define the functions K, H :

N 0 × [0, 1] → N 0 by K(P, t) := n ⊗2 - 1 3 Id +rt m ⊗2 - 1 3
Id , H(P, t) := ts + (1 -t) 3/2 K(P, t).

By the formulae (3.2) and the continuity of the eigenvalues as functions of P , the mapping P → (s(P ), r(P )) is well-defined and continuous on N 0 . As a consequence, H is well-defined and continuous, if K is. In addition, H enjoys these properties: for all P ∈ N 0 , we have H(P, 1) = P and H(P, 0) ∈ N , whereas H(P, t) = P for all (P, t) ∈ N × [0, 1]. It only remains to check that K is well-defined and continuous. Remark that each P ∈ N 0 has the leading eigenvalue of multiplicity one; in particular, n = n(P ) is uniquely determined, up to a sign, and n ⊗2 is well-defined. In case r = r(P ) = 0, the second eigenvalue is simple as well, and the same remark applies to m. If r(P ) = 0 then K(P, t) is equally well-defined, regardless of the choice of m.

We argue somehow similarly for the continuity. If {(P k , t k )} k∈N is a sequence in N 0 × [0, 1] converging to a fixed (P, t), then

|K(P k , t k ) -K(P, t)| ≤ n ⊗2 (P k ) -n ⊗2 (P ) + |t k -t| r(P k ) m ⊗2 (P k ) - 1 3 Id + t r(P k )m ⊗2 (P k ) -r(P )m ⊗2 (P ) + t |r(P k ) -r(P )| .
As the leading eigenvalue of P ∈ N 0 is simple, standard results about the continuity of eigenvectors (see, for instance, [24, Property 5.5, p.190]) imply n ⊗2 (P k ) → n ⊗2 (P ). If r(P ) = 0, this is enough to conclude, since

|K(P k , t k ) -K(P, t)| ≤ tr(P k ) m ⊗2 (P k ) + o(1) → tr(Q) = 0
as k → +∞. On the other hand, if r(P ) = 0, then all the eigenvalues of P are simple, and hence m ⊗2 (P k ) → m ⊗2 (P ). Therefore, we can conclude that K is continuous and N 0 retracts by deformation on N .

The following proposition is the key element in the proof of Theorem 1.1. It is adapted from [START_REF] Chiron | Étude mathématique de modèles issus de la physique de la matière condensée[END_REF], with minor changes. We report here the proof, for the reader's convenience.

Proposition 3.11.

There exists a constant M 1 (independent on ε, λ and µ 1 ) such that, for all Q ∈ C 1 (Ω, S 0 ) fulfilling (3.15) min

Ω |Q| = 0, max Ω |Q| = 1 and Q| ∂Ω = g, it holds that E ε (Q) ≥ κ * |log ε| + κ * 2 log µ 1 -M 1 .
Proof. For t > 0, set

Ω t := {x ∈ Ω : |Q(x)| > t} , ω t := {x ∈ Ω : |Q(x)| < t} , Γ t := ∂Ω t \ ∂Ω = ∂ω t Θ(t) := Ωt ∇ Q |Q| 2 , ν(t) := Γt |∇ |Q|| dH 1 .
Given a set K ⊂⊂ R 2 , let us define the radius of K as

rad(K) := inf n i=1 r i : K ⊆ n i=1 B(a i , r i ) .
Having set these notations, we are ready to face the proof. It is well-known that ∇Q = 0 a.e. in {Q = 0}, so we can write

Ω |∇Q| 2 = {|Q|>0} |∇Q| 2 = lim t→0 + Ωt |∇Q| 2 ,
by the monotone convergence theorem. This implies

Ω |∇Q| 2 = lim t→0 + Ωt |∇ |Q|| 2 + |Q| 2 ∇ Q |Q| 2
and, applying the coarea formula, we deduce

(3.16) E ε (Q) = 1 2 1 0 Γt |∇ |Q|| + 2f * (Q) ε 2 |∇ |Q|| dH 1 -2t 2 Θ (t) dt.
There is no trouble in dividing by |∇ |Q|| here. Indeed, combining (3.15) and the Sard lemma we see that for a.e. t ∈ (0, 1) Γ t is a non-empty, smooth curve in Ω, and that |∇ |Q|| > 0 on Γ t . Of course, this implies ν(t) > 0 for a.e. t as well.

Let us estimate the terms in the right-hand side of (3.16), starting from the second one. Taking advantage of Lemma 3.8 and of the Hölder inequality, we obtain (3.17)

Γt 2f * (Q) ε 2 |∇ |Q|| ≥ 2µ 1 (1 -t) 2 ε 2 Γt 1 |∇ |Q|| dH 1 ≥ 2µ 1 (1 -t) 2 H 1 (Γ t ) 2 ε 2 ν(t) .
Moreover, we have H 1 (Γ t ) ≥ 2diam(Γ t ) ≥ 4rad(ω t ) ; to prove the latter inequality, remark that if x, y ∈ Γ t are such that |x -y| = diam(Γ t ), then ω t is contained in the ball B((x + y)/2, |x -y| /2) and hence rad(ω t ) ≤ diam(Γ t )/2. Combining this result with (3.16) and (3.17), we find

(3.18) E ε (Q) ≥ 1 2 1 0 ν(t) + 32µ 1 (1 -t) 2 rad(ω t ) 2 ε 2 ν(t) dt - 1 0 t 2 Θ (t) dt ≥ 1 0 4 √ 2 ε µ 1/2 1 (1 -t) rad(ω t ) dt - 1 0 t 2 Θ (t) dt,
where we have applied the inequality A 2 + B 2 ≥ 2AB. Now, we pay attention to the last term, and we integrate it by parts. For all η > 0, we have

- 1 η t 2 Θ (t) dt = 2 1 η tΘ(t) dt + η 2 Θ(η) ≥ 1 η tΘ(t) dt
and, in the limit as η → 0, by monotone convergence (Θ ≥ 0, -Θ ≥ 0) we conclude

- 1 0 t 2 Θ (t) dt ≥ 2 1 0 tΘ(t) dt.
Arguing as in [25, Theorem 1], we can establish the bound

Θ(t) ≥ -κ * log (rad(ω t )) -C,
where C depends only on N and the boundary datum (for further details, the reader might see [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF] and the proof of Lemma 4.13 in the sequel). Equation (3.18) implies

E ε (Q) ≥ 1 0 4 √ 2µ 1 ε (1 -t) rad(ω t ) -2κ * t log (rad(ω t )) dt -C. Minimizing the function r ∈ (0, +∞) → 4 √ 2µ 1 ε -1 (1 -t)r -2κ * t log r,
we obtain the lower bound

E ε (Q) ≥ 1 0 2κ * t -2κ * t log εκ * t 2 √ 2µ 1 (1 -t) dt -C,
which implies

E ε (Q) ≥ -2κ * 1 0 t log ε - t 2 log µ 1 -t log κ * t 2 √ 2(1 -t) dt -C. As t → t log κ * t 2 √ 2(1-t) is integrable on [0, 1],
we can conclude the proof. 3.3. Proof of Theorem 1.1. We are now in position to prove our main theorem about biaxiality. For ε > 0 small enough, we will construct a maximally biaxial function P ε ∈ H 1 (Ω, S 0 ), which satisfies the estimate

(3.19) E ε (P ε ) ≤ κ * |log ε| + κ * 2 log σ + M 2
for a constant M 2 independent of ε, a, b and c. We claim that the Theorem follows from (3.19). Indeed, in view of (3. 

E ε (P ε ) < inf Q E ε (Q),
the infimum being taken over functions Q ∈ C 1 (Ω, S 0 ) satisfying the conditions (3.15). In particular, the minimizers (which are smooth functions, by elliptic regularity) cannot satisfy (3.15). Therefore, it must be min

Q |Q ε | > 0
and, by applying Lemma 3.10, Q ε is maximally biaxial. Thus, Theorem 1.1 will be proved once the comparison function in (3.19) is constructed. At first, we will assume that the domain is a disk and the boundary datum of a special form. Next, we will extend our construction to the general setting.

The case of a disk. We assume that Ω is a disk in R 2 , of radius R, and that the boundary datum c is given by (3.10). Recall that, by Corollary 3.7, c has minimal length, among all the non homotopically trivial loops in N , and that κ * = 3π/4. Adopting polar coordinates on Ω, for (ρ, θ) ∈ (0, R) × [0, 2π] we set (3.20)

P ε (ρ, θ) := 3 2 n 0 (θ) ⊗2 - 1 3 Id +r ε (ρ) m 0 (θ) ⊗2 - 1 3 Id ,
where m 0 (θ) := [-sin(θ/2), cos(θ/2), 0] T and r ε is the continuous function

r ε (ρ) := 1 -σ 1/2 ρ/ε if 0 ≤ ρ ≤ σ -1/2 ε 0 if σ -1/2 ε ≤ ρ ≤ R.
This construction is possible, provided that ε < Rσ 1/2 . Due to r ε (0) = 1, function P ε can be extended continuously in the origin:

lim ρ→0 + P ε (ρ, θ) = - 3 2 p ⊗2 0 - 1 3 Id ,
where p 0 := [0, 0, 1] T . The derivatives of P ε can be computed explicitly:

∂P ε ∂ρ (ρ, θ) 2 = r 2 ε (ρ), ∂P ε ∂θ (ρ, θ) 2 = 3 4 (1 -r ε (ρ)) 2 ,
and

1 2 Ω |∇P ε | 2 = π R 0 ρr 2 ε (ρ) + 3 4ρ (1 -r ε (ρ)) 2 dρ = 3 4 π |log ε| + 3 8 π log σ + C.
On the other hand, we exploit the upper estimate in Lemma 3.8 to bound the potential energy:

1 ε 2 Ω f * (P ε ) ≤ 2σ ε 2 meas(B(0, σ -1/2 ε)) = 2π.
Therefore, we conclude that (3.19) holds, in this case.

A general domain. Now, consider an arbitrary domain Ω, and fix a closed disk B ⊂⊂ Ω. Since, by assumption, the boundary datum g is non homotopically trivial, in view of Lemma 2.2 it is possible to construct a smooth map P : Ω \ B → N , such that

P | ∂Ω = g and P | ∂B = c.
We define the map 

P ε ∈ H 1 (Ω, S 0 ) by P ε (x) = P (x) if x ∈ Ω \ B,

Asymptotic analysis of the minimizers

This section investigates the behavior of minimizers of (2.1) as ε 0, and contains the proofs of Proposition 1.2 and Theorem 1.3. We start by recalling some well-known properties of minimizers.

Lemma 4.1. If u ε is a minimizer for Problem (2.1), then u ε L ∞ (Ω) ≤ 1 and ∇u ε L ∞ (Ω) ≤ C ε .
Proof. The L ∞ bound on u ε can be easily established via a comparison argument. Assume, by contradiction, that |u ε (x 0 )| > 1 for some x 0 ∈ Ω, and define

v ε (x) :=    u ε (x) if |u ε (x)| ≤ 1 u ε (x) |u ε (x)| otherwise.
Clearly

|∇v ε | ≤ |∇u ε | and, by (H3), f (v ε ) ≤ f (u ε )
, with strict equality at least at the point x 0 . Thus, we infer 

E ε (v ε ) < E ε (u ε ),
1 ε 2 G f (u ε ) + 1 2 ∂G (x -x 0 ) • ν ∂u ε ∂ν 2 dH 1 = ∂G 1 2 (x -x 0 ) • ν ∂u ε ∂τ 2 -(x -x 0 ) • τ ∂u ε ∂ν : ∂u ε ∂τ + (x -x 0 ) • ν 1 2ε 2 f (u ε ) dH 1 .
Proof. The lemma can be proved arguing exactly as in [4, Theorem III.2].

Remark 4.3. When considering the Landau-de Gennes equation (2.4), the additional term b(tr Q 2 ε ) Id /3 does not play any role in the proof of the Pohozaev identity. Indeed, assume x 0 = 0, multiply both sides of (2.4) by x k Q ij, k , sum over i, j, k and integrate over G. We obtain

- G Q ε, ij, ll x k Q ε, ij, k dx + 1 2ε 2 G ∂f (Q ε ) ∂Q ε, ij Q ε, ij, k x k dx + 1 3 b G x k Q ε, ii, k tr Q 2 ε dx = 0,
and the third integral vanishes, since Q ε, ii = 0. The proof follows exactly as in the previous case; the reader is referred to [START_REF] Majumdar | Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond[END_REF]Lemma 2] for more details.

Lemma 4.4.

