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1. Introduction

We consider the nonparametric regression model with random design described
as follows. Let (Y1, X1), . . . , (Yn, Xn) be n random variables defined on a prob-
ability space (Ω,A,P), where

Yi = f(Xi) + ξi, i = 1, . . . , n, (1.1)

ξ1, . . . , ξn are n i.i.d. random variables such that E(ξ1) = 0 and E(ξ21) < ∞,
X1, . . . , Xn are n i.i.d. random variables with common density g : [0, 1] → [0,∞)
and f : [0, 1] → R is an unknown regression function. It is assumed that Xi and
ξi are independent for any i = 1, . . . , n. We aim to estimate f (m), i.e. the m-th
derivative of f , for any integer m, from (Y1, X1), . . . , (Yn, Xn).

In the literature, various estimation methods have been proposed and stud-
ied. The main ones are the kernel methods (see, e.g., Gasser and Müller (1984),
Härdle and Gasser (1985), Mack and Müller (1989), Ruppert and Wand (1994)
and Wand and Jones (1995)), the smoothing splines and local polynomial meth-
ods (see, e.g., Stone (1985), Wahba and Wang (1990), Zhou and Wolfe (2000)
and Jarrow et al. (2004)). The object of this note is to introduce new efficient
estimators based on wavelet methods. Contrary to the others, they have the
benefit of enjoying local adaptivity against discontinuities thanks to the use of
a multiresolution analysis. Reviews on wavelet methods can be found in, e.g.,
Antoniadis (1997), Härdle et al. (1998) and Vidakovic (1999). To the best of
our knowledge, only Cai (2002) and Petsa and Sapatinas (2011) have proposed
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wavelet estimators for f (m) from (1.1) but defined with a deterministic equidis-
tant design, i.e., Xi = i/n. The consideration of a random design complicates
significantly the problem and no wavelet estimators exist in this case. This mo-
tivates our study.

In a first part, assuming that g is known, we propose two wavelet estimators:
the first one is linear nonadaptive and the second one, nonlinear adaptive. Both
use the approach of Prakasa Rao (1996) initially developed in the context of the
density estimation problem. Then we determine their rates of convergence by
considering the mean integrated squared error (MISE) and assuming that f (m)

belongs to Besov balls. In a second part, we develop a linear wavelet estimator
in the case where g is unknown. It is derived from the one introduced by Pensky
and Vidakovic (2001) considering the estimation of f (0) = f from (1.1). We
evaluate its rate of convergence again under the MISE over Besov balls. The
obtained rates of convergence are similar those attained by wavelet estimators
for the derivatives of a density (see, e.g., Prakasa Rao (1996), Chaubey et al.
(2006, 2008)).

The organization of this note is as follows. