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Sharp interface limit for two components Bose-Einstein condensates

We study a double Cahn-Hilliard type functional related to the Gross-Pitaevskii energy of two-components Bose-Einstein condensates. In the case of large but same order intercomponent and intracomponent coupling strengths, we prove Γ-convergence to a perimeter minimisation functional with an inhomogeneous surface tension. We study the asymptotic behavior of the surface tension as the ratio between the intercomponent and intracomponent coupling strengths becomes very small or very large and obtain good agreement with the physical literature. We obtain as a consequence, symmetry breaking of the minimisers for the harmonic potential.

Introduction

For V a given trapping potential (see Hypothesis 3.1 below for more precise requirement) and a fixed constant ε > 0 let η ε be the (unique) positive minimiser of the Gross-Pitaevskii functional

E ε (η) := 1 2 R n |∇η| 2 + 1 ε 2 V |η| 2 + 1 2ε 2 |η| 4 dx , (1.1) 
under the constraint η 2 = 1, where η 2 denotes the L 2 (R n ) norm of η. We then consider for β, α 1 and α 2 positive constants, with α 1 + α 2 = 1, the double Cahn-Hilliard type functional

F ε,β (v, ϕ) := 1 2 R n η 2 ε |∇v| 2 + 1 2ε 2 η 4 ε (1 -v 2 ) 2 + 1 4 η 2 ε v 2 |∇ϕ| 2 + 1 4ε 2 βη 4 ε v 4 sin 2 ϕ dx , (1.2) 
under the mass constraints

R n η 2 ε v 2 dx = α 1 + α 2 = 1 and R n η 2 ε v 2 cos ϕ dx = α 1 -α 2 , (1.3) 
and study its behavior when the parameter ε tends to zero.

This functional arises in the description of two-components Bose-Einstein condensates with equal intracomponent coupling strengths (see Section 3). The parameter 1 ε 2 represents the intracomponent coupling strength whereas 1 + β is the ratio between the intercomponent and intracomponent coupling strengths.

The Gross-Pitaevskii functional (1.1), which describes the energy of a single component condensate with density |η ε | 2 , has been extensively studied in the literature [START_REF] Aftalion | Vortices in Bose-Einstein Condensates[END_REF][START_REF] Aftalion | Non-existence of vortices in the small density region of a condensate[END_REF][START_REF] Ignat | The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate[END_REF][START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF]. As ε goes to zero, η ε converges to the Thomas-Fermi profile √ ρ, given by ρ(x) := (λ 2 -V (x)) + (1.4) with λ determined by the constraint

R n ρ dx = 1.
The support of ρ is a domain denoted by D and corresponds to the region where the density of the single component condensate does not vanish as ε → 0.

The main result of the paper is the Γ-convergence [START_REF] Braides | Γ-convergence for beginners[END_REF][START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF] of εF ε,β to a perimeter minimisation problem with an inhomogeneous surface tension σ β , defined in D by σ β (x) := ρ(x) 3/2 σ β with

σ β := inf 1 2 +∞ -∞ v ′2 + 1 2 1 -v 2 2 + 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt : lim -∞ ϕ = 0 and lim +∞ ϕ = π , (1.5) 
where in the infimum, the function v (respectively ϕ) denotes a function from R to [0, 1] (respectively from R to [0, π]).

Theorem 1.1. (Γ-convergence) Let β > 0 be fixed. Under the Hypothesis 3.1, the Γ-limit in L 1 loc (D) × L 1 loc (D) as ε → 0 of εF ε,β with mass constraint (1.3) is given by the functional F β defined as

F β (v, ϕ) :=          D σ β π |Dϕ| if v = 1
a.e. in D and ϕ ∈ BV loc (D; {0, π})

+∞ otherwise , (1.6) 
with mass constraint

R n ρ cos ϕ dx = α 1 -α 2 .
(1.7)

Since F β is finite only for v = 1, we will denote by F β (ϕ) := F β (1, ϕ). It is worth noticing that since

F β (ϕ) = σ β π D ρ 3/2
|Dϕ|, the minimizers of F β do not depend on β. This fact, which is quite peculiar to BEC interfaces, was already well known in the physics literature (see [START_REF] Van Schaeybroeck | Interface tension of Bose-Einstein condensates[END_REF]). The functional F ε,β shares at the same time some features with the celebrated Ambrosio-Tortorelli functional which is approximating the Mumford-Shah functional (see [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF][START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]), and some other with functionals appearing in the study of phase transitions such as the Modica-Mortola energy [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF] (also known as Cahn-Hilliard or Allen-Cahn functional) or more general weighted functionals [START_REF] Bouchitté | Singular perturbations of variational problems arising from a two-phase transition model[END_REF] (see also [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF][START_REF] Braides | Γ-convergence for beginners[END_REF]). Indeed, F ε,β consists of the sum of two singularly perturbed, weighted double-well potentials which are coupled together. As in [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF][START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF][START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF][START_REF] Bouchitté | Singular perturbations of variational problems arising from a two-phase transition model[END_REF] our proof is based on the slicing method described in Section 2.2.

In experiments realised with two-components Bose-Einstein condensates [START_REF] Mccarron | Dual-species Bose-Einstein condensate of 87 Rb and 133 Cs[END_REF][START_REF] Hall | Dynamics of component separation in a binary mixture of Bose-Einstein condensates[END_REF][START_REF] Papp | Tunable miscibility in a dual-species Bose-Einstein condensate[END_REF], the segregation of the components is observed for large values of the intercomponent coupling strengths. This has also been supported by numerical simulations in respectively, one ( [START_REF] Kasamatsu | Macroscopic quantum tunneling of two-component Bose-Einstein condensates[END_REF]), two ( [START_REF] Kasamatsu | Vortices in multicomponent Bose-Einstein condensates[END_REF][START_REF] Mason | Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate[END_REF]) and three ( [START_REF] Öhberg | Hartree-Fock treatment of the two-component Bose-Einstein condensate[END_REF]) space dimensions. In our setting, at the level of F ε,β this means that for large values of β, ϕ takes approximately only values 0 and π while v is almost everywhere close to one. Moreover, for the harmonic potential V = |x| 2 in dimension n = 2 [START_REF] Mccarron | Dual-species Bose-Einstein condensate of 87 Rb and 133 Cs[END_REF][START_REF] Mason | Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate[END_REF], one also observes a symmetry breaking in the sense that while V is radially symmetric, the support of each component (which correspond respectively to A := {ϕ = π} and D \ A = {ϕ = 0}) are not. The numerical simulations also show that near ∂A, the function v is close to a small positive constant. For β < 0 the two components do not segregate and their densities are both proportional to ρ.

We mention that segregation of two-components condensates has been widely studied for bounded intracomponent coupling strengths and large intercomponent coupling strength. In [START_REF] Royo-Letelier | Segregation and symmetry breaking of strongly coupled two-component Bose-Einstein condensates in a harmonic trap[END_REF] segregation and symmetry breaking is proven in R 2 for small intracomponent coupling strengths. In [START_REF] Wei | Asymptotic behaviour of solutions of planar elliptic systems with strong competition[END_REF], working on a bounded domain of R 2 and taking the trapping potential V to be zero, the authors show segregation and local uniform convergence of the two components. In [START_REF] Conti | Asymptotic estimates for the spatial segregation of competitive systems[END_REF][START_REF] Noris | Uniform Hölder bounds for nonlinear Schrödinger systems with strong competition[END_REF] the regularity of ∂A is studied for the same model. The profile of the components near ∂A is analysed in [START_REF] Berestycki | On phase-separation model: Asymptotics and qualitative properties[END_REF][START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF].

In [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF] the functional F ε,β is studied for n = 2 when β goes to +∞ as ε tends to zero. The authors also prove Γ-convergence to a perimeter minimisation problem with an inhomogeneous surface tension.

The main difference with our setting is that for β → +∞, the limiting energy is given by the first two terms of εF ε,β while the last two terms go to zero as ε → 0. This leads to some decoupling of the energy which allows to compute explicitly the limiting surface tension. In our case, all the terms in the energy εF ε,β are of the same order so that the surface tension is given by the one dimensional optimal transition problem (1.5). Thus, we need to precisely analyse the behavior of σ β and of the associated optimal profile. We prove existence and qualitative properties of minimisers of σ β , an equipartition of the energy and compare our results with the physical literature [START_REF] Van Schaeybroeck | Interface tension of Bose-Einstein condensates[END_REF][START_REF] Barankov | Boundary of two mixed Bose-Einstein condensates[END_REF][START_REF] Ao | Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases[END_REF][START_REF] Timmermans | Phase separation of Bose-Einstein condensates[END_REF][START_REF] Mazets | Waves on an interface between two phase-separated Bose-Einstein condensates[END_REF]. In particular, we prove that minimisers (v, ϕ) of σ β satisfy inf v = m(β) > 0, as was expected from numerical simulations. We remark that we are unable to prove uniqueness of the optimal profile. We study the asymptotic behavior of σ β when β tends to zero or infinity. On the one hand, we prove that when β → +∞, we recover the functional derived in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF]. We show that in this regime, σ β ≃ β -1/4 as predicted by formal asymptotic expansions [START_REF] Van Schaeybroeck | Interface tension of Bose-Einstein condensates[END_REF]. This estimate follows from the fact that m(β) ∼ β -1/4

(see Proposition 4.3). This fact is related to some open questions raised in [START_REF] Berestycki | On phase-separation model: Asymptotics and qualitative properties[END_REF] (see also the discussion in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF]). On the other hand, we show that as expected from [START_REF] Ao | Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases[END_REF][START_REF] Timmermans | Phase separation of Bose-Einstein condensates[END_REF][START_REF] Mazets | Waves on an interface between two phase-separated Bose-Einstein condensates[END_REF][START_REF] Barankov | Boundary of two mixed Bose-Einstein condensates[END_REF], σ β ≃ √ β when β goes to zero.

The fact that σ β vanishes in this limit, reflects the non segregation of the two components. Finally, in Proposition 6.6, we extend the symmetry breaking result for minimizers of F ∞ (for the harmonic potential V = |x| 2 ) obtained in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF] to space dimensions n = 1 and n = 3. We notice that since the minimizers of F β coincide with the minimizers of F ∞ , this symmetry breaking result extends to any β > 0 and by Γ-convergence to minimizers of the original functional F ε,β for ε small enough.

The paper is organised as follows: in Section 2 we recall the definition and main properties of functions of bounded variation and the slicing method. In Section 3, we explain how the functional F ε,β arises from the coupled Gross-Pitaevskii energy of a two-components Bose-Einstein condensate. In Section 4 we study the variational problem (1.6) and β > 0, and prove existence and qualitative properties of minimisers. In Section 5, we prove our main Γ-convergence theorem. Finally, in Section 6 we analyse the asymptotic behavior of σ β when β tends to zero or infinity and prove as a consequence symmetry breaking of the minimisers.

Notation

For x ∈ R n and r > 0, we denote by B r (x) the ball of radius r centered at x and simply write B r when x = 0. We let S n-1 be the unit sphere in R n and for k ∈ Throughout the paper, with a small abuse of language, we call sequence a family (u ε ) of functions labeled by a continuous parameter ε ∈ (0, 1]. A subsequence of (u ε ) is any sequence (u ε k ) such that ε k → 0 as k → +∞. We mention that ρ will denote a positive constants in Sections 4 and 6, while in the rest of the paper it will be the function given in (1.4).

BV (Ω) functions

For Ω an open set of R n , let BV (Ω) be the space of functions u ∈ L 1 (Ω) having as distributional derivative Du a measure with finite total variation. For u ∈ BV (Ω), we denote by S u the complement of the Lebesgue set of u. That is, x / ∈ S u if and only if lim

r→0 + 1 |B r | Br(x)
|u(y) -z| dy = 0 for some z ∈ R. We say that x is an approximate jump point of u if there exist ν ∈ S n-1 and distinct a, b ∈ R such that

lim r→0 1 |B + r (x, ν)| B + r (x,ν)
|u(y) -a| dy = 0 and lim

r→0 1 |B - r (x, ν)| B - r (x,ξ)
|u(y) -b| dy = 0, where B ± r (x, ν) := {y ∈ B r (x) : ± y -x, ν > 0}. Up to a permutation of a and b and a change of sign of ν, this characterizes the triplet (a, b, ν) which is then denoted by (u + , u -, ν u ). The set of approximated jump points is denoted by J u . The following theorem holds [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF].

Theorem 2.1. The set S u is countably H n-1 -rectifiable and H n-1 (S u \J u ) = 0. Moreover Du J u = (u + -u -)ν u H n-1 J u .
We indicate by Du = ∇u dx + D s u the Radon-Nikodym decomposition of Du. Setting D c u := D s u (Ω\S u ) we get the decomposition

Du = ∇u dx + (u + -u -)ν u H n-1 J u + D c u,
where denotes the restriction. In particular, if

u = π1 E ∈ BV (Ω, {0, π}) then Du = πν E H n-1 ∂ * E
where ∂ * E is the reduced boundary of E defined by

∂ * E := x ∈ Spt(|D1 E |) : ν E (x) := -lim r↓0 D1 E (B r (x)) |D1 E |(B r (x)) exists and |ν E (x)| = 1
and ν E is the outward measure theoretic normal to the set E which is countably H n-1 -rectifiable.

When n = 1 we use the symbol u ′ in place of ∇u, and u(x ± ) to indicate the right and left limits at x.

Slicing method

In this section we recall the slicing method for functions with bounded variation [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF]Ch. 4] which will be used in the proof of the lower Γ-limit. Consider an open set A ⊂ R n and let ν ∈ S n-1 . We call Π ν the hyperplane orthogonal to ν and A ν the projection of A on Π ν . We define the one dimensional slices of A, indexed by x ∈ A ν , as

A νx := {t ∈ R ; x + tν ∈ A} .
For every function f in R n , we note f νx the restriction of f to the slice A νx , defined by f νx (t) := f (x + tν) . Functions in BV (Ω) can be characterised by one-dimensional slices (see [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF]).

Theorem 2.2. Let u ∈ BV (A). Then for all ν ∈ S n-1 we have

u νx ∈ BV (A νx ) for H n-1 -a.e. x ∈ A ν .
Moreover, for such points x, we have

u ′ νx (t) = ∇u(x + tν), ν for a.e. t ∈ A νx , (2.1) 
J uνx = {t ∈ R : x + tν ∈ J u }, (2.2) 
and

u νx (t ± ) = u ± (x + tν) or u νx (t ± ) = u ∓ (x + tν), (2.3) 
according to whether ν u , ν > 0 or ν u , ν < 0. Finally, for every Borel function g : A → R,

Aν t∈Ju νx g νx (t) dH n-1 (x) = Ju g | ν u , ν | dH n-1 .
(2.4)

Conversely if u ∈ L 1 (A)
and if for all ν ∈ {e 1 , . . . , e n }, where (e 1 , . . . , e n ) is a basis of R n , and almost

every x ∈ A ν we have u νx ∈ BV (A νx ) and Aν |Du νx |(A νx ) dH n-1 (x) < +∞, then u ∈ BV (A).
3 Derivation of the energy F ε,β from the coupled Gross-Pitaevskii functional A two-components condensate is described by two functions u 1 and u 2 , where |u 1 | 2 and |u 2 | 2 respectively represent the densities of the first and second component. The energy of the two-components condensate is given by a coupled Gross-Pitaevskii functional. When the intracomponent coupling strength of each component is equal to 1/ε 2 , and when the intercomponent coupling strength is equal to (1 + β)/ε 2 , the functional is given by

E ε (u 1 , u 2 ) := E ε (u 1 ) + E ε (u 2 ) + 1 + β 2ε 2 R n |u 1 | 2 |u 2 | 2 dx ,
where E ε is defined in (1.1). Assuming that the mass of each component is preserved, the functional

E ε is minimised under the restrictions R n |u 1 | 2 dx = α 1 and R n |u 2 | 2 dx = α 2 (3.1)
with α 1 , α 2 > 0 and

α 1 + α 2 = η 2 = 1.
Standard arguments used in the study of a single component condensate yield that the minimisers of E ε under the constraint (3.1) are smooth positive functions, up the multiplication by constant terms of modulus 1, with L ∞ norm uniformly bounded with respect to ε (see [START_REF] Aftalion | Vortices in Bose-Einstein Condensates[END_REF][START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF][START_REF] Ignat | The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate[END_REF][START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF]). Notice also that for a radial potential V , if (u 1 , u 2 ) is a minimiser, then for any rotation R of the space, (u

1 • R, u 2 • R)
is also a minimiser. In the single component case, the Euler-Lagrange equations imply uniqueness of the minimiser from which one can infer its radial symmetry. For two components condensates, this is not the case anymore.

