Introduction

Let X be an alphabet, R an unitary (commutative) ring and let X * be the monoid freely generated by X. As a matter of fact, mathematics (in particular in number theory), physics and other sciences provide, for their theories, algebras of functions indexed by words with a product following a simple recursion of the type au⊔⊔ φ vb = a(u⊔⊔ φ bv) + b(au⊔⊔ φ v) + φ(a, b)(u⊔⊔ φ v) .

(1)

We will here use a gradation in the complexity (see appendix A) i) Type I : factor φ comes from a product (possibly with zero) between letters (i.e. X ∪ {0} is a semigroup)

ii) Type II : factor φ comes from the deformation of a semigroup product by a bicharacter iii) Type III : factor φ comes from the deformation of a semigroup product by a colour factor iv) Type IV : factor φ is a commutative a law of associative algebra (CAA) on R.X v) Type V : factor φ is a law of associative algebra (AA) on R.X

Many shuffle products arise in number theory when studying polylogarithms, harmonic sums and polyzêtas : to study all these products, two of us introduced the Type IV (see above) [START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF].

On the other hand, in combinatorial physics, one has coproducts with bi-multplicative perturbation factors see [START_REF] Duchamp | A three-parameter Hopf deformation of the algebra of Feynman-like diagrams[END_REF]).

In a first part, we enumerate some of this product we can meet in the aboves case, to prove the pertinence to study this classe of product. The first steep to use a 2 a small zoology of φ-shuffle product

the definition

Let us so give below some examples.

Example 1 (see [START_REF] Reutenauer | Free Lie Algebras[END_REF]). Product of interated integrals.

As remarked by Chen [START_REF] Chen | Iterated path integrals Bull[END_REF] in order to implement his theory, the product of two iterated integrals can be computed (thanks to the formula of integration by parts) by "shuffling" the differential forms on which it is based. This shuffle reduces on the indices to a bilinear product such that :

∀w ∈ X * , w ⊔⊔ 1 X * = 1 X * ⊔⊔ w = w, and ∀a, b ∈ X 2 , ∀ u, v ∈ X * 2 , au ⊔⊔ vb = a(u ⊔⊔ bv) + b(au ⊔⊔ v).

where X is a alphabet and X * its set of words. For example, for any letter x 0 , x and x ′ in X,

x 0 x ′ ⊔⊔ x 2 0 x = x 0 x ′ x 2 0 x + 2x 2 0 x ′ x 0 x + 3x 3 0 x ′ x + 3x 3 0 xx ′ + x 2 0 xx 0 x ′ .
Example 2 (see [START_REF] Hoffman | Quasi-symmetric functions, multiple zeta values, and rooted trees[END_REF]). Product of quasi-symmetric functions (Y = {y i } i∈N + ).

In the same manner as in the preceding example, quasi-symmetric functions rule the product of (strict) harmonic sums (their product reduces to the shuffle of their indices with an extra term). The stuffle is a bilinear product on k Y such that :

∀w ∈ Y * , w 1 Y * = 1 Y * w = w, and ∀y i , y j ∈ X, ∀u, v ∈ X * , y i u y j v = y i (u y j v) + y j (y i u v) + y i+j (u v).
In particular, (y 3 y 1 ) y 2 = y 3 y 1 y 2 + y 3 y 2 y 1 + y 3 y 3 + y 2 y 3 y 1 + y 5 y 1 .

Example 3 ([5]

). Product of large multiple harmonic sums (X = {x i } i∈N + ).

For large harmonic sums, the product is ruled by the minus-stuffle. It is a bilinear product on k X such that :

∀w ∈ X * , w 1 X * = 1 X * w = w, and ∀x i , x j ∈ X, ∀u, v ∈ X * , x i u x j v = x i (u x j v) + x j (x i u v) -x i+j (u v).
In particular,

(x 3 x 1 ) x 2 = x 3 x 1 x 2 + x 3 x 2 x 1 -x 3 x 3 + x 2 y 3 x 1 -x 5 x 1 .
The associativity of the preceding product is no longer provided by a bicharacter but by a color factor, see Prop. (??).

Example 4 ([2]

). (X = {x i } i∈N + ). More generally, following Hoffmann, one can introduce a parameter q ∈ k and define on k X the deformed shuffle product by : ∀w ∈ X * , w q 1 X * = 1 X * q w = w, and

∀x i , x j ∈ X, ∀u, v ∈ X * , x i u q x j v = x i (u q x j v) + x j (x i u q v) + qx i+j (u q v).
Of course, when q = -1, 0 or 1, one obtains respectively the products , ⊔⊔ and . In particular,

(x 3 x 1 ) q x 2 = x 3 x 1 x 2 + x 3 x 2 x 1 + q.x 3 x 3 + x 2 x 3 x 1 + qx 5 x 1 . Example 5 ([10]). Product of coloured sums (X = {x i } i∈C * ).
The smuffle is a bilinear product on k X such that :

∀w ∈ X * , w q 1 X * = 1 X * q w = w, and ∀x i , x j ∈ X, ∀u, v ∈ X * , x i u q x j v = x i (u q x j v) + x j (x i u q v) + x i×j (u q v).
For example,

x 2 3 x -1 q x 1 2 = x 2 3 x -1 x 1 2 + x 2 3 x 1 2 x -1 + x 2 3 x -1 2 + x 1 2 x 2 3 x -1 + x 1 3 x -1 .
Other products can be constructed from these examples. Indeed,

Example 6 ([11]). Product of colored polyzêtas (Y = {y i } i∈N * , X = {x i } i∈C * ).
Let Y and X be two alphabets and consider the alphabet M = Y ×X with the concatenation defined recursively by (y, x).(w Y , w X ) = (yw Y , xw X ) for any letters y ∈ Y , x ∈ X, and any words

w Y ∈ Y * , w X ∈ X * such that |w Y | = |w X |. The unit of this monoid M is given by 1 M = (1 Y * , 1 X * ).
From the examples 2 and 5, the duffle is defined as a bilinear product n k M such that

∀w ∈ M * , w q 1 M * = 1 M * q w = w, ∀y i , y j ∈ Y 2 , ∀x k , x l ∈ X 2 , ∀u, v ∈ M * 2 ,
(y i , x k ).u q (y j , x l ).v = (y i , x k )(u q (y j , x l )v) +(y j , x l )((y i , x k )u q v) + (y i+j , x k×l )(u q v).

OR better : Product of colored polyzêtas (X = {x i,k } (i,k)∈N * ×C * ).

Let (B, +) and (C, ×) be two monoids and consider the alphabet X = {x i,k } (i,k)∈B×C . the duffle is defined on k X as a bilinear product such that

∀w ∈ X * , w q 1 X * = 1 X * q w = w, ∀x i,k , x j,l ∈ X 2 , ∀u, v ∈ X * 2 ,
x i,k .u q x j,l .v = x i,k (u q x j,l v) + x j,l (x i,k u q v) + x i+j,k×l (u q v).

Example 7 ([12]

). Product of Hurwitz polyzêtas (Y = {y i } i∈N * , Z = {z t } t∈C ).

One constructs in the same way the alphabet N = Y × Z and define on k the product • by

∀w ∈ N * , w • 1 N * = 1 N * • w = w, ∀y i , y j ∈ Y 2 , ∀z t , z t ′ ∈ Z 2 , ∀u, v ∈ N * 2 , t = t ′ ⇒ (y i , z t )u • (y j , z t )v = (y i , z t )(u • (y j , z t )v) + (y j , z t )((y i , z t )u • v) +(y i+j , z t )(u • v) t = t ′ ⇒ (y i , z t ).u • (y j , z t ′ ).v = (y i , z t ). (u • (y j , z t ′ ).v) + (y j , z t ′ ). ((y i , z t ).u • v) + i-1 n=0 j -1 + n j -1 (-1) n (t -t ′ ) j+n (y i-n , z t ). (u • v) + j-1 n=0 i -1 + n i -1 (-1) n (t ′ -t) i+n (y j-n , z t ′ ). (u • v)
OR better :Product of Hurwitz polyzêtas (Y = {y ( i, t)} (i,t)∈N * ×C ) Let (B, +) a monoid and C a set and consider the alphabet Y = {y i,t } (i,t)∈B×C . The duffle is defined as a bilinear product on k X such that

∀w ∈ Y * , w q 1 Y * = 1 Y * q w = w, ∀y i,t , y j,t ′ ∈ Y 2 , ∀u, v ∈ Y * 2 t = t ′ ⇒ y i,t u • y j,t v = y i,t (u • y j,t v) + y j,t (y i,t u • v) + y i+j,t (u • v) t = t ′ ⇒ y i,t .u • y j,t ′ .v = y i,t (u • y j,t ′ v) + y j,t ′ (y i,t u • v) + i-1 n=0 j -1 + n j -1 (-1) n (t -t ′ ) j+n y i-n,t . (u • v) + j-1 n=0 i -1 + n i -1 (-1) n (t ′ -t) i+n y j-n,t ′ . (u • v) Example 8. Product of Generalized Lerch function (Y = {y i } i∈N * , X = {x i } i∈C * , Z = {z t } t∈C ).
Let X, Y , Z be three alphabets and consider the alphabet A = Y × Z × X with the concatenation defined recursively by (y, z, x).(w Y , w Z , w X ) = (yw Y , zw Z , xw X ) for any letters y ∈ Y , z ∈ Z, x ∈ X, and any words w

Y ∈ Y * , w Z ∈ Z * , w X ∈ X * such that |w Y | = |w Z | = |w X |. The unit of this monoid A is given by 1 A = (1 Y * , 1 Z * , 1 X * ). The product • is defined by : ∀w ∈ A * , w•1 A * = 1 A * •w = w, ∀(y i , y j ) ∈ Y 2 , ∀(z t , z t ′ ) ∈ Z 2 , ∀(x k , x l ) ∈ X 2 , ∀(u, v) ∈ A * 2 , t = t ′ ⇒ (y i , z t , x k ).u•(y j , z t , x l ).v = (y i , z t , x k ). (u•(y j , z t ).v) + (y j , z t , x l ). ((y i , z t ).u•v) +(y i+j , z t , x k×l ). (u•v) t = t ′ ⇒ (y i , z t , x k ).u•(y j , z t ′ , x l ).v = (y i , z t , x k ). (u•(y j , z t ′ ).v) + (y j , z t ′ , x l ). ((y i , z t ).u•v) + i-1 n=0 j -1 + n j -1 (-1) n (t -t ′ ) j+n (y i-n , z t , x k×l ). (u•v) + j-1 n=0 i -1 + n i -1 (-1) n (t ′ -t) i+n (y j-n , z t ′ , x k×l ). (u•v) OR better :Product of Generalized Lerch function (X = {x i,k,t } (i,k,t)∈N * ×C * ×C )
Let (B, +) a monoid and C a set and consider the alphabet Y = {y i,t } (i,t)∈B×C . The duffle is defined as a bilinear product on k X such that

∀w ∈ Y * , w q 1 Y * = 1 Y * q w = w, ∀y i,t , y j,t ′ ∈ Y 2 , ∀u, v ∈ Y * 2 t = t ′ ⇒ y i,t u • y j,t v = y i,t (u • y j,t v) + y j,t (y i,t u • v) + y i+j,t (u • v) t = t ′ ⇒ y i,t .u • y j,t ′ .v = y i,t (u • y j,t ′ v) + y j,t ′ (y i,t u • v) + i-1 n=0 j -1 + n j -1 (-1) n (t -t ′ ) j+n y i-n,t . (u • v) + j-1 n=0 i -1 + n i -1 (-1) n (t ′ -t) i+n y j-n,t ′ . (u • v)
Example 9. The q-shuffle product is the bilinear operation ⊔⊔ q on N[q] A recursively defined by

1 A * ⊔⊔ q u = u⊔⊔ q 1 A * = u, (au)⊔⊔ q (bv) = a(u⊔⊔ q bv) + q |au| b(au⊔⊔ q v),
where u, v (resp. a, b) are words (resp. letters) of A * (resp. A).

In order to grasp more generality in this work, we start from class V which is the most general. The aim of the paper is to give a structure theorem and necessary and sufficient conditions for it. Class V emerges from definition [START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF] below. Our framework will use a unitary ring as ground set of scalars (and not a field as it would be expected in combinatorics) because the applications require to work with rings of (analytic or arithmetic) functions.

Definition 10. Let A be a unitary commutative ring, X be an alphabet and φ : X × X → A X is an arbitrary mapping. Then it exist a unique mapping ⊔⊔ φ : X * × X * → A X satisfying the conditions :

(R)      for any w ∈ X * , 1 X * ⊔⊔ φ w = w ⋆ 1 X * = w, for any a, b ∈ Xand u, v ∈ X * , au⊔⊔ φ bv = a(u ⊔⊔ φ bv) + b(au⊔⊔ φ v) + φ(a, b)(u⊔⊔ φ v).
With the notations as in Def. [START_REF] Enjalbert | Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues[END_REF], we have Proposition 11. The recursion (R) defines a unique mapping X * × X * → A X .

Definition 12. We will noted |l| the length of the word l.

Proof. Make a recurrence over n = |u| + |v|.

From now on, we suppose that φ takes its values in AX the space of homogeneous polynomials of degree 1. We still denote by φ its linear extension to AX ⊗ AX given by

φ(P, Q) = x,y∈X P |x Q|y φ(x, y) (2) 
and ⋆ the extension of the mapping of Prop [START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF] by linearity1 to A X ⊗ A X . Then ⋆ becomes a law of algebra (with 1 X * as unit) on A X .

extented quasi-stuffle relations

Lemma 13. For s, r integers, a, b in C :

∀x ∈ C \ {a, b}, 1 (x -a) s (x -b) r = s k=1 a k (x -a) k + t k=1 b k (x -b) k where a k = (-1) s-k (a -b) s+r-k × (s + r -k -1)! (r -1)!(n -k)! = s + r -k -1 r -1 (-1) s-k (a -b) s+r-k and b k = (-1) r-k (b -a) s+r-k × (s + r -k -1)! (s -1)!(r -k)! = s + r -k -1 s -1 (-1) r-k (b -a) s+r-k Let t = (t 1 , . . . , t n ) a set of parameters, s = (s 1 , . . . , s r ) a composition, φ ∈ C r , we define, for n ∈ Z >0 , M n s,φ,t = n>n 1 >...>nr>0 r i=1 ξ n i i (n i -t i ) s i . ( 3 
)
and M n (),(),() = 1.

Proposition 14. Let s = (s 1 , . . . , s l ) and r = (r 1 , . . . , r k ) two compositions,

φ ∈ C l , ρ ∈ C k , and t = (t 1 , . . . , t n ), t ′ = (t ′ 1 , . . . , t ′ n ) two sets of parameters. Then ∀n ∈ N, M n s,φ,t M n r,ρ,t ′ = M n (s,φ,t)•(r,ρ,t ′ ) . Proof. Put s ′ = (s 2 , . . . , s l ), r ′ = (r 2 , . . . , r k ), φ ′ = (ξ 2 , . . . , ξ k ), ρ ′ = (ρ 2 , . . . , ρ l ), t 2 = (t 2 , . . . , t n ) and t ′ 2 = (t ′ 2 , . . . , t ′ n ) then M n s,φ,t M n r,ρ,t ′ = n>n 1 ,n>n ′ 1 ξ n 1 1 (n 1 -t 1 ) s 1 M n 1 s ′ ,φ ′ ,t 2 ρ n ′ 1 1 (n ′ 1 -t ′ 1 ) r 1 M n ′ 1 -t ′ 1 r ′ ,ρ ′ ,t ′ 2 = n>n 1 ξ n 1 1 (n 1 -t 1 ) s 1 M n 1 s ′ ,φ ′ ,t 2 M n 1 r ′ ,ρ ′ ,t ′ 2 + n>n ′ 1 ρ n ′ 1 1 (n ′ 1 -t ′ 1 ) r 1 M n ′ 1 s ′ ,φ ′ ,t 2 M n ′ 1 r ′ ,ρ ′ ,t ′ 2 + n>m (ξ 1 ρ 1 ) m 1 (n 1 -t 1 ) s 1 1 (n ′ 1 -t ′ 1 ) r 1 M m s ′ ,φ ′ M m r ′ ,ρ ′ = n>n 1 ξ n 1 1 (n 1 -t 1 ) s 1 M n 1 s ′ ,φ ′ ,t 2 M n 1 r ′ ,ρ ′ ,t ′ 2 + n>n ′ 1 ρ n ′ 1 1 (n ′ 1 -t ′ 1 ) r 1 M n ′ 1 s ′ ,φ ′ ,t 2 M n ′ 1 r ′ ,ρ ′ ,t ′ 2 + n>m (ξ 1 ρ 1 ) m t k=1 1 (x -b) k + s k=1 1 (x -a) k M m s ′ ,φ ′ M m r ′ ,ρ ′ .
A recurrence ended the demonstration.

Theorem 15. Let s = (s 1 , . . . , s l ) and r = (r 1 , . . . , r k ) two compositions, φ a l-tuple and ρ a k-tuple of E, t = (t 1 , . . . , t k ) and t ′ = (t 1 , . . . , t k ) two k-tuple. Then (i) For the colored zeta function :

ζ(s, ξ)ζ(s ′ , ξ ′ ) = ζ ((s, ξ) q (s ′ , ξ ′ ))
(ii) For the Hurwitz zeta function :

ζ(s, t)ζ(s ′ , t ′ ) = ζ ((s, t) • (s ′ , t ′ ))
(iii) For the Lerch Generalized Function :

ζ(s, t, ξ)ζ(s ′ , t ′ , ξ ′ ) = ζ ((s, t, ξ)•(s ′ , t ′ , ξ ′ )) Proof. With λ n = 1/(n -t). ∀n ∈ N, M n s,φ (λ) = n>n 1 >...>nr r i=1 ξ n i i (n i -t) s i .
so lim n→∞ M n s,φ (λ) = Di(F φ,t ; s). The move to limit the proposition 14 gives the result.

Example 16. The use of examples 2 and 5 give

Di(F ( 2 3 ,-1),t ; (3, 1)) Di(F ( 1 2 ),(t) ; (2)) = Di(F ( 2 3 ,-1, 1 2 ),(t,t,t) ; (3, 1, 2)) + Di(F ( 2 3 , 1 2 ,-1),(t,t,t) ; (3, 2, 1)) + Di(F ( 2 3 ,-1 2 ),t ; (3, 3)) + Di(F ( 1 2 , 2
3 ,-1),(t,t,t) ; (2, 3, 1)) + Di(F ( 1 3 ,-1),t ; (5, 1)) [START_REF] Bui | Sch à 1 4 tzenberger's factorization on the (completed) Hopf algebra of q-stuffle product[END_REF] Radford's theorem for the B-shuffle.

Definition 17. Let I be a set endowed with a length function l : I → N, k be a ring with unit, A be a k-modulus.

We will say that a family (a i ) i∈I of A is triangular compared with the family

(b i ) i∈I of A if ∀i ∈ I, ∃(α j i ) {j∈I/l(j)<l(i)} ∈ k (N) / a i = b i + l(j)<l(i) α j i b j .
Note that, with this defition, the family (α j i ) j corresponding to a i is finite even if the set {j ∈ I/l(j) < l(i)} is infinite.

Lemma 18. Let I be a set endowed with a length function l : I → N, k be a ring with unit, A be a k-modulus, and (a i ) i∈I a family of elements of A triangular compared with the family (b i ) i∈I of elements of A. Then, (i) If the family (b i ) i∈I is free, so is (a i ) i∈I .

(ii) ∀p ∈ N * , span {b j } {j∈I/l(j)<p} = span {a j } {j∈I/l(j)<p} .

Consequently, if (b i ) i∈I is a generating family, so is (a i ) i∈I .

Proof -

(i) Let
i∈J β i a i = 0 be a null linear combination of (a i ) i∈I -so J is a finit subset of I.

If J = ∅, then ∀i ∈ J, β i = 0.
Otherwise, we suppose that one β i , i ∈ J is not null. So, we can define N = max i∈J (l(i)/β i = 0) (all l(i) ∈ N and J is finite and not empty). Moreover, by assumption, we can find, for all j ∈ J, a finite familly (α j i ) j of elements in k such that a i = b i + l(j)<l(i)

α j i b j . Then, i∈J β i a i = i∈J l(i)=N β i a i + i∈J l(i)<N β i a i = i∈J l(i)=N β i b i + l(j)<N α j i b j + i∈J l(i)<N β i b i + l(j)<l(i) α j i b j = i∈J l(i)=N β i b i + i∈J l(j)<N β i α j i b j .
This sum is finite, null and (b i ) i∈I is free so ∀i ∈ {k ∈ J, l(k) = N }, β i = 0 but that contradicts the definition of N .

(ii) The familly (a i ) i∈I is triangular compared with the familly (b i ) i∈I , so ∀p ∈ N * , span {a j } {j∈I/l(j)<p} ⊂ span {b j } {j∈I/l(j)<p}

We juste have to prove, for all p ∈ N, the propertie P(p) : span {b j } {j∈I/l(j)<p} ⊂ span {a j } {j∈I/l(j)<p} .