Let Ω ⊆ R 2 and let u ε be a minimizer for Problem (2.1). Then, there exists a constant C, depending on Ω and G, such that

E ε (u ε ) ≤ κ * |log ε| + C.
Proof. The proof of this lemma is a slightly different version of [4, Theorem III.1] (see also [START_REF] Chiron | Étude mathématique de modèles issus de la physique de la matière condensée[END_REF]). Let (η 1 , η 2 , . . . , η m ) ∈ Γ(N ) m be an m-uple which achieve the minimum in (2.10), that is,

(4.2) m j=1 η j ∩ k i=1 γ i = ∅, 1 4π m j=1 λ(η j ) 2 = κ * ,
and for each j ∈ {1, . . . , m} choose a loop b j ∈ η j , of minimal length (i.e., λ(η j ) = 2π|b j |). Let B 1 , . . . , B m be mutually disjoint, closed disks in Ω, of radius r. Applying Lemma 2.2, we find a smooth function v : Ω \ ∪ m j=1 B j → N , such that v = g on ∂Ω and v = b j on ∂B j , for each j. We extend v to a function v ε : Ω → N in the following way. On Ω \ ∪ m j=1 B j , set v = v ε , whereas on each ball B j , denoting by (ρ, θ) the polar coordinates around the center x j of the ball, set

v ε (x) := ε -1 ρ b j x j + re iθ if 0 < ρ < ε b j x j + re iθ if ε ≤ ρ < r. Since v ε ∈ H 1 g (Ω, R k ), the minimality of u ε entails E ε (u ε ) ≤ E ε (v ε )
. Computing E ε (v ε ) will be enough to conclude (2.10). We find

E ε (v ε ; Ω \ m j=1 B j ) = 1 2 Ω\ m j=1 Bj |∇v| 2 = C, E ε (v ε ; B j ) ≤ Bj Cε -2 ≤ C,
and, passing to polar coordinates,

E ε (v ε ; B j \ B ε (x j )) = 1 2 r ε dρ ρ S 1 dω b j (ω) 2 ≤ 1 4π λ(η j ) 2 |log ε| + C.
Combining these bounds, with the help of (4.2) we conclude.

4.1. Localizing the singularities. In this subsection, we will prove Proposition 1.2. Namely, we will show that the image of u ε lies close to the vacuum manifold, except on the union of a finite number of small balls. Analogous results have been established for the Ginzburg-Landau model in [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF], in case the domain Ω ⊆ R 2 is star-shaped. This technical assumption has been removed in [START_REF] Bethuel | Vortices for a variational problem related to superconductivity[END_REF] and [START_REF] Struwe | On the asymptotic behavior of minimizers of the Ginzburg-Landau model in 2 dimensions[END_REF] (see also [START_REF] Bethuel | Variational methods for Ginzburg-Landau equations[END_REF] for more details). We introduce a (small) parameter 0 < α ≤ 1, whose value is going to be adjusted later, and we set

e ε (u ε ) = 1 2 |∇u ε | 2 + 1 ε 2 f (u ε
). We claim the following Proposition 4.5. Let δ ∈ (0, δ 0 ) be fixed. For all ε > 0, there exists a finite set X ε = {x 1 , . . . , x k } ⊂ Ω, whose cardinality is bounded independently of ε, such that

(4.3) dist(u ε (x), N ) ≤ δ if dist(x, X ε ) > λ 0 ε,
where λ 0 > 0 is a constant independent of ε, and

(4.4) ε 4α e ε (u ε )(x) ≤ C α if dist(x, X ε ) > ε α .
Proposition 4.5 clearly implies Proposition 1.2. As a first step in the proof, we show that e ε (u ε ) solves an elliptic inequality, in the regions where u ε lies close to the vacuum manifold. Lemma 4.6. Assume ω ⊂ Ω is an open set, such that dist(u ε (x), N ) ≤ δ holds for all x ∈ ω and all ε > 0. Then, e ε (u ε ) solves pointwise in ω the inequality

-∆e ε (u ε ) ≤ Ce 2 ε (u ε ). Proof. Reminding that u ε is a solution of Equation (2.2), we compute plainly - 1 2 ∆ |∇u ε | 2 = -∇ (∆u ε ) • ∇u ε -∇ 2 u ε 2 = - 1 ε 2 ∇u ε : D 2 f (u ε )∇u ε -∇ 2 u ε 2 ,
where

∇ 2 u ε 2 = i, j |∂ i ∂ j u ε | 2 ,
and

- 1 ε 2 ∆f (u ε ) = - 1 ε 2 ∇ (Df (u ε )) • ∇u ε - 1 ε 2 Df (u ε ) • ∆u ε = - 1 ε 2 ∇u ε : D 2 f (u ε )∇u ε - 1 ε 4 |Df (u ε )| 2 .
Adding these contributions, we obtain

(4.5) -∆e ε (u ε ) + ∇ 2 u ε 2 + 1 ε 4 |Df (u ε )| 2 = - 2 ε 2 ∇u ε : D 2 f (u ε )∇u ε . Hypothesis (H2) provides (4.6) 1 ε 4 |Df (u ε )| 2 ≥ m 0 ε 4 dist 2 (u ε , N ).
Moreover, the image u ε (ω) lies close to N by assumption, so the right-hand side of (4.5) can be estimated by the local Lipschitz continuity of D 2 f :

- 2 ε 2 ∇u ε : D 2 f (u ε )∇u ε ≤ - 2 ε 2 ∇u ε : D 2 f (π(u ε ))∇u ε + 2 ε 2 D 2 f (u ε ) -D 2 f (π(u ε )) |∇u ε | 2 ≤ - 2 ε 2 ∇u ε : D 2 f (π(u ε ))∇u ε + C ε 2 dist(u ε , N ) |∇u ε | 2 ≤ C ε 2 dist(u ε , N ) |∇u ε | 2 .
For the latter inequality, remind that every point p ∈ N is a minimizer for f , so D 2 f (p) ≥ 0. We infer

- 2 ε 2 ∇u ε : D 2 f (u ε )∇u ε ≤ m 0 ε 4 dist 2 (u ε , N ) + C |∇u ε |
and the first term can be reabsorbed in the left-hand side of (4.5), by means of (4.6). This concludes the proof.

Our next ingredient is a Clearing Out lemma, which relies crucially on (H2).