The relation between E ε and F ε,β was established in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF]. Using the nonlinear sigma model representation [START_REF] Kasamatsu | Vortices in multicomponent Bose-Einstein condensates[END_REF][START_REF] Mason | Classification of the ground states and topological defects in a rotating two-component Bose-Einstein condensate[END_REF] and the Lassoued-Mironescu trick to decompose the energy of a rotating single condensate [START_REF] Lassoued | Ginzburg-Landau type energy with discontinuous constraint[END_REF], the authors introduced the change of variables

v := |u 1 | 2 + |u 2 | 2 η ε and ϕ 2 := Arg |u 1 | + i|u 2 | |u 1 | 2 + |u 2 | 2 (3.2) for any pair (u 1 , u 2 ) such that E ε (u 1 , u 2 ) < ∞ and |u 1 | 2 + |u 2 | 2 > 0.
The equality

E ε (u 1 , u 2 ) = F ε,β (v, ϕ) + E ε (η ε ) (3.3)
then holds, and the mass constraints in (3.1) rewrite as in (1.3). Let us point out that in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF], only the case n = 2 is considered but the proof carries over verbatim to any space dimension. As seen from (3.3) and the expression (1.2) of F ε,β , there are two main advantages of the formulation of the problem in terms of the functions (v, ϕ). On the one hand, it naturally identifies the leading order term E ε (η ε ). On the other hand, it clearly shows that the second order contribution F ε,β is a singular perturbation type functional.

Notice that since the minimisers (u 1 , u 2 ) are uniformly bounded and η ε does not vanish, for every compact set K of D, there exists a constant C(K) such that 0 < v ≤ C(K) in K. Moreover, it is readily seen from the definition that ϕ ∈ [0, π]. We are thus naturally led to minimize F ε,β in the class

Y (D) := {(v, ϕ) : for every compact set K ⊂ D, 0 < v ≤ C(K) in K and ϕ ∈ [0, π]}
under the mass constraints (1.3). For a subset A of D, we introduce the localised version of F ε,β :

F ε,β (v, ϕ; A) := 1 2 A η 2 ε |∇v| 2 + 1 2ε 2 η 4 ε (1 -v 2 ) 2 + 1 4 η 2 ε v 2 |∇ϕ| 2 + 1 4ε 2 βη 4 ε v 4 sin 2 ϕ dx , and 
Y (A) := {(v, ϕ) : for every compact set K ⊂ D, 0 < v ≤ C(K) in K ∩ A and ϕ ∈ [0, π]} .
Notice that, for any (v, ϕ) ∈ Y (D), defining

u 1 := η ε v cos(ϕ/2) and u 2 := η ε v sin(ϕ/2) (3.4) relation (3.
3) holds and we have

|u 1 | 2 + |u 2 | 2 > 0.
In the following we are going to make the following assumptions on V :

Hypothesis 3.1. V is such that V (x) → +∞ when |x| → +∞ and there exist C, a, b, c > 0 such that if ρ is the Thomas-Fermi profile defined in (1.4), η ε ∞ < C (3.5) η ε L 2 (R n \D) ≤ C ε a (3.6) |η ε (x) - √ ρ(x)| ≤ C ε c if dist(x, ∂D) > Cε b (3.7)
We remark that for the harmonic potential V (x) = |x| 2 , it was proven in [START_REF] Ignat | The critical velocity for vortex existence in a two-dimensional rotating Bose-Einstein condensate[END_REF] that these conditions hold true in dimension n = 2. Moreover, it can be checked that their proof carries over almost verbatim to any space dimension. Recently, Karali and Sourdis [START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF], obtained that if n = 2, Hypothesis 3.1 holds if V satisfies:

(i) V is nonnegative and C 1 , (ii) there exist C > 1, p ≥ 2 such that 1 C (1 + |x| p ) ≤ V (x) ≤ C(1 + |x| p ),
(iii) D is a simply connected bounded domain containing the origin with smooth boundary and such that ∂V ∂ν > 0 on ∂D. Notice that in their paper, Karali and Sourdis prove that

η ε - √ ρ L ∞ (R 2 ) ≤ Cε 1/3 [18, Rem. 4.4]
which is stronger than (3.7). They also claim that their proof should extend to any space dimension (see [START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF]Rem. 3.12]) and that the fact that D is simply connected is superfluous (see [START_REF] Karali | The ground state of a Gross-Pitaevskii energy with general potential in the Thomas-Fermi limit[END_REF]Rem. 1.1]).

4

The surface tension at finite β > 0

In this section, for β > 0 fixed, we study the following variational problem:

σ β := inf G β (v, ϕ) : v ≥ 0, 0 ≤ ϕ ≤ π, lim -∞ ϕ = 0 and lim +∞ ϕ = π , (4.1) 
where

G β (v, ϕ) := 1 2 +∞ -∞ v ′2 + W (v) + 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt, (4.2) 
with

W (v) := 1 2 1 -v 2 2 . Let us point out that if G β (v, ϕ) is finite then lim x→±∞ v(x) = 1.
We start by evaluating the energy necessary to connect v from a given value m > 0 to 1.

Lemma 4.1. Let m ∈ [0, 1] then inf +∞ 0 v ′2 + W (v) dt : v(0) = m = √ 2 2 3 -m + m 3 3 ,
and the optimal profile is given by v m := tanh 1 2 t + c m where c m := tanh -1 (m).

Proof. As in the usual Modica-Mortola problem, inf

v(0)=m +∞ 0 v ′2 + W (v) dt = √ 2 1 m (1 -t 2 )dt = √ 2 2 3 -m + m 3 3 .
We now prove that we can restrict ourselves to functions v which stay away from zero.

Proposition 4.2. For every β > 0, there exists m * = m * (β) > 0 such that

σ β = inf G β (v, ϕ) : v ∈ [m * , 1], lim -∞ ϕ = 0 and lim +∞ ϕ = π .
Proof. First, let us notice that by truncation, we can reduce ourselves to minimise among functions v ∈ [0, 1]. Up to translation we can also assume that inf R v = v(0). Let m ≥ 0, then for every function

v such that inf R v = v(0) = m and every admissible ϕ, G β (v, ϕ) ≥ 1 2 inf v(0)=m 0 -∞ v ′2 + W (v) dt + 1 2 inf v(0)=m +∞ 0 v ′2 + W (v) dt + 1 2 R 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt ≥ inf v(0)=m +∞ 0 v ′2 + W (v) dt + 1 4 R β 1/2 v 3 | sin ϕ||ϕ ′ | dt ≥ √ 2 2 3 -m + m 3 3 + β 1/2 m 3 4 R | sin ϕ||ϕ ′ | dt = √ 2 2 3 -m + m 3 3 + β 1/2 m 3 4 π 0 | sin x| dx = √ 2 2 3 -m + m 3 1 3 + β 1/2 2 √ 2 .
Now, for m ≥ 0 and T > 0, consider the test functions defined by

v m,T :=          v m (-t -T ) t < -T m t ∈ [-T, T ] v m (t -T ) t ≥ T and ϕ T :=          0 t < -T π 2T (t + T ) t ∈ [-T, T ] π t ≥ T, then G β (v m,T , ϕ T ) = √ 2 2 3 -m + m 3 3 + T 2 (1 -m 2 ) 2 + m 2 π 2 16T + 1 4 βm 4 T 0 sin 2 π 2T (t + T ) dt = √ 2 2 3 -m + m 3 3 + T 2 (1 -m 2 ) 2 + m 2 π 2 16T + β 8 m 4 T. (4.3)
Optimizing in T we find

T m := mπ 2 √ 2((1-m 2 ) 2 + β 4 m 4 ) 1/2 and G β (v m,Tm , ϕ Tm ) = √ 2 2 3 -m + m 3 3 + √ 2 4 mπ (1 -m 2 ) 2 + β 4 m 4 1/2 . ( 4.4) 
Let now (see Figure 1)