• For all element i in I such that l(i) = 0, we can read a i in the form :

a i = b i + l(j)<0 α j i b j = b i because ∀j ∈ I, l(j) ∈ N.
So ∀i ∈ I, l(i) < 1 ⇒ b i ∈ span {a j } {j∈I/l(j)<1} : P(1) is true.

• Assume that P(p) is true for a integer p. Let i ∈ I such that l(i) < p + 1. We can find a finite familly (α j i ) j of k such that a i = b i + l(j)<l(i)

α j i b j . Then, b i = a i - l(j)<l(i) α j i b j .
But, for j ∈ J such that l(j) < l(i), l(j) < p so so b j ∈ span {a j } {j∈I/l(j)<p} ⊂ span {a j } {j∈I/l(j)<p+1} . It follows that the elements a i andl(j)<l(i) α j i b j are in span {a j } {j∈I/l(j)<p+1} so b i too; consequently P(p + 1) is true.

So, ∀p ∈ N * , span {a j } {j∈I/l(j)<p} ⊂ span {b j } {j∈I/l(j)<p} , and the result is proved.

Counter-example 19. In k[x, x -1 ], the family (b k ) k∈Z define by b k = x k is a basis, the family (a k ) k∈Z define by a k = x kx k-1 verify the condition but is not a basis (b k is the infinite sum of the a j , j ≤ k) : the condition l(I) ⊂ N is necessary.

For the end of this section A be a commutative ring (with unit) and φ : AX ⊗ AX → AX an associative law ⊕. In this case, the product ⋆ defined in definition 10 will be noted ⊔⊔ φ . Any total ordering < on the alphabet X being given, let Lyn(X) denote the family of Lyndon words [START_REF] Reutenauer | Free Lie Algebras[END_REF] constructed in X * w.r.t. this ordering. The largest framework in which Radford's theorem is true [START_REF] Radford | A natural ring basis for shuffle algebra and an application to group schemes[END_REF] is when φ is commutative (and associative).

Lemma 20. Let u and v two words in X * . Then it exists (C w u,v ) |w|<|u|+|v| ∈ A (N) such that :

u⊔⊔ φ v = u ⊔⊔ v + |w|<|u|+|v| C w u,v w.
Proof -We will make a recurrence over the propertie P(n):

∀(u, v) ∈ (X * ) 2 , |u| + |v| < n + 1 ⇒ (∃(C w u,v ) w ∈ A (N) /u⊔⊔ φ v = u ⊔⊔ v + |w|<|u|+|v| C w u,v w. • 1 X * ⊔⊔ φ 1 X * = 1 X * = 1 X * ⊔⊔ 1 X * , ∀a ∈ X, 1 X * ⊔⊔ φ a = a = 1 X * ⊔⊔
a and a⊔⊔ φ 1 X * = a = a ⊔⊔ 1 X * : the propertie is true P(n) for n = 0 and n = 1.

• Assume P(n) is true for one integer n and let u and v two words of X * such that |u|

+ |v| = n + 1. If u = 1 X * or if v = 1 X * , u⊔⊔ φ v = u ⊔⊔ v.
Otherwise, we can write u = au ′ and v = bv ′ , with a, b in X and u ′ , v ′ in X * . Then,

u⊔⊔ φ v = a(u ′ ⊔⊔ φ v) + b(u⊔⊔ φ v ′ ) + φ(a, b)(u ′ ⊔⊔ φ v ′ ).
By inductive hypothesis, we can read u

′ ⊔⊔ φ v = u ′ ⊔⊔ v + |w|<n C w u ′ ,v w, and too u⊔⊔ φ v ′ = u ⊔⊔ v ′ + |w|<n C w u,v ′ w and u ′ ⊔⊔ φ v ′ = u ′ ⊔⊔ v ′ + |w|<n C w u ′ ,v ′ w with (C w u ′ ,v ), (C w u,v ′ ) and (C w u ′ ,v ′ ) in A (N) . So, u⊔⊔ φ v = a u ′ ⊔⊔ v + |w|<n C w u ′ ,v w + b u ⊔⊔ v ′ + |w|<n C w u,v ′ w +φ(a, b) u ′ ⊔⊔ v ′ + |w|<n C w u ′ ,v ′ w = a(u ′ ⊔⊔ v) + b(u ⊔⊔ v ′ ) + φ(a, b)(u ′ ⊔⊔ v ′ ) + |w|<n (C w u ′ ,v aw + C w u,v ′ bw + C w u ′ ,v ′ φ(a, b)w) But a(u ′ ⊔⊔ v)+b(u ⊔⊔ v ′ ) = u ⊔⊔ v; moreover u ′ ⊔⊔ v ′ is a linear combinaison of words of length |u ′ | + |v ′ | = n -2, so φ(a, b)(u ′ ⊔⊔ v ′ ) + |w|<n (C w u ′ ,v aw + C w u,v ′ bw + C w u ′ ,v ′ φ(a, b)w)
is a linear combinaison of words of length at most n : P(n + 1) is true.

Lemma 21. Let n be a integer such that n > 1 and u 1 , u 2 , . . . , u n words of X * . Then it exist (C w u 1 ,...,un ) |w|<|u 1 |+...+|un| ∈ A (N) such that :

u 1 ⊔⊔ φ u 2 ⊔⊔ φ . . . ⊔⊔ φ u n = u 1 ⊔⊔ u 2 ⊔⊔ . . . ⊔⊔ u n + |w|<|u 1 |+...+|un| C w u 1 ,...,un w.
Proof -We will make an induction over n.

• For n = 2, it comes from lemma 20.

• Assume that P(n) is true for a integer n and take n + 1 words u 1 , . . . , u n+1 in X * . Posons u = u 1 ⊔⊔ φ u 2 ⊔⊔ φ . . . ⊔⊔ φ u n , we can find : One hand, by induction hypothesis, (C w u 1 ,...,un ) |w|<|u 1 |+...+|un| ∈ A (N) such that

u = u 1 ⊔⊔ u 2 ⊔⊔ . . . ⊔⊔ u n + |w|<|u 1 |+...+|un| C w u 1 ,...,un w
and other hand, by lemma 20, (C w u,u n+1 )

|w|<|u|+|u n+1 | ∈ A (N) such that u⊔⊔ φ u n+1 = u ⊔⊔ u n+1 + |w|<|u|+|u n+1 | C w u,u n+1 w.
Hence We will note, for α ∈ N (Lyn(X)) , ||α|| = l∈Lyn(X) α(l)|l| and, if α = (α 1 , . . . , α r ), with l 1 , l 2 , . . . the ordonned Lyndon words, X ⋆α will be l ⋆α 1 1 ⋆ . . . ⋆ l ⋆αr r , where l ⋆n = ntimes l ⋆ . . . ⋆ l.

u 1 ⊔⊔ φ . . . ⊔⊔ φ u n+1 = u⊔⊔ φ u n+1 = u ⊔⊔ u n+1 + |w|<|u|+|u n+1 | C w u,u n+1 w = u 1 ⊔⊔ . . . ⊔⊔ u n + |w|<|u 1 |+...+|un| C w u 1 ,...,un w ⊔⊔ u n+1 + |w|<|u|+|u n+1 | C w u,u n+1 w = u 1 ⊔⊔ . . . ⊔⊔ u n ⊔⊔ u n+1 + |w|<|u 1 |+...+|un| C w u 1 ,...,un w ⊔⊔ u n+1 + |w|<|u|+|u n+1 | C w u,
Lemma 22. ∀α ∈ N (Lyn(X)) , ∃(C α β ) β ∈ A (N (Lyn(X)) ) / X ⊔⊔ φ α = X ⊔⊔ α + β∈N (Lyn(X)) ||β||<||α|| C α β X ⊔⊔ β .
Proof -Let α ∈ N (Lyn(X)) . Apply lemma 21 over Lyndon Words counted with their multiplicity, we find :

X ⊔⊔ φ α = X ⊔⊔ α + w<||α|| C α w w.
But Lyn(X) was a transcendental basis over X, all word w can be writen βw∈N (Lyn(X))

X ⊔⊔ βw ; moreover (by ⊔⊔ propertie) ||β w || < |w| + 1 for all β w in the decomposition. Put its combinaisons in w<||α|| C α w w, we obtain the result.

Theorem 23. Let A be a commutative ring (with unit) and φ : AX ⊗ AX → AX be an associative and commutative law on AX. Then i) If Q ⊂ A (i.e. all integers are invertible2 in A), the algebra A = (A X , ⊔⊔ φ , 1 X * ) is a polynomial algebra which admits Lyn(X) as a transcendence basis.

ii) [START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF] This algebra (A X , ⊔⊔ φ , 1 X * ) can moreover be endowed with the comultiplication ∆ conc dual to the concatenation

∆ conc (w) = uv=w u ⊗ v (4) 
and the "constant term" character ǫ(P

) = P |1 X * . With this setting B φ = (A X , ⊔⊔ φ , 1 X * , ∆ conc , ǫ) (5) 
is a bialgebra3 .

Remark 24.

i) It is necessary to suppose Q ⊂ A as, in case φ ≡ 0, one has

a n = 1 n! (a ⊔⊔ n ) (6)
ii) The operator (reduced coproduct)

∆ + conc (w) = uv=w u,v =1 u ⊗ v
being locally nilpotent, the bialgebra [START_REF] Costermans | Calcul symbolique non commutatif : analyse des constantes d'arbres de fouille[END_REF] is, in fact a Hopf Algebra.

iii) When ⊔⊔ φ is dualizable the graded dual of B φ is a Hopf algebra.

Proof - i) B = (X ⊔⊔ α ) α∈N (Lyn(X)
) is a basis of A-modulus A and, by lemma 22, the family (X ⊔⊔ φ α ) α∈N (Lyn(X)) is triangular compared with the family B. So, by lemma 18, (X ⊔⊔ φ α ) α∈N (Lyn(X)) is a basis of A-modulus A, then Lyn(X) is a transcendence basis of A.

ii) it is a classical combinatoric verifycation, do in [START_REF] Enjalbert | Combinatorial study of colored Hurwitz polyzêtas[END_REF].

Condition of B-shuffle

Theorem 25. (i) The law ⊔⊔ φ is commutative if and only if the extension φ : AX ⊗ AX → AX is so.

(ii) The law ⊔⊔ φ is associative if and only if the extension φ : AX ⊗ AX → AX is so.