Proposition 4.7 (Clearing Out

). There exist some positive constants λ 0 and µ 0 with the following property: for all x 0 ∈ Ω and all l ∈ [λ 0 ε, 1], if the minimizer u ε satisfies

(4.7) 1 ε 2 B(x0, 2l)∩Ω f (u ε ) ≤ µ 0 then (4.8) dist(u ε (x), N ) ≤ δ for all x ∈ Ω ∩ B(x 0 , l). Proof. Set f 0 := min {f (v) : dist(v, N ) ≥ δ, |v| ≤ 1} ,
and remark that f 0 > 0, because it is the minimum of a strictly positive function on a compact set. We define (4.9)

λ 0 := δ 2C , µ 0 := π 2 λ 2 0 min f 0 , 1 8 m 0 δ 2 ,
where C is a constant such that |∇u ε | ≤ Cε -1 (such a constant exists, by Lemma 4.1). We are going to check that this choice of λ 0 , µ 0 works. To do so, we proceed by contradiction and assume there is some point x ∈ B(x 0 , l) such that dist(u ε (x), N ) > δ. Firstly, we remark that this assumption implies dist(x, ∂Ω) > λ 0 ε. Indeed, if it were dist(x, ∂Ω) ≤ λ 0 ε then, in view of (H4), we would have

dist(u ε (x), N ) ≤ ∇u ε L ∞ dist(x, ∂Ω) ≤ Cλ 0 = δ 2 .
It follows that the ball B(x, λ 0 ε) is entirely contained in Ω ∩ B(x 0 , 2l). In addition, for all y ∈ B(x, λ 0 ε) we have

dist(u ε (y), N ) ≥ dist(u ε (x), N ) -|u ε (x) -u ε (y)| > δ -λ 0 ε ∇u ε L ∞ ≥ δ 2 .
Due to Remark 2.4 and Lemma 4.1, this implies

1 ε 2 Ω∩B(x0, 2l) f (u ε ) ≥ 1 ε 2 B(x, λ0ε) f (u ε ) ≥ πλ 2 0 min f 0 , 1 8 m 0 δ 2 = 2µ 0 ,
which contradicts the hypothesis (4.7).

The two following results can be found in [2, Section IV.5]. The proofs carry over to our setting, without any change. Lemma 4.8. Let x 0 ∈ Ω. There exists a constant C α , depending only on α, g and Ω, such that

1 ε 2 B(x0, ε α )∩Ω f (u ε ) ≤ C α .
Proposition 4.9. There exists a constant η α > 0, independent of ε, with the following property: if a point x 0 ∈ Ω verifies (4.10)

B(x0, 2ε α )∩Ω |∇u ε | 2 ≤ η α |log ε| + C then dist(u ε (x), N ) ≤ δ for all x ∈ B(x 0 , ε α ).
Proposition 4.9 provides a concentration result for the energy, which will be crucial in our argument. Reducing, if necessary, the value of η α , we are able to show another estimate for minimizers satisfying (4.10). This will be the final ingredient in our proof of Proposition 4.5.

Proposition 4.10.

There exist constants η α , C α > 0 (with C α depnding only on α, η α ) such that, if u ε verifies the condition (4.10) for some x 0 ∈ Ω, then

ε 4α e ε (u ε )(x 0 ) ≤ C α .
Proof. We suppose, at first, that B(x 0 , ε α ) ⊂ Ω. In view of Proposition 4.9, we can assume that dist(u ε , N ) ≤ δ on B(x 0 , ε α ). Furthermore, (4.10) and Lemma 4.8 provide

(4.11) E ε (u ε , B(x 0 , ε α ) ∩ Ω) ≤ η α |log ε| + C α .
We claim that there exists a radius r ∈ (ε 2α , ε α ) such that (4.12)

∂B(x0, r)∩Ω |∇u ε | 2 + 1 ε 2 f (u ε ) ≤ 2η α αr .
Indeed, if (4.12) were false, integrating over (ε 2α , ε α ) we would obtain

E ε (u ε , B(x 0 , ε α ) ∩ Ω) ≥ 2η α α ε α ε 2α dr r = 2η α |log ε| ,
which contradicts (4.11), for ε 1. Thus, the claim is established. Set

:= ε/r and v (x) := u ε x + x 0 r for x ∈ B := B(0, 1).
As a consequence of the scaling, we deduce e (v ) = r 2 e ε (u ε ), hence

E (v , B) = E ε (u ε , B(x 0 , r))
and v minimizes the energy E among the maps

w ∈ H 1 (B, R d ), with w| ∂B = v | ∂B . Moreover, (4.12) transforms into (4.13) 
∂B e (v ) ≤ 2η α α .

We will take advantage of the following property, whose proof is postponed.

Lemma 4.11. The energy of v is controlled by η α , that is,

B e (v ) ≤ C α η α .
Recall also that, due to Lemma 4.6, e (v ) solves an elliptic inequality. Thus, we are in position to invoke a result by Chen and Struwe ([7] -the reader is also referred to [27, Theorem 2.2]): provided that η α is small enough, Lemma 4.11 implies the estimate

r 2 e ε (u ε )(x 0 ) = e (v )(x) ≤ B e (v ) ≤ C α η α .
This concludes the proof, in case B(x 0 , ε α ) does not intersect the boundary.

We still have to cover the case B(x 0 , ε α ) Ω, but this entail no significant change in the proof (nor in the proof of Lemma 4.11). As we deal with a local result, we can straighten the boundary and assume that Ω coincides locally with the set R n + . In place of the Chen-Struwe result we can exploit [27, Theorem 2.6], which deals with the Dirichlet boundary condition.

Proof of Lemma 4.11. We split the proof in steps, for clarity.

Step 1 (Construction of the harmonic extension). The composition π(v ) is well defined, since the image of v lies close to the vacuum manifold. Set σ := dist(v , N ) = |v -π(v )|, and denote by ω an harmonic extension of π(v )| ∂B on B. The existence of such an extension is a classical result by Morrey (see, for instance, [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF]). Lemma 4.2 in [START_REF] Schoen | A regularity theory for harmonic maps[END_REF] and (4.11) imply that (4.14)

B |∇ω | 2 ≤ C ∂B e (v ) ≤ C α η α .
We wish to use ω as a comparison map, in order to obtain the H 1 bound for v ; to do so, we have to take care of the boundary condition on ∂D.