Ψ(m) := m 3 3 -m + 1 4 mπ (1 -m 2 ) 2 + β 4 m 4 1/2 so that G β (v m,Tm , ϕ Tm ) = √ 2 (Ψ(m) + 2 
3 ) and let

m := argmin m∈[0,1] Ψ(m).
Let us first notice that since Ψ(0) = 0 and Ψ ′ (0) = π 4 -1 < 0, the minimum of Ψ is negative for every β > 0. The function m 3 3 -m is decreasing in [0, 1] and Ψ(m) > -2 3 hence there exists a unique m * (β) ∈ (0, 1) such that m * (β) 3

3

-m * (β) = Ψ(m). We claim that

σ β = inf G β (v, ϕ) : inf v ≥ m * (β), lim -∞ ϕ = 0 and lim +∞ ϕ = π .
Indeed, if v is such that inf v ≤ m * (β) and if ϕ is any admissible function, then letting m := inf v, there holds

G β (v m,T m , ϕ T m ) = √ 2 Ψ(m) + 2 3 < √ 2 m 3 3 -m + 2 3 ≤ √ 2 2 3 -m + m 3 1 3 + β 1/2 2 √ 2 ≤ G β (v, ϕ)
so that we can construct a competitor with smaller energy than (v, ϕ).

In the regime β → +∞, we can prove a more precise bound on inf v. Notice that in the case β = +∞, [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF] proved that inf v = 0. 

σ β = inf G β (v, ϕ) : 1 C β -1/4 ≤ inf v ≤ Cβ -1/4 , lim -∞ ϕ = 0 and lim +∞ ϕ = π . Proof. Let M := {m ∈ [0, 1] : m 3 1 3 + β 1/2 2 √
2 -m > Ψ(m)} then arguing as in the previous proof, we obtain

σ β = inf G β (v, ϕ) : inf v / ∈ M, lim -∞ ϕ = 0 and lim +∞ ϕ = π .
The claim is thus proven provided we can show that for β large enough, and for m ∈ [0, 1] such that

m ≤ 1 C β -1/4 or m ≥ Cβ -1/4 then m ∈ M. We notice first that if β is large then if m ≥ Cβ -1/4 , m 3 1 3 + β 1/2 2 √ 2 -m > 0 > Ψ(m) hence m ∈ M. Taking m = mβ -1/4 with 0 < m < 4 16-π 2 π 2 1/4 so that 1 4 π (1 -m 2 ) 2 + β 4 m 4 1/2
< 1, we obtain Ψ(m) ≤ -1 C β -1/4 and therefore, for m ≤ 1 C β -1/4 , we have

m 3 1 3 + β 1/2 2 √ 2 -m > Ψ(m), that is m ∈ M.
We can now prove the existence of an optimal profile. Proposition 4.4. For every β > 0 there exists a minimiser of σ β . Moreover, it is smooth and satisfies the Euler-Lagrange equations

-v ′′ -(1 -v 2 )v + 1 4 vϕ ′2 + β 2 v 3 sin 2 ϕ = 0 (4.5) -(v 2 ϕ ′ ) ′ + βv 4 sin ϕ cos ϕ = 0 . (4.6)
Proof. Let (v n , ϕ n ) be a minimising sequence. Up to translation, we can assume that ϕ(0) = π 2 . Let us notice that up to truncating v n , we can also assume that v n ∈ [0, 1]. Therefore, since v ′ n is uniformly bounded in L 2 (R), up to extraction, the sequence v n converges locally uniformly to some continuous function v. Moreover, by lower semicontinuity,

R v ′2 + W (v)dt ≤ lim n→+∞ R v ′2 n + W (v n )dt. Since R (1 -v) 2 dt ≤ R (1 -v 2 ) 2 dt ≤ C and R (1 -v) ′2 ≤ C, the function (1 -v) is in H 1 (R)
and therefore lim ±∞ (1 -v) = 0, i.e. lim ±∞ v = 1. Thanks to Proposition 4.2, inf v n ≥ m * from which we obtain that ϕ ′ n is bounded in L 2 (R) and thus ϕ n also converges locally uniformly to some continuous function ϕ with ϕ(0) = π 2 . By lower semicontinuity, there holds

R 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt ≤ lim n→+∞ R 1 4 v 2 n ϕ ′2 n + β 4 v 4 n sin 2 ϕ n dt.
Since sin 2 ϕ ∈ H 1 (R), the function sin 2 ϕ converges to 0 both at plus and minus infinity so that ϕ has a limit at infinity which is either 0 or π. Moreover, since ϕ(0) = π 2 we see that ϕ cannot be constantly equal to 0 or

π on R. If lim x→-∞ v(x) = lim x→+∞ v(x) then assuming that 0 -∞ v ′2 + W (v) + 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt ≤ +∞ 0 v ′2 + W (v) + 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt and setting ṽ(x) :=    v(x) x < 0 v(-x) x ≥ 0 and φ(x) :=    ϕ(x) x < 0 π -ϕ(-x) x ≥ 0,
we see that G β (ṽ, φ) ≤ G β (v, ϕ) and up to symmetrising again, lim x→-∞ φ = 0 and lim x→+∞ φ = π so that (ṽ, φ) is a minimiser of G β .

From the integrated form of the Euler-Lagrange equations we see that (v 2 ϕ ′ ) is in H 1 loc (R) with derivative equal to βv 4 sin ϕ cos ϕ which is continuous. Hence, v 2 ϕ ′ ∈ C 1 which implies (by continuity of v) that ϕ ′ ∈ C 0 and thus ϕ ∈ C 1 . From this, we can use the first equation to infer higher regularity of v and then a simple bootstrapping argument gives the smoothness of (v, ϕ). Remark 4.5. Arguing as in [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF], we could have obtained the existence of an optimal profile even without using the fact that inf v > 0.

We can now study some qualitative properties of the minimisers of G β at fixed β > 0.

Proposition 4.6. For every minimising pair (v, ϕ) of G β , the function ϕ is increasing. Moreover there exists a minimising pair (v, ϕ) such that ϕ(-t) = π -ϕ(t) and v(-t) = v(t), v is increasing on R + , ϕ is convex on R -and concave on R + . For every minimising function v, the minimiser of

min R 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt : lim -∞ ϕ = 0 and lim +∞ ϕ = π (4.7)
is unique and vice-versa, for every admissible ϕ, the minimiser of

min R v ′2 + W (v) + 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt (4.8)
is unique. Finally, for every minimising pair (v, ϕ), there is equipartition of the energy in the sense that

v ′2 + 1 4 v 2 ϕ ′2 = W (v) + 1 4 βv 4 sin 2 ϕ. (4.9)
Proof. Let (v, ϕ) be a minimising pair of G β and let us prove that ϕ is increasing. Let t -be the first point such that ϕ(t) = π 2 and similarly, let t + be the last point such that ϕ

(x) = π 2 . If t -= t + then assuming that t - -∞ v ′2 + W (v) + 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt ≥ +∞ t + v ′2 + W (v) + 1 4 v 2 ϕ ′2 + β 4 v 4 sin 2 ϕ dt, letting ṽ(t) :=    v(t + t + ) t ≥ 0 v(t + -t) t ≤ 0 and φ(t) :=    ϕ(t + t + ) t ≥ 0 π -ϕ(t + -t) t ≤ 0,
there holds G β (ṽ, φ) < G β (v, ϕ) which gives a contradiction. From this, we see that ϕ can take the value π 2 in only one point which up to translation can be assumed to be 0. From this, it follows that ϕ > π 2 in R + hence from (4.6), we see that v 2 ϕ ′ is decreasing in R + . Since lim x→+∞ ϕ(x) = π and ϕ(x) ≤ π, there must be arbitrarily large x such that ϕ ′ (x) ≥ 0 from which we infer that ϕ ′ is non-negative in R + . Similarly we can prove that ϕ ′ is also non-negative in R -. Let us notice that the symmetrisation made above, constructed a minimising pair (ṽ, φ) which satisfies φ(-t) = π -φ(t) and ṽ(-t) = ṽ(t). From now on, let us drop the tildes for the sake of clarity and assume that (v, ϕ) is a symmetric minimising pair.