Proof -

(i) [⊔⊔ φ commutative =⇒ φ commutative] Suppose that ∀(u, v) ∈ (X * ) 2 , u⊔⊔ φ v = v⊔⊔ φ u.
In particular, ∀(x, y) ∈ (X * ) 2 , x⊔⊔ φ y = x⊔⊔ φ y. But, for any (x, y) ∈ X 2 , x⊔⊔ φ y = xy + yx + φ(x, y) and y⊔⊔ φ x = yx + xy + φ(y, x).

and so (∀x, y ∈ X)(φ(x, y) = φ(y, x)).

[φ commutative =⇒ ⊔⊔ φ commutative] Now suppose φ is commutative then let us prove by reccurence on |uv| that ⊔⊔ φ is commutative :

-The previous equivalence prove the recurrence holds for |u| = |v| = 1.

-Suppose the recursive stands for any any u, v ∈ X * such that 2 ≤ |uv| ≤ n and |u|, |v| = 1.

-Let u = xu ′ and v = yv ′ with x, y ∈ X and u ′ , v ′ ∈ X * . Then,

u⊔⊔ φ v = x(u ′ ⊔⊔ φ yv) + y(xu ′ ⊔⊔ φ v) + φ(x, y)(u ′ ⊔⊔ φ v ′ ) = x(yv⊔⊔ φ u) + y(v ′ ⊔⊔ φ xu ′ ) + φ(y, x)(v ′ ⊔⊔ φ u ′ ) (by induction hypothesis) = v⊔⊔ φ u. (ii) [⊔⊔ φ associative =⇒ φ associative] Suppose that ∀u, v, w ∈ X * , (u⊔⊔ φ v)⊔⊔ φ w = u⊔⊔ φ (v⊔⊔ φ w).
Then, for any x, y, z ∈ X , one has One can deduce then

(x⊔⊔ φ y)⊔⊔ φ z = x⊔⊔ φ (y⊔⊔ φ z).
(∀x, y, z ∈ X)(x⊔⊔ φ (y⊔⊔ φ z) = (x⊔⊔ φ y)⊔⊔ φ z) ⇐⇒ (∀x, y, z ∈ X)(φ(x, φ(y, z)) = φ(φ(x, y), z)).
[φ associative =⇒ ⊔⊔ φ associative] Now suppose φ is associative then let us prove by reccurence on |uvw| that ⊔⊔ φ is associative :

-The previous equivalence prove the recurrence holds for |u| = |v| = |w| = 1.

-Suppose the recursive stands for any u, v ∈ X * such that 3 ≤ |uvw| ≤ n and |u|, |v|, |w| = 1. Let u = xu, v = yv ′ and w = zw ′ with x, y, z ∈ X and u ′ , v ′ , w ′ ∈ X * . Then,

u⊔⊔ φ (v⊔⊔ φ w) = u⊔⊔ φ y(v ′ ⊔⊔ φ w) + z(v⊔⊔ φ w ′ ) + φ(y, z)(v ′ ⊔⊔ φ w ′ ) = x(u ′ ⊔⊔ φ y(v ′ ⊔⊔ φ w)) + y(u⊔⊔ φ (v ′ ⊔⊔ φ w)) + φ(x, y)(u ′ ⊔⊔ φ (v ′ ⊔⊔ φ w)) +x(u ′
⊔⊔ φ z(v⊔⊔ φ w ′ )) + z(u⊔⊔ φ (v⊔⊔ φ w ′ )) + φ(x, z)(u ′ ⊔⊔ φ (v⊔⊔ φ w ′ )) +x(u ′ ⊔⊔ φ φ(y, z)(v ′ ⊔⊔ φ w ′ )) + φ(y, z)(u⊔⊔ φ (v ′ ⊔⊔ φ w ′ )) + φ(x, φ(y, z))u ′ ⊔⊔ φ (v ′ ⊔⊔ φ w ′ ) = x(u ′ ⊔⊔ φ (v⊔⊔ φ w)) +y(u⊔⊔ φ (v ′ ⊔⊔ φ w)) + φ(x, y)(u ′ ⊔⊔ φ (v ′ ⊔⊔ φ w)) +z(u⊔⊔ φ (v⊔⊔ φ w ′ )) + φ(x, z)(u ′ ⊔⊔ φ (v⊔⊔ φ w ′ )) +φ(y, z)(u⊔⊔ φ (v ′ ⊔⊔ φ w ′ )) + φ(x, φ(y, z))u ′ ⊔⊔ φ (v ′ ⊔⊔ φ w ′ ) and

(u⊔⊔ φ v)⊔⊔ φ w) = (x(u ′ ⊔⊔ φ v) + y(u⊔⊔ φ v ′ ) + φ(x, y)(u ′ ⊔⊔ φ v ′ ))⊔⊔ φ w) = x((u ′ ⊔⊔ φ v)⊔⊔ φ w) + z(x(u ′ ⊔⊔ φ v)⊔⊔ φ w ′ ) + φ(x, z)((u ′ ⊔⊔ φ v)⊔⊔ φ w ′ ) +y((u⊔⊔ φ v ′ )⊔⊔ φ w) + z(y(u⊔⊔ φ v ′ )⊔⊔ φ w ′ ) + φ(y, z)((u⊔⊔ φ v ′ )⊔⊔ φ w ′ ) +φ(x, y)((u ′ ⊔⊔ φ v ′ )⊔⊔ φ w) + z(φ(x, y)(u ′ ⊔⊔ φ v ′ )⊔⊔ φ w ′ ) + φ(φ(x, y), z)((u ′ ⊔⊔ φ v ′ )⊔⊔ φ w ′ ) = x((u ′ ⊔⊔ φ v)⊔⊔ φ w) + φ(x, z)((u ′ ⊔⊔ φ v)⊔⊔ φ w ′ ) +y((u⊔⊔ φ v ′ )⊔⊔ φ w) + φ(y, z)((u⊔⊔ φ v ′ )⊔⊔ φ w ′ ) +φ(x, y)((u ′ ⊔⊔ φ v ′ )⊔⊔ φ w) + φ(φ(x, y), z)((u ′ ⊔⊔ φ v ′ )⊔⊔ φ w ′ ) +z(u⊔⊔ φ v)⊔⊔ φ w ′ ) indeed, thanks to the induction hypothesis and the fact φ associative, its egal.