Step 2 (An auxiliary map). It will be useful to introduce an auxiliary map ϕ . Using polar coordinates on D, we define ϕ by the formula

ϕ (ρ, θ) = -1 (ρ -1 + )σ (θ) if 1 -≤ ρ ≤ 1 0 if ρ < 1 -,
We claim that (4.15)

B |∇ϕ | 2 + 1 2 ϕ 2 ≤ C
and check it by a straightforward computation. Indeed,

B |∇ϕ | 2 + 1 2 ϕ 2 ≤ 2π 0 dθ 1 1- dρ 1 2 ρ |σ (θ)| 2 + 1 ρ |σ (θ)| 2 + ρ |σ (θ)| 2 ≤ 1 2 - 2 2 σ 2 L 2 (S 1 ) -log(1 -) σ 2 L 2 (S 1 ) + - 2 2 σ 2 L 2 (S 1 )
and (4.15) follows from (4.13), since

|σ | ≤ |∇(v -π(v ))| and σ 2 ≤ Cf (v ).
Step 3 (Construction of a normal field on N ). By construction, (v -ω )| ∂B is a normal field on N , whose modulus is given by σ . We want to extend it to a map ν : B → R d , so that ν (x) is orthogonal to N at the point ω (x) and |ν (x)| = ϕ (x), for all x ∈ D. At first, one may work locally, near a point x 0 ∈ ∂Ω, and exploit the existence of an orthonormal frame of normal vectors, defined on some neighborhood of ω (x 0 ). Then, the construction of ν is completed by a partition of the unity argument.

Step 4 (Construction of a comparison map). Set ω := ω + ν . It follows from the previous steps that ω enjoys these properties:

ω | ∂B = v | ∂B , π( ω (x)) = v (x)
and dist( ω (x), N ) = ϕ (x) for all x ∈ B. In particular, ω is an admissible comparison map for v . By this information and Lemma 2.5, we infer a bound for the gradient of ω :

|∇ ω | 2 ≤ (1 + Cϕ ) |∇ω | 2 + C |∇ϕ | 2 + ϕ 2
Since |ϕ | ≤ δ by construction, integrating this inequality over D and exploiting (4.13) we obtain

(4.16) ∇ ω 2 L 2 (D) ≤ (1 + δ) ∇ω 2 L 2 (D) + C .
The potential energy of ω is estimated by means of Remark 2.4:

1 2 B f ( ω ) ≤ M 0 2 2 B ϕ 2 .
Combining this inequality with (4.15) and (4.16), we deduce (4.17

) B e (v ) ≤ B e( ω ) ≤ (1 + δ) ∇ω 2 L 2 (D) + C .
With this estimate and (4.14), we complete the proof.

Having established all these preliminary results, Proposition 4.5 follows easily from a covering argument as, for instance, the one in [START_REF] Bethuel | Variational methods for Ginzburg-Landau equations[END_REF] (see also [START_REF] Bethuel | Progress in Nonlinear Differential Equations and their Applications[END_REF]Chapter IV]).

Proof of Proposition 4.5. By Vitali covering lemma, we can find a finite family of points

{y i } i∈I such that Ω ⊆ i∈I B(y i , 3ε α ) and B(y i , ε α ) ∩ B(y j , ε α ) = ∅ if i = j.
Let η α = η α (α, δ) be given by Proposition 4.10. Define J ε as the subset of indexes i ∈ I for which the inequality 

B(yi, 3ε α ) |∇u ε | 2 ≥ η α (|log
(x), N ) ≤ δ if x ∈ B(y i , 3ε α ) and i ∈ I \ J ε ε 4α e ε (u ε )(x) ≤ C α if x ∈ B(y i , ε α ) and i ∈ I \ J ε .
Now, let us fix an index i ∈ J ε , and let us focus on B(y i , 3ε α ). Being λ 0 = λ 0 (δ) and µ 0 = µ 0 (δ) given by Proposition 4.7, we consider a finite covering {B(

x i m , 3λ 0 ε) : m ∈ Λ ε, i } of B(y i , 3ε α ), such that B(x i m , λ 0 ε) ∩ B(x i n , λ 0 ε) = ∅ if m = n,
and we define the set L ε, i of indexes m ∈ Λ ε, i such that

1 ε 2 B(x i m , 3λ0ε) f (u ε ) > µ 0 . Since ε -2 B(xi, 3ε α ) f (u ε
) is controlled by Lemma 4.8, we can bound the cardinality of L ε, i , independently of ε, exactly as in (4.18). By Proposition 4.7, we have that dist(u ε (x), N ) ≤ δ if x ∈ B(x i m , 3λ 0 ε) and m / ∈ L ε, i . Combining all these facts, we conclude easily.

Denote by x ε

1 , x ε 2 , . . . , x ε kε the elements of X ε . For any given sequence ε n 0 we can extract a renamed subsequence, such that k εn is independent of n (say, k εn = N ) and

x εn i → L i for i ∈ {1, 2, . . . , N },
for some point L i ∈ Ω. Some of the points L i might coincide; therefore, we relabel them as a 1 , a 2 , . . . , a N , with N ≤ N , in such a way that a i = a j if i = j.

For the time being, we cannot exclude the possibility that a i ∈ ∂Ω, for some index i. To deal with this difficulty, we enlarge a little the domain Ω and consider a smooth, bounded domain Ω ⊇ Ω, with the same homotopy type as Ω -for instance, we can define Ω as a r-neighborhood of Ω, for r small enough. Also, we fix a smooth function g : Ω \ Ω → N , such that g = g on ∂Ω and ∇g L 2 (Ω \Ω) ≤ C g H 1 (∂Ω) . From now on, we extend systematically any function v : Ω → N with v = g on ∂Ω to a map v : Ω → N , by setting v = g on Ω \ Ω. 4.2. An upper estimate away from singularities. Fix a number ρ > 0 small enough, say,

ρ < dist(Ω, Ω ), ρ < 1 2 min i =j |a i -a j | ,
so that the disks B(a i , ρ) are mutually disjoint and contained in Ω . The aim of the following subsection is to prove the following upper bound for energy of the minimizers, away from the singularities.