Let us now prove that we can further modify v, respectively ϕ, on R + and get an increasing, respectively a concave, function on R + while decreasing the energy. For this, we use standard rearrangement techniques (see [START_REF] Lieb | Analysis[END_REF]). For a function f vanishing at infinity, let us denote by f * its decreasing rearrangement (see [START_REF] Lieb | Analysis[END_REF]). Analogously, for a function g with limit α at infinity let us denote by g * its increasing rearrangement i.e. f * := α -(α -f ) * . From [START_REF] Lieb | Analysis[END_REF]Th. 3.4], we see that for two nonnegative functions f and g such that f vanishes at infinity and g has a limit at infinity, there holds

R + f * g * dt ≤ R + f g dt. Consider now v * the increasing rearrangement of v then W (v * ) = W (v) * , (v 2 ) * = (v * ) 2 , (v 4 ) * = (v * ) 4 and R + v ′2 * dt ≤ R + v ′2 dt. Let finally ϕ := π 2 +
x 0 (ϕ ′ ) * (t)dt be the primitive of the decreasing rearrangement of ϕ ′ . Notice that ϕ is increasing and concave and for x ∈ R + , there holds

ϕ(x) = π 2 + x 0 (ϕ ′ ) * (t)dt = π 2 + R + (ϕ ′ ) * (t)1 [0,x] (t)dt = π 2 + R + (ϕ ′ ) * (t)1 * [0,x] (t)dt ≥ π 2 + R + ϕ ′ (t)1 [0,x] (t)dt ≥ ϕ(x),
from which sin 2 ( ϕ(x)) ≤ sin 2 (ϕ(x)) and by symmetry the same inequality holds in R -. From this, we infer that

R (v * ) 4 sin 2 ( ϕ)dt ≤ R v 4 sin 2 ϕdt and R (v * ) 2 ( ϕ ′ ) 2 dt ≤ R v 2 (ϕ ′ ) 2 dt.
Putting all this together, we find that

G β (v * , ϕ) ≤ G β (v, ϕ).
Let v be a fixed minimising function and let us prove that the minimiser of (4.7) is unique. For this we use an observation of [START_REF] Capella | Wave-type dynamics in ferromagnetic thin films and the motion of Néel walls[END_REF] (see also [START_REF] Chermisi | One-dimensional Néel walls under applied magnetic fields[END_REF]) and let ψ := sin ϕ. The functional takes then the form

R 1 4 v 2 ψ ′2 1 -ψ 2 + β 4 v 4 ψ 2 dt
which is a strictly convex functional in ψ. From this we deduce that sin ϕ is unique and since (v, ϕ)

is minimising G β , the function ϕ is increasing from which we infer that ϕ is also unique.

Similarly, if ϕ is any admissible function, then using the celebrated Brenier trick in optimal transportation, we let w := v 2 and notice that the functional can now be written as

R w ′2 w + 1 2 (1 -w) 2 + 1 4 wϕ ′2 + β 4 w 2 sin 2 ϕ dt
which is strictly convex in w. Hence, w is unique from which it follows that v is also unique.

Finally, the equipartition of the energy (4.9) follows simply by differentiating for instance the right handside and then using (4.5) and (4.6).

Remark 4.7. If v is any admissible function we cannot in general infer that a minimising ϕ of (4.7) is increasing. In this case, we can however still conclude that sin ϕ is unique.

Remark 4.8. The uniqueness of the minimising pairs (v, ϕ) seems to be a difficult question. Let us notice that the functional

R w ′2 w + 1 2 (1 -w) 2 + 1 4 w ψ ′2 1 -ψ 2 + β 4 w 2 ψ 2 dt
is not convex in (w, ψ). Moreover, due to the non monotonicity of v, the sliding technique (see [START_REF] Berestycki | On entire solutions of an elliptic system modeling phase separations[END_REF]) seems to be difficult to use here. We also mention that using the change of variables in (3.4) with η ε replaced by √ ρ, the uniqueness of the minimising pair (v, ϕ) would be equivalent to the uniqueness of minimising pairs of

1 2 R u ′2 1 + u ′2 2 + 1 2 (u 2 1 + u 2 2 -ρ) 2 + βu 2 1 u 2 2 with constraints lim +∞ u 1 = lim -∞ u 2 = ρ and lim -∞ u 1 = lim +∞ u 2 = 0 .
5 Γ-convergence of F ε,β for β > 0

In this section we study the Γ-convergence of the functionals εF ε,β as ε → 0 and prove Theorem 1.1.

Lower bound and compactness

We start by proving the compactness of sequences with bounded energy.

Proposition 5.1. (Compactness) Let (v ε , ϕ ε ) ∈ Y (D) be a sequence of functions such that sup ε>0 εF ε,β (v ε , ϕ ε ) < ∞ . (5.1)
Then, as ε → 0,

(v ε , ϕ ε ) → (v, ϕ) in L 1 loc (D) × L 1 loc (D) ,
where v = 1 a.e. in D and ϕ ∈ BV loc (D; {0, π}). Moreover, if (v ε , ϕ ε ) satisfy the mass constraint (1.3), then ϕ satisfies (1.7).

Proof. Let K be an open set relatively compact in D. From (3.7), there is c = c(K) > 0 such that for

ε small enough η ε > c > 0 in K, so K |1 -v ε | 2 + βv 4 ε sin 2 ϕ ε ≤ 8 c 4 ε 2 F ε,β (v ε , ϕ ε ) = o ε→0 (1) .
Hence, v ε → 1 in L 2 (K) and sin 2 (ϕ ε ) → 0 a.e. in K. We also observe that

εF ε,β (v ε , ϕ ε ) ≥ c 3 4 K |∇v ε | |1 -v 2 ε | + v 3 ε |∇ϕ ε | sin ϕ ε ≥ c ′ (K) K |∇ψ(v ε , ϕ ε )| ,
where ψ(s, t) := g(t)v 3 (4/3 -v) with g(t) := t 0 sin z dz = 1 -cos t. The functions ψ(v ε , ϕ ε ) are uniformly bounded in BV (K), so ψ(v ε , ϕ ε ) → ψ 0 in L 1 (K). We derive that g(ϕ ε ) → 3ψ 0 , which implies that ϕ ε → ϕ = g -1 (3ψ 0 ) ∈ L 1 (K; {0, π}), since g is monotone and sin 2 (ϕ ε ) → 0. Then, since ψ 0 ∈ BV (K; {0, 2/3}), we obtain that ϕ ∈ BV (K; {0, π}).

Finally, if (v ε , ϕ ε ) satisfy (1.3), then since D ρdx = 1, there is r K > 0 going to zero as dist(K, ∂D) → 0, such that D\K ρdx = r K . Also, from (3.7) we have

K η 2 ε v 2 ε dx -K ρdx = r ε,K = o ε→0 (1). Combining these and R n η 2 ε v 2 ε dx = 1, we obtain R n \K η 2 ε v 2 ε cos ϕ ε dx ≤ R n \K η 2 ε v 2 ε dx = r K + r ε,K , which yields K ρ cos ϕdx -(α 1 -α 2 ) = lim ε→0 K η 2 ε v 2 ε cos ϕ ε dx -(α 1 -α 2 ) = lim ε→0 R n \K η 2 ε v 2 ε cos ϕ ε dx ≤ r K
and finishes the proof.

In order to apply the slicing method we need to define the one dimensional restriction of the energy.

For this we recall that for A an open set of D, x ∈ A and ν ∈ S n-1 , we set A νx := {t ∈ R ; x + tν ∈ A}.