Annex A

Name

Formula (recursion) φ Type Shuffle au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) φ ≡ 0 I Stuffle x i u ⊔⊔ x j v = x i (u ⊔⊔ x j v) + x j (x u ⊔⊔ v) φ(x i , x j ) = x i+j I + x i+j (u ⊔⊔ v) Muffle

x i u ⊔⊔ x j v = x i (u ⊔⊔ x j v) + x j (x u ⊔⊔ v) φ(x i , x j ) = x i×j I + x i×j (u ⊔⊔ v) q-stuffle x i u ⊔⊔ x j v = x i (u ⊔⊔ x j v) + x j (x u ⊔⊔ v) φ(x i , x j ) = q i×j x i+j II + q i×j x i+j (u ⊔⊔ v) Hoffmann

x i u ⊔⊔ x j v = x i (u ⊔⊔ x j v) + x j (x u ⊔⊔ v) φ(x i , x j ) = qx i+j III + qx i+j (u ⊔⊔ v) Min-stuffle x i u ⊔⊔ x j v = x i (u ⊔⊔ x j v) + x j (x u ⊔⊔ v) φ(x i , x j ) = -x i+j 

But(

  x⊔⊔ φ y)⊔⊔ φ z = (xy + yx + φ(x, y))⊔⊔ φ z = xy⊔⊔ φ z + yx⊔⊔ φ z + φ(x, y)⊔⊔ φ z = x(y⊔⊔ φ z) + z(xy⊔⊔ φ 1) + φ(x, z)y + y(x⊔⊔ φ z) + z(yx⊔⊔ φ 1) + φ(y, z)x + φ(x, y)z + zφ(x, y) + φ(φ(x, y), z) = x(yz + zy + φ(y, z)) + zxy + φ(x, z)y + y(xz + zx + φ(x, z)) + zyx + φ(y, z)x + φ(x, y)z + zφ(x, y) + φ(φ(x, y), z) x⊔⊔ φ (y⊔⊔ φ z) = x⊔⊔ φ (yz + zy + φ(y, z)) = x⊔⊔ φ yz + x⊔⊔ φ zy + x⊔⊔ φ φ(y, z) = x(1⊔⊔ φ yz) + y(x⊔⊔ φ z) + φ(x, y)z + x(1⊔⊔ φ zy) + z(x⊔⊔ φ y) + φ(x, z)y = xφ(y, z) + φ(y, z)x + φ(x, φ(y, z)) = xyz + y(xz + zx + φ(x, z)) + φ(x, y)z + xzy + z(xy + yx + φ(x, y)) + φ(x, z)y + xφ(y, z) + φ(y, z)x + φ(x, φ(y, z)).

  III x i+j (u ⊔⊔ v) B-stuffle au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) φ(a, b) = φ(b, a) IV + φ(a, b)(u ⊔⊔ v) Semigroup-x t u ⊔⊔ x s v = x t (u ⊔⊔ x s v) + x s (x t u ⊔⊔ v) φ(x t , x s ) = x t⊥s I -stuffle + x t⊥s (u ⊔⊔ v) LDIAG(1, q s ) (non-crossed, au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) φ(a, b) = q |a||b| s (a.b) II non-shifted) + q |a||b| s a.b(u ⊔⊔ v) φ-stuffle au ⊔⊔ bv = a(u ⊔⊔ bv) + b(au ⊔⊔ v) φ(a, b) AAU V + φ(a, b)(u ⊔⊔ v)6 Annex B

  u n+1 w But the product w ⊔⊔ u n+1 is a linear combinaison of words of lenght |w| + |u n+1 | so |w|<|u 1 |+...+|un| C w u 1 ,...,un w ⊔⊔ u n+1 is a linear combinaison of word of lenght strictly smaller than |u 1 | + . . . + |u n | + |u n+1 |. n+1 w is a linear combinaison of word of of lenght strictly smaller than |u 1 |+. . .+|u n |+|u n+1 | : the propertie P(n+1) is true.

	So,	|w|<|u 1 |+...+|un|	C w u 1 ,...,un w ⊔⊔ u n+1 +	|w|<|u|+|u n+1 |	C w u,u

We recall that AX (resp. A X ) admits X (resp. X * ) as linear basis, therefore AX ⊗ AX (resp. A X ⊗ A X ) is free with basis X × X (resp. X * × X * ) or more precisely, the image family (x ⊗ y) x,y∈X (resp. (u ⊗ v) u,v∈X * ).

Precisely, N + .1 A ⊂ A ×

Commutative and, when |X| ≥ 2, noncocommutative.