Proposition 4.12. There exists a constant C, independent of n and ρ, and a number N ρ such that for every n ≥ N ρ we have

1 2 Ω \ i B(ai, ρ) |∇u εn | 2 ≤ κ * |log ρ| + C.
Before facing the proof, we fix some notations. For a fixed i, define Λ i as the set of indexes j ∈ {1, 2, . . . , N 1 } such that x εn j → a i . For n sufficiently large, we have B(a i , ρ) ⊇ B(x εn j , λ 0 ε n ) if and only if j ∈ Λ i . We introduce the sets

Ω i,n := B(a i , ρ) \ j∈Λi B(x εn j , λ 0 ε n ).
Recall that, by Proposition 4.5, we have dist(u εn (x), N ) ≤ δ for all x ∈ Ω i,n . Thus, we can define v εn , σ εn by

v εn := π( u εn | Ωi,n ), σ εn := dist( u εn | Ωi,n , N ).
and notice that v εn , σ εn ∈ H 1 (Ω i,n , N ). Denote by η j,n the free homotopy class of v εn , restricted to ∂B(x εn j , λ 0 ε n ), and set

κ i,n := inf λ * (γ) : γ ∈ j∈Λi η j,n ,
The continuity of v εn and Lemma 2.2 imply

N1 j=1 η j,n ∩ k i=1 γ i = ∅.
By the definition (2.10) of κ * we infer

(4.19) κ * ≤ N i=1 κ i,n , for all n ∈ N.
We can assume without loss of generality that κ i,n > 0 for all i, n. Indeed, if κ i,n = 0 then there is no topological obstruction to the construction of Lemma 4.11. Arguing in a similar way, we can exhibit a comparison map u εn , with u εn | ∂B(ai, ρ) = u εn | ∂B(ai, ρ) , such that

E ε (u εn , B(a i , ρ)) ≤ E ε ( u εn , B(a i , ρ)) ≤ C.
Applying the Chen and Struwe's result on some small ball contained in B(a i , ρ), we obtain e ε (u ε ) ≤ C on B(a i , ρ). In turns, this forces dist 2 (u εn (x), N ) ≤ Cf (u εn (x)) ≤ Cε 2 n ≤ δ, for all x ∈ B(a i , ρ) and n large enough. Therefore, no singularity is contained in B(a i , ρ) if κ i,n = 0, and the point a i can be dropped out.

After this preliminaries, we are ready to face the proof of Proposition 4.12. In fact, we will give an indirect proof, based on a lower estimate for the energy near the singularities.

Lemma 4.13. There exists a constant C, independent of n and ρ, such that for all function

v ∈ H 1 (Ω i,n , N ) the estimate 1 2 Ωi,n |∇v| 2 ≥ κ i,n log ρ ε n -C holds.
Sketch of the proof. The lemma can be established arguing exactly as in [25, Theorem 1] (the reader is also referred to [START_REF] Chiron | Étude mathématique de modèles issus de la physique de la matière condensée[END_REF]). At first, one has to consider the case Ω i,n is an annulus B ρ \ B ε , with 0 < ε < ρ; then, κ i,n reduces to λ * (η), where η is the homotopy class of v| ∂Bρ . Assuming that v is smooth, a computation in polar coordinates gives Having proved the lemma in this simple case, we can repeat the same argument as [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF], the only difference being κ i,n in place of the degree. We exploit the property (2.9) instead of the triangle inequality for the degrees. Finally, since we may assume dist(B(x εn j , λ 0 ε n ), ∂B(a i , ρ)) > ρ/2 for j ∈ Λ i and n large enough, we can prove the analogous of [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF]Proposition], which reads

1 2 Ωi,n |∇v| 2 ≥ κ i,n log ρ/4 λ 0 ε n .
This concludes the proof.

Lemma 4.14.

There exists a constant C, independent of n and ρ, and a number N ρ such that for every n ≥ N ρ and every i we have

1 2 Ωi,n |∇u εn | 2 ≥ κ i,n log ρ ε n -C -C.
Proof. 

|∇u ε n | 2 ≤ C K , K dist 2 (u ε n , N ) ≤ Cε 2 n
at least for n ≥ N K . Hence, up to a renamed subsequence, by a diagonal procedure we can assume u εn → u 0 a.e. and weakly in H 1 loc (Ω \ {a 1 , . . . , a N }). Passing to the limit in the second condition of (4.25), by Fatou's lemma we deduce that u 0 (x) ∈ N for a.e. x ∈ Ω \ {a 1 , . . . , a N }.

We are now in position to prove that the points a i , for i ∈ {1, . . . , N }, do not belong to the boundary of Ω. As a byproduct of the proof, we obtain a condition for the quantities κ i,n .

Proposition 4.15. For all i ∈ {1, . . . , N }, the point a i is in the interior of Ω. In addition, it holds that

(4.26) N i=1 κ i,n = κ * .
Proof. We adapt the proof of [4, Lemma 3]; the reader may see also [START_REF] Chiron | Étude mathématique de modèles issus de la physique de la matière condensée[END_REF]. Assume, by contradiction, that a i = 0 ∈ ∂Ω for some i ∈ {1, . . . , N }. Then, computing in polar coordinates as we did in Lemma 4.13, we obtain the inequality

1 2 Ω∩(Bρ\Bε) |∇u 0 | 2 ≥ λ(η) 2 2π (1 + o ρ→0 (1)) log ρ ε
in place of (4.20). The factor approximately equal to (2π) -1 , instead of (4π) -1 , is due to the angular variable, which spans an interval of length π + o ρ→0 [START_REF] Ball | Nematic liquid crystals: from maier-saupe to a continuum theory[END_REF]. Arguing as in [START_REF] Sandier | Lower bounds for the energy of unit vector fields and applications[END_REF]Theorem], we can conclude

(4.27) 1 2 Ω\∪iB(ai, ρ) |∇u 0 | 2 ≥ N i=1 α i κ i,n (1 + o ρ→0 (1)) |log ρ| -C
for a radius ρ > 0 small enough, so that the balls B(a i , ρ) are mutually disjoint, and the coefficients α i are given by

α i := 1 if a i / ∈ ∂Ω 2 if a i ∈ ∂Ω.
On the other hand, the weak H As a consequence, the convergence u εn → u 0 holds in H 1 (D) and the limit map u 0 is minimizing harmonic. In particular, u 0 solves the harmonic map equation in D, and the regularity theory of Morrey (see [START_REF] Morrey | The problem of Plateau on a Riemannian manifold[END_REF]) applies, entailing u 0 ∈ C ∞ (D). Also, as a byproduct of this argument, we obtain This provides a bound for u εn in W 1, ∞ (D), which allows us to conclude the proof, by means of the Ascoli-Arzelà theorem.

5. The behavior of u 0 near the singularities

In this section, we analyze the behavior of u 0 near the singularities: our aim is to prove Proposition 1.4. As we already mentioned in the Introduction, we consider here just the case N = P 2 (R). This provide a remarkable simplification in the arguments, due to the simple homotopic structure of the real projective plane, whose fundamental group consists of two elements only. Hence, there is a unique class of non homotopically trivial loops.