For (v, ϕ) ∈ Y (A νx ), we define the one dimensional energy

F ε,β (v, ϕ ; A νx ) := 1 2 Aνx η 2 νx,ε v ′2 + 1 2ε 2 η 4 νx,ε (1 -v 2 ) 2 + 1 4 η νx,ε ε 2 v 2 ϕ ′2 + 1 4ε 2 βη 4 νx,ε v 4 sin 2 ϕ dt .
We also define the limiting one dimensional energy as

F β (ϕ; A νx ) := Aνx σ νx,β π |ϕ ′ |. Proposition 5.2. (1d Γ -lim inf) Let x ∈ D, ν ∈ S n-1 and ϕ ∈ BV loc (D νx ; {0, π}). For any sequence (v ε , ϕ ε ) : R νx → (0, 1] × (0, π) converging as ε → 0 to (1, ϕ) in L 1 loc (D νx ) × L 1 loc (D νx ), lim inf ε→0 εF ε,β (v ε , ϕ ε ; D νx ) ≥ F β (ϕ; D νx ) . (5.2) 
Proof. Let B be any open, relatively compact subset of D νx . Let t 0 ∈ B ∩ J ϕ and δ 0 > 0 be such that

(t 0 -δ, t 0 + δ) is contained in B. We can choose t ± ∈ (t 0 -δ, t 0 + δ) such that t -< t 0 < t + , ϕ(t + ) = ϕ(t -) , ϕ ε (t ± ) → ϕ(t ± ) ∈ {0, π} and v ε (t ± ) → 1 as ε → 0. Estimate (3.7) and B ⊂ D νx yield εF ε,β (v ε , ϕ ε ; (t + , t -)) = 1 2 t + t - εη 2 νx,ε v ′2 ε + 1 2ε η 4 νx,ε (1 -v 2 ε ) 2 + 1 4 εη 2 νx,ε v 2 ε ϕ ′2 ε + 1 4ε βη 4 νx,ε v 4 ε sin 2 ϕ ε dt ≥ ρ νx (t 0 ) 1 2 t + t - εv ′2 ε + 1 2ε ρ νx (t 0 )(1 -v 2 ε ) 2 + 1 4 εv 2 ε ϕ ′2 ε + 1 4ε βρ νx (t 0 )v 4 ε sin 2 ϕ ε dt -c ′ δ + o ε→0 (1) 
.

for some c ′ = c ′ (B) > 0. We define

T ± ε := (t ± -t 0 ) √ ρνx(t0) 2ε
and f (t

) := f ε √ ρνx(t0) t + t0 for f = v ε , ϕ ε , η νx,ε or ρ νx . A change of variables yields ε t + t - v ′2 ε + 1 4 v 2 ε ϕ ′2 ε dt = ρ νx (t 0 ) T + ε T - ε ṽ′2 ε + 1 4 ṽ2 ε φ′2 ε dt ρ νx (t 0 ) ε t + t - 1 2 (1 -v 2 ε ) 2 + 1 4 βv 4 ε sin 2 ϕ ε dt = ρ νx (t 0 ) T + ε T - ε 1 2 (1 -ṽ2 ε ) 2 + 1 4ε βṽ 4 ε sin 2 φε dt and thus F ε,β (v ε , ϕ ε ; (t + , t -)) ≥ ρ νx (t 0 ) 3/2 G β (ṽ ε , φε ; (T - ε , T + ε )) -c ′ δ + o ε→0 (1) ,
where for an interval I and a pair (v, ϕ),

G β (v, ϕ; I) is the localized version of G β defined in (4.2). Define now vε (t) :=        ṽε (t) if t ∈ (T - ε , T + ε ) linear joint if t ∈ (T + ε , T + ε + δ) ∪ (T - ε -δ, T - ε ) 1 if t ∈ R \ (T - ε -δ, T + ε + δ) and φε (t) :=            φε (t) if t ∈ (T - ε , T + ε ) linear joint if t ∈ (T + ε , T + ε + δ) ∪ (T - ε -δ, T - ε ) ϕ(t -) if t ∈ (-∞, T - ε -δ) ϕ(t + ) if t ∈ (T + ε + δ, +∞)
.

We have that (v ε , φε ) is admissible for σ β so

G β (ṽ ε , φε ; (T - ε , T + ε )) ≥ σβ + o ε→0 (1) .
Hence,

εF ε,β (v ε , ϕ ε ; (t + , t -)) ≥ σ νx,β (t 0 ) + o ε→0 (1) -c ′ δ . (5.3) 
Since ϕ ∈ BV loc (D νx , {0, π}) we have B ∩ J ϕ = {t 0 , . . . , t N } for some N ∈ N. Consider δ 0 > 0 such that for δ ∈ (0, δ 0 ), the intervals I δ = (t 0 -δ, t 0 + δ) are disjoint and contained in B. Reasoning as before and since (5.3) holds for every δ ∈ (0, δ 0 ), we obtain

εF ε,β (v ε , ϕ ε ; D νx ) ≥ N i=0 σ νx,β (t i ) + o ε→0 (1) 
.

Thus, lim inf ε→0 εF ε,β (v ε , ϕ ε ; D νx ) ≥ t∈B∩Jϕ σ νx,β (t) = B σ νx,β π |ϕ ′ | = F β (v, ϕ; B) .
This yields (5.2) since the choice of B was arbitrary.

We can now prove the Γ-liminf. For any ϕ ∈ BV loc (D), we define the localised lower Γ-limit of εF ε,β as the set function defined in A(D) by

F ′ (ϕ; A) := inf lim inf ε→0 εF ε (v ε , ϕ ε ; A) ; (v ε , ϕ ε ) → (1, ϕ) in L 1 loc (D) × L 1 loc (D) ,
and we write F ′ (ϕ) := F ′ (ϕ; D).

Proposition 5.3. (Γ-liminf ) For any ϕ ∈ BV loc (D; {0, π}), F ′ (ϕ) ≥ F β (ϕ) . (5.4) 

Proof. Consider any fixed open set

A relatively compact in D, ν ∈ S n-1 and ϕ ∈ BV (A, {0, π}). Let then (v ε , ϕ ε ) be such that v ε → 1 and ϕ ε → ϕ in L 1 (A) and such that lim ε→0 εF ε,β (v ε , ϕ ε ; A) = F ′ (ϕ; A).
We may assume that F ′ (ϕ, A) < ∞, so that (5.1) is satisfied. From Fubini's Theorem, there holds

εF ε,β (v ε , ϕ ε ; A) ≥ Aν εF ε,β (v ε,νx , ϕ ε,νx ; A νx ) dH n-1 ,
with (v ε,νx , ϕ ε,νx ) → (1, ϕ νx ) for a.e. x ∈ A ν . Then, Fatou's lemma, Fubini's formula, (2.4) and Proposition 5.2 yield

lim ε→0 εF ε,β (v ε , ϕ ε ; A) ≥ Aν dH n-1 (x) Aνx σ νx,β π |ϕ ′ νx | = A∩Jϕ σ β (x)| ν ϕ , ν |dH n-1 .
Notice that the last equality holds because ϕ is the characteristic function of a set with finite perimeter in A. Hence,

F ′ (ϕ; A) ≥ A∩Jϕ σ β (x)| ν ϕ , ν |dH n-1 .
Since all the functions F ε are local, F ′ (ϕ; 

F ′ (ϕ; A) ≥ A∩Jϕ σ β (x)dH n-1 = F β (ϕ; A) ,
which yields (5.4).

Γ-limsup

In this section we construct a recovery sequence and prove the Γ-limsup. Using the following lemma, we may restrict our selves to prove the inequality for the Γ-limsup for functions in

X := {ϕ = π1 A ; A relatively compact open set of D of class C ∞ } .
Lemma 5.4. Let ϕ = π1 A ∈ BV loc (D). There exists a sequence {ϕ k = π1 A k } k∈N in X such that:

(i) lim k→∞ L n ((A k ∩ D)∆A) = 0, (ii) lim sup k→∞ F β (ϕ k ) ≤ F β (ϕ), (iii) A k ρdx = A ρdx .
The proof of Lemma 5.4 uses the continuity of σ β with respect to x and follows closely the proof of [START_REF] Bouchitté | Singular perturbations of variational problems arising from a two-phase transition model[END_REF]Prop. 4.1], therefore we omit it here.

We first construct in Proposition 5.5 a recovery sequence for functions in X. We then explain in Lemma 5.6 how to take into account the mass constraint (1.3).

Proposition 5.5 (Γ-limsup). Let β > 0 and ϕ = π1 A ∈ X, then there exists a sequence of functions 

(v ε , ϕ ε ) ∈ Y (D) such that (v ε , ϕ ε ) → (1, ϕ) in L 1 loc (D) × L 1 loc (D) (5.
f (η, v, ϕ, p, q) := 1 2 η 2 |p| 2 + 1 2 η 4 (1 -v 2 ) 2 + 1 4 η 2 v 2 |q| 2 + 1 4 βη 4 v 4 sin 2 ϕ .
Let (v, ϕ) be a minimiser of σβ and for x ∈ D, let v x (t) := v(ρ(x) 1/2 t), ϕ x (t) := ϕ(ρ(x) 1/2 t) and for

ℓ > 0 let v x,ℓ := (1 + ℓ)v x ∧ 1 and ϕ x,ℓ := 0 ∨ (1 + 2ℓ)ϕ x -ℓ ∧ 1 .
Notice that (v x,ℓ , ϕ x,ℓ ) converges pointwise to (v x , ϕ x ) as ℓ → 0, and that there exists C > 0 such that for every ℓ ∈ (0, 1) and x ∈ D,

f ( √ ρ(x), v x,ℓ , ϕ x,ℓ , v ′ x,ℓ , ϕ ′ x,ℓ ) ≤ Cf ( √ ρ(x), v x , ϕ x , v ′ x , ϕ ′ x ) . (5.7) 
Therefore, thanks to the dominated convergence Theorem, for every δ > 0 and every x ∈ D, there exists ℓ x such that for

ℓ ≤ ℓ x , R f ( √ ρ(x), v x,ℓ , ϕ x,ℓ , v ′ x,ℓ , ϕ ′ x,ℓ )dt ≤ σ β (x) + δ 2 .
(5.8)

Fix from now on such a δ > 0. Thanks to the compactness of ∂A and the continuity of σ β , there is a finite family {Σ i } i∈I of open disjoint subsets of ∂A such that H n-1 (∂A \ ∪ i∈I Σ i ) = 0 and

σ β (x i ) ≤ σ β (x) + δ 2 in Σ i (5.9)
for every i ∈ I. Let then ℓ := (min i∈I ℓ xi ) ∧ δ and define Σ δ i := {x ∈ Σ i ; dist(x, ∂Σ i ) > ℓ} so that

H n-1 (Σ i \ Σ δ i ) = o δ→0 (1) . (5.10)
For ε, T > 0 define

W ε := {x ∈ R n ; |d(x)| < εT } B i := {x ∈ W ε ; Π(x) ∈ Σ δ i } C i := {x ∈ W ε ; Π(x) ∈ Σ i \ Σ δ i } .
Notice that for every given T , for ε small enough W ε is contained in some fixed compact set of D containing A. Consider a family {θ i } i∈I of smooth functions such that

i∈I θ i = 1 on ∂A and θ i = 1 in Σ δ i ∀ i ∈ I ,
and define

(v ε , ϕ ε )(x) =        i∈I θ i (Π(x)) v xi,ℓ d(x) ε , ϕ xi,ℓ d(x) ε if |d(x)| ≤ εT δ (1, π) if d(x) ≥ εT δ (1, 0) if d(x) ≤ -εT δ ; (5.11)
where

T δ is big enough so that v xi,ℓ = 1 in R \ [-T δ , T δ ], ϕ xi,ℓ = 0 in (-∞, T δ ] and ϕ xi,ℓ = π in [T δ , +∞) for every i ∈ I.
The functions (v ε , ϕ ε ) are Lipschitz continuous and converge to (1, ϕ) in L 1 loc (D) × L 1 loc (D). Defining

ξ ε := 1 ε f (η ε , v ε , ϕ ε , ε 2 ∇v ε , ε 2 ∇ϕ ε ) , there exists C > 0 such that |ξ ε | ≤ Cε -1 , (5.12) 
and since |∇d| = 1 in W ε ,

ξ ε (x) = |∇d/ε|f (η ε , v xi,ℓ • d/ε, ϕ xi,ℓ • d/ε, v ′ xi,ℓ • d/ε, ϕ ′ xi,ℓ • d/ε) (5.13)
holds in B i for all i ∈ I.

Using (5.10) and (5.12) we compute 

εF ε,β (v ε , ϕ ε ) = i∈I Bi ξ ε (x) dx + i∈I Ci ξ ε (x) dx ≤ i∈I Bi ξ ε (x) dx + C ε L n i∈I C i (5.14) = i∈I Bi ξ ε (x) dx + r 1 δ where r 1 δ = o δ→0 ( 
ξ ε (x) dx = T δ -T δ {|d|=εt}∩Bi f (η ε (x), v xi,ℓ (t), ϕ xi,ℓ (t), v ′ xi,ℓ (t), ϕ ′ xi,ℓ (t)) dH n-1 (x) dt . Since B i ⊂⊂ D, estimate (3.7) gives Bi ξ ε (x) dx = T δ -T δ {|d|=εt}∩Bi f ( √ ρ(x), v xi,ℓ (t), ϕ xi,ℓ (t), v ′ xi,ℓ (t), ϕ ′ xi,ℓ (t)) dH n-1 (x) dt + r 2 δ,ε
where r 2 δ,ε = o ε→0 (1).

Hence, using Fubini's Theorem, (5.8) and (5.9) we find lim ε→0 Bi 

ξ ε (x) dx ≤ Σ δ i T δ -T δ f ( √ ρ(x i ), v xi,ℓ , ϕ xi,ℓ , v ′ xi,ℓ , ϕ ′ xi,ℓ ) dt dH n-1 (x) ≤ Σ δ i (σ β (x) + δ)dH n-1 (x) . ( 5 
(v ε , ϕ ε ) ≤ ∂A σ β dH n-1 = F β (ϕ).
Finally, a diagonal argument yields (5.6). 

(A ∪ B + ε ) \ B - ε , where B ± ε := B(x ± , δ ± ε ) and 0 ≤ δ ± ε ≤ ε γ/n with γ ∈ (0, 1) . (5.16) Defining vε = η ε v ε -1 2 v ε , the first equality in (1.3) holds. Using η ε 2 = 1 we estimate η ε v ε 2 2 = 1 + Wε η 2 ε (v 2 ε -1) dx = 1 + O(ε) .
(5.17)

Hence, the sequence (v ε , ϕ ε ) converges to (1, ϕ) in L 1 loc (D) × L 1 loc (D) and inequality (5.6) still holds.

Using estimates (3.5)-(3.7) we get

R n η 2 ε v 2 ε cos ϕ ε dx = R n η 2 ε (-1 Aε + 1 R n \Aε ) dx + O(ε) = R n ρ(-1 A + 1 D\A ) dx + 2 R n η 2 ε (1 B + ε -1 B - ε ) dx + O(ε τ )
where τ := min{a, b, c} > 0. Let c > 0 be such that η 2 ε > c in B - ε ∪ B + ε and fix γ ∈ (0, τ ). For ε small enough, thanks to (5.16) and (5.17) we obtain for (δ

+ ε , δ - ε ) = (ε γ , 0), R n η 2 ε v2 ε cos ϕ ε dx ≥ α 1 -α 2 + 2c|B 1 | ε γ + O(ε τ ) > α 1 -α 2 and for (δ + ε , δ - ε ) = (0, ε γ ), R n η 2 ε v2 ε cos ϕ ε dx ≤ α 1 -α 2 -2c|B 1 | ε γ + O(ε τ ) < α 1 -α 2 .
We conclude by continuity that there exists (δ

+ ε , δ - ε ) ∈ [0; ε γ ] × [0; ε γ ] such that the second equality in (1.3) is satisfied.

Asymptotic analysis of the surface tension

In this section we study the asymptotic behavior of σ β when β tends to zero or infinity.

Vanishing β

When β goes to zero, we expect the two condensates not to segregate anymore. This can be seen as an interpretation of the following theorem which shows that in the limit β → 0, the surface tension

σ β vanishes. Theorem 6.1. The functional G β Γ-converges when β → 0 to G 0 (v, ϕ) := 1 2 R v ′2 + W (v) + 1 4 v 2 ϕ ′2 dt,
which is defined on all the pairs of functions (v, ϕ) with ϕ ∈ [0, π] (but without conditions at infinity).