This property reflects on the structure of the limit map. Remind that, for all i and n, we have set

κ i,n = λ *   j∈Λi η j,n   ,
where η j,n is the free homotopy class of π(u εn ), restricted to ∂B(x εn j , λ 0 ε n ). It follows from Lemma 2.2 that j∈Λi η j,n is the homotopy class of π(u εn ) restricted to ∂B(a i , ρ), for a small radius ρ > 0. Since the homotopy class is stable by uniform convergence, from Theorem 1.3 we deduce κ i,n = λ * homotopy class of u 0 | ∂B(ai, ρ) , that is, κ i,n is independent of n. On the other hand, there is a unique non zero value that κ i,n and κ * can assume, corresponding to the unique class of non trivial loops. As a consequence, from (4.26) we infer that that there is at most one index i such that κ i,n = 0, and we prove the following Lemma 5.1. In case N P 2 (R), there exists a point a ∈ Ω such that u 0 ∈ C ∞ (Ω \ {a}).

Assume now that the boundary datum is non homotopically trivial. Up to a translation, we can suppose that the unique singular point of u 0 is the origin, and we fix a radius r > 0 such that B(0, r) ⊆ Ω. We also introduce the functions R, S ∈ C ∞ (0, r) by Letting ρ 0 0, we deduce the summability of ρ → ρ -1 (S(ρ) -κ * ) which, in turns, forces the inferior limit of S -κ * to vanish. Proposition 1.4 follows easily from this lemma. Indeed, we can pick a sequence ρ n 0 such that S(ρ n ) → κ * : this is a minimizing sequence for the length-squared functional

c ∈ H 1 (S 1 , N ) → 1 2 2π 0 |c (θ)| 2 dθ
under the constraint that c is not homotopically trivial, and hence, by the compact inclusion H 1 (S 1 , N ) → C 0 (S 1 , N ), it admits a subsequence uniformly converging to a minimizer, which is a geodesic. The continuous inclusion H 1 (S 1 , N ) → C 1/2 (S 1 , N ) and interpolation in Hölder spaces provide also the convergence in C α , for α ∈ (0, 1/2).

We are not able to say whether the convergence holds for the whole family {c ρ } ρ>0 , because we are not able to identify the limit geodesic c ρ . However, we state here some additional properties we have been able to prove about the functions S and R, in the hope that they might be of interest for future work. This equality is essentially a consequence of the Pohozaev identity for the harmonic maps, but here we will present its proof in a slightly different form. Since u 0 is harmonic away from 0, its Laplacian ∆u 0 is, at every point, a normal vector to N . Thus, for each point x ∈ Ω \ {0} we have ∆u 0 • ∂u 0 ∂ν (x) = 0, where ν = x/ |x|. We multiply the previous identity by |x| 2 , pass to polar coordinates, and integrate with respect to θ ∈ [0, 2π], for a fixed ρ ∈ [0, r]. This yields Remark 5.4. If we knew that R has better integrability properties, for instance R ∈ L p for some p > 1 (or even R 1/2 ∈ L (2, 1) ), then we could conclude the convergence of the whole family {c ρ } ρ>0 , at least in L 1 (S 1 , N ). Indeed, applying the fundamental theorem of calculus, the Fubini-Tonelli theorem, and the Hölder inequality, we would obtain where the right-hand side converges to zero as ρ 1 , ρ 2 → 0, again by the Hölder inequality. Thus, {c ρ } ρ>0 would be a Cauchy sequence in L 1 (S 1 , N ).

Lemma 3 . 10 .

 310 If Q ∈ C 1 (Ω, S 0) is almost uniaxial with Q| ∂Ω = g, and the boundary datum g is not homotopically trivial, then min Ω |Q| = 0.

f

  (u εn ) → 0 as n → +∞.Finally, we check the locally uniform convergence. Owning to the strong convergence in H 1 (D) and (4.31), for all η > 0 we can find a radius r > 0, such that the inequalityB(x0, r)e εn (u εn ) ≤ η holds for all x 0 ∈ 1 2 D and all n ∈ N. Then, choosing η small enough, we apply the Chen and Struwe's result, to infer e εn (u εn )(x 0 ) ≤ E εn (u εn ; D) ≤ C for all x ∈ 1 2 D.

Lemma 5 . 2 . 2

 522 |∇ T u 0 | 2 dH 1where ∇ T denotes the tangential derivation. These functions are obviously non negative; in fact, S is bounded by below by κ * . Indeed, by definition of λ we have for all ρ ∈ (0, r)4πS(ρ) = 2π 2π 0 c ρ (θ) 2 dθ ≥ λ 2 (γ),where c ρ is the function considered in Proposition 1.3, andS(ρ) ≥ λ 2 (γ) 4π = κ * . The function ρ → ρ -1 (S(ρ) -κ * ) is summable over (0, r). In particular, lim inf ρ→0 S(ρ) = κ * .Proof. Let 0 < ρ 0 < min{r, 1}. With the help of Theorem 1.3, we can pass to the limit as n → +∞ in Proposition 4.12, to obtain1 Br(0)\Bρ 0 (0) |∇u 0 | 2 ≤ κ * |log ρ 0 | + Cand, expressing the left-hand side in polar coordinates, dρ ≤ κ * |log ρ 0 | + C. Taking advantage of this bound, we compute dρ -κ * |log ρ 0 | -κ * log r ≤ C.

Lemma 5 . 3 .

 53 It holds that R(ρ) = 1 ρ (S(ρ) -κ * ) .Proof. We claim that (5.2) d dρ (ρR(ρ) -S(ρ)) = 0.

  an integration by parts in the third term, which we deduce (5.2). Our claim is proved. As a consequence of (5.2), there exists a constant k such thatR(ρ) = 1 ρ (S(ρ) + k) ,and the lemma will be proved once we have identified the value of k. To do so, fix 0 < ρ 0 < min{r, 1} and notice that (5.1) impliesκ * |log ρ 0 | + C ≥ + k) dρThe first integral at the right-hand side is non negative, since S ≥ κ * . Therefore, for small values of ρ 0 , κ * |log ρ 0 | + C ≥ (2κ * + k) |log ρ 0 | -C and, comparing the coefficients of the leading terms, we haveκ * ≥ 2κ * + k, that is, k ≤ -κ * .On the other hand, 0 ≤ ρR(ρ) = S(ρ) + k and, taking the inferior limit as ρ 0, by Lemma 5.2 we infer 0 ≤ κ * + k, which provides the opposite inequality k ≥ -κ * . Lemmas 5.2 and 5.3 combined imply that R ∈ L 1 (0, r).

c

  ρ1 -c ρ2 L 1 (S 1 )

  Let G ⊆ R 2 be any subdomain of Ω, and x 0 ∈ G. Denote by ν the unit external normal to ∂G and by τ the unit tangent to ∂G, oriented so that (τ, ν) is direct. Then, any solution u ε of Equation (2.2) satisfies (4.1)

which contradicts the minimality of u ε . The estimate on the gradient can be deduced from Equation (2.2), with the help of the previous bound and [3, Lemma A.2].