As a consequence,

lim β→0 σ β = 0
Proof. Since the compactness and Γ-liminf inequality are readily obtained, let us focus on the Γ-limsup. For this, let (v, ϕ) be such that G ρ,0 (v, ϕ) < +∞. Let then v β := v and

ϕ β (t) :=                        0 for t ∈ -∞, -2 √ β √ βϕ -1 √ β t + 1 √ β + ϕ -1 √ β for t ∈ -2 √ β , -1 √ β ϕ(t) for t ∈ -1 √ β , 1 √ β √ β π -ϕ 1 √ β t -1 √ β + ϕ 1 √ β for t ∈ 1 √ β , 2 √ β π for t ∈ 2 √ β , +∞ .
A simple computation then shows that

|G β (v β , ϕ β ) -G 0 (v, ϕ)| ≤ C β.
Proof. Let us first notice that R α is determined by α = H n-1 (S n-1 )λ n+2 Rα 0

(1 -r 2 )r n-1 dr, so that

R ′ α = H n-1 (S n-1 )λ n+2 (1 -R 2 α )R n-1 α -1 (6.1)
where by a slight abuse of notation we identified R α with the function α → R α . A simple computation shows that for α ∈ (0, 1),

f (α) = 2 √ 2 3 H n-1 (S n-1 )λ n+2 R n-1 α (1 -R 2 α ) 3/2 (6.2)
and f (0) = f (1) = 0. It then follows from (6.1) that for α ∈ (0, 1), As in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF], by induction it implies that any union of m ∈ N annuli has energy larger than min(f (α), f (1α)) which in turn by approximation implies that any radially symmetric set has energy at least min(f (α), f (1 -α)).

f ′′ (α) = - 2 √ 2 3H (S n-1 )λ n+2 (1 -R 2 α ) -5/2 R -(n+1) α (n -1)(1 -R 2 α ) + 3R 2 α <
In order to show symmetry breaking it is thus enough to construct a non radially symmetric set with energy smaller than min(f (α), f (1 -α)).

Proposition 6.6. Let n = 1, 2 or 3 then there exists α 0 ∈ (0, 1/2) such that if α ∈ (α 0 , 1 -α 0 ), the minimizers of F ∞ under the mass constraint (1.7) are not radially symmetric.

Proof. For n = 2, the proof is already given in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF]Cor. 1.3]. For n = 1, consider the interval A α := (-λ, t α ] where t α is chosen so that We find that R α ≈ 0.35 and thus 2(1 -R 2 α ) 3/2 ≈ 1.65 > 1. For n = 3, let us consider in cylindrical coordinates the set A α := {(r exp(iθ), z) : r ∈ (0, λ), θ ∈ (0, θ α ), z ∈ (-λ, λ)} where θ α is such that (1.7) is satisfied. It is readily seen that F ∞ (π1 Aα ) = 2 √ 2 3 2π 5 λ 5 (notice that it does not depend on α). As for n = 1, it is enough to compare it with f (1/2) = 2 √ 2 3 4πλ 5 R 2 α (1 -R 2 α ) 3/2 so that we are left to check that

10R 2 α (1 -R 2 α ) 3/2 > 1.
We find R α ≈ 0.64 and thus 10R 2 α (1 -R 2 α ) 3/2 ≈ 1.86 > 1.

Using the properties of Γ-convergence we derive the analogous result for the minimisers of F ε,β with ε small enough: Corollary 6.7. Let n = 1, 2 or 3 and V = |x| 2 . There exists δ 0 ∈ (0, 1/2) such that for α 1 ∈ [δ 0 , 1-δ 0 ] and β > 0, there exists ε(β) > 0 such that for 0 < ε < ε(β), the minimisers of F ε,β under the constraint (1.3) are not radially symmetric.

  [0; n], we denote by H k the k-dimensional Hausdorff measure. Given a set E ⊂ R n , we let 1 E be the characteristic function of the set E. The letters, c, C denote universal constants which can vary from line to line. We also make use of the usual o and O notation. For a and b real numbers we let a ∧ b := min(a, b) and a ∨ b := max(a, b).
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  β (v ε , ϕ ε ) ≤ F β (ϕ) . (5.6) Proof. Define the signed distance to ∂A by d(x) := dist(x, A) -dist(x, R 2 \ A).For sufficiently small t > 0, the projection Π on ∂A is well defined in the set {x ∈ D ; |d(x)| < t} and d is a Lipschitz function therein with |∇d| = 1 a.e. . Define also

Lemma 5 . 6 .

 56 (mass constraint) Let β > 0 and ϕ = π1 A ∈ X satisfying (1.7). Then, there exists a sequence of functions (v ε , ϕ ε ) satisfying (1.3) for every ε > 0 for which (5.5) and (5.6) hold.Proof. Notice first that sinceA ρ dx = α 2 > 0 and A c ρ dx = α 1 > 0, there exist x + in A and x -in D \ A. With the notations of Proposition 5.5, consider (v ε , ϕ ε ) as in (5.11) with d given by the signed distance to A ε :=

0 and thus f is strictly concave 1 .we have β 1 + β 2 = 1 -α and f 1 F

 11211 Let now A(R 1 , R 2 ) := {λR 1 < |x| ≤ λR 2 } be an annulus with 0 < R 1 < R 2 < 1 and A(R1,R2) (β 1 ) := F ∞ π1 A(R1,R2) = f (β 1 ) + f (β 1 + α)is a strictly concave function of β 1 and thus attains its minimum for β 1 = 0 or β 1 = 1 -α. ∞ (π1 A(R1,R2) ) = min(f (α), f (1 -α)).

(λ 2 -√ 2 3 λ 2 2 √ 2 3 λ 3 2 √ 2 3 2λ 3 ( 1 -R 2 α ) 3 / 2 .

 2322232231232 |x| 2 )dx = α. We then have F ∞ (π1 Aα ) = 2 -t 2α . By continuity of F ∞ (π1 Aα ) and f with respect to α, it is enough showing that F ∞ (π1 Aα ) < min(f (α), f (1 -α)) for α = 1/2 so that on the one hand t α = 0 and F ∞ (π1 Aα ) = and on the other hand f (1/2) = It is thus enough checking that 2(1 -R 2 α ) 3/2 > 1.

  •) is super-additive on open sets with disjoint compact closures. We may apply [11, Prop. 1.16] with Ω = D, λ = σ β (x) H n-1 ∂ * {ϕ = π} (where we recall that ∂ * E denotes the reduced boundary of E) and ψ i = | ν ϕ , ν i |, where {ν i } is a dense family in S n-1 . Remarking that sup i | ν ϕ , ν i | = 1, we obtain

  1). Using (5.13) and the coarea formula [10, Prop. 2.4] applied to u = d/ε, we obtain

	Bi

notice that for n = 1, f is discontinuous at 0 but is still strictly concave since f ≥ f (0) and f is strictly concave in (0, 1)
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Remark 6.2. From the proof, we see that σ β ≤ C √ β which is exactly the scaling predicted in the physics literature [START_REF] Ao | Binary Bose-Einstein condensate mixtures in weakly and strongly segregated phases[END_REF][START_REF] Timmermans | Phase separation of Bose-Einstein condensates[END_REF][START_REF] Mazets | Waves on an interface between two phase-separated Bose-Einstein condensates[END_REF][START_REF] Barankov | Boundary of two mixed Bose-Einstein condensates[END_REF].

Study of β → +∞ and symmetry breaking

In this section we study the behavior of the limiting energy when β → +∞. We prove that in this case, we recover the functional

derived in [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF], where σ ∞ (x) := 2

Let us prove that lim

with a rate of approximation of the order of β -1/4 as predicted in the physical literature [START_REF] Van Schaeybroeck | Interface tension of Bose-Einstein condensates[END_REF].

In particular, lim β→+∞ σ β = σ ∞ .

Proof. The upper bound is a consequence of (4.4) with m = 0. For the lower bound, we first notice that from Lemma 4.3, we know that for every minimiser v β of σ β , there holds inf v β ≤ Cβ -1/4 so that as in the proof of Proposition 4.2,

We then easily deduce the convergence of the full energy:

Let us now concentrate on the harmonic potential V = |x| 2 and let us study the minimisers of F ∞ under the mass constraint (1.7) to show the symmetry breaking. Let us point out again that since the functional F β differs from F ∞ by a (multiplicative) constant, the minimizers of the two functionals coincide. In particular, they do not depend on β. To prove symmetry breaking, we closely follow the ideas of [START_REF] Aftalion | A minimal interface problem arising from a two component Bose-Einstein condensate via Γ-convergence[END_REF]Cor. 1.3], where such a result was derived for n = 2. Let us first prove that the minimizer among radially symmetric sets is either the centered ball or the outside annulus.