Lemma 4.2 (Pohozaev identity).

  The energy of v εn on Ω i,n is bounded by below by Lemma 4.13; moreover, the lower bound provided by (2.12) entails Case 1 (Estimate out of Y n ). Let x ∈ Ω i,n \ Y n . Then, by Propositions 4.5 and 4.10 we have e εn (u εn )(x) ≤ C α ε 4α n . Since |∇v εn | ≤ C |∇u εn |, this entails Proposition 4.12 follows now easily from Lemmas 4.4 and 4.14, with the help of (4.19). Let us point out some consequences of the previous results. For a fixed a compact set K ⊆ Ω \ {a i } 1≤i≤N , we know by Proposition 4.12 that

	Thus, combining the Equations (4.22), (4.23) and (4.24) with (H2), we infer
	Yn	σ εn |∇v εn |	2 ≤ Cε -2 n	σ εn	2 L 2 (Yn) ≤ M 0 ε -2 n	Yn	f (u εn ).
	Finally, since Y n is a finite union of balls of radius ε α , Lemma 4.8 implies the desired estimate
	(4.21), for a constant depending on α.				
	(4.25)	1 2 K					
		|∇u εn |			
	If we knew						
	(4.21)						
			Ωi,n			
								α n }
	and split the proof of (4.21) in two cases.			
		σ εn |∇v εn |	2 ≤ C		σ εn |∇u εn |	2 ≤ Cε 1-6α n
		Ωi,n			Ωi,n	
	which implies (4.21) if we choose α < 1/6.			
	Case 2 (Estimate on Y n ). We apply the Hölder inequality:
	(4.22)						
	The norm of the gradient is estimated by the Gagliardo Niremberg interpolation inequality and
	standard elliptic regularity results. We obtain		
		∇u εn L 4 (Yn) ≤ C ∆u εn	1/2 L 2 (Yn) u εn	1/2 L ∞ (Yn) ,
	which reduces to						
	(4.23)	∇u εn L 4 (Yn) ≤ Cε -1 n	∇ u f (u εn )	1/2 L 2 (Yn)

2 ≥ (1 -Cσ εn ) |∇v εn | 2 . σ εn |∇v εn | 2 ≤ C,

then the lemma would follow. Therefore, let us introduce the set

Y n := {x ∈ Ω : dist(x, X εn ) ≤ ε Yn σ εn |∇v εn | 2 ≤ C Yn σ εn |∇u εn | 2 ≤ C σ εn L 2 (

Yn) ∇u εn 2 L 4 (Yn) . since u εn verifies the Equation (2.2) and its L ∞ norm is bounded by Lemma 4.1. For a fixed v ∈ N , a Taylor expansion of f around the point π(v) (see Remark 2.4) yields (4.24) |Df (v)| ≤ M 0 dist(v, N ).

  and, since κ i,n > 0 for all i and n, it must be α i = 1 for all i, that is, the points a i do not belong to the boundary. The equality (4.26) also follows. 4.3. Proof of Theorem 1.3. The proof is, essentially, a refined version of the argument we used for Proposition 4.10. Since the result we want to prove is local, we fix a closed disk D ⊆ Ω \ {a 1 , . . . , a N } and restrict our attention to D. (D may intersect the boundary of Ω). By Proposition 4.12, and changing the radius of the disk if necessary, we can assume that Due to the compact inclusion H 1 (∂D) → C 0 (∂D), we have the uniform convergence u εn → u 0 on ∂D. We perform the same construction of Lemma 4.11, and we obtain a sequence ω εn : D → N of minimizing harmonic maps, and another sequence ω εn : D → R d such that ω εn | ∂D = π(u εn )| ∂D , ω εn | ∂D = u εn | ∂D

	In view of the inequality (4.19), we have
											N
												α i κ i,n = κ *
											i=1
							∂D		1 2	|∇u εn |	2 +	1 n ε 2	f (u εn ) ≤ C.
												we deduce
						1 2	∇u 0	2 L 2 (D) ≤	1 2	lim inf n→+∞	∇u εn	2 L 2 (D)
	but, on the other hand, (4.29) and (4.30) give
	1 2	lim sup n→+∞	∇u εn	2 L 2 (D) ≤ lim sup n→+∞	E εn (u εn ; D) ≤	1 2	∇ω 0	2 L 2 (D) ≤	1 2	∇u 0	2 L 2 (D) .
	These inequalities, combined, yield			
			lim n→+∞	∇u εn L 2 (D) =	1 2	∇u 0	2 L 2 (D) =	1 2	∇ω 0	2 L 2 (D) .
							1 loc convergence of u εn and Proposition 4.12 imply
	(4.28)	1 2 Ω\∪iB(ai, ρ)	|∇u 0 |	2 ≤ lim inf

n→+∞ E εn (u εn , Ω \ ∪ i B(a i , ρ)) ≤ κ * |log ρ| + C.

Combining (4.27) and (4.28), dividing by |log ρ| then passing to the limit as ρ → 0, we deduce

N i=1 α i κ i,n ≤ κ * . and (4.29) E εn ( ω εn ; D) ≤ 1 2 (1 + o n→+∞ (1)) ∇ω εn 2 L 2 (D) + Cε n

(compare with (4.16), (4.17)). The functions ω εn are bounded in H 1 (D), since u εn are, hence we can apply the strong compactness result of

[START_REF] Luckhaus | Convergence of minimizers for the p-Dirichlet integral[END_REF] 

and deduce, up to subsequences, (

4.30

)

ω εn → ω 0 strongly in H 1 (D),

where ω 0 is a minimizing harmonic map. Passing to the limit in the boundary condition for ω εn , we see that ω 0 | ∂D = u 0 | ∂D .

As {u εn } n∈N converges weakly in H 1 (D),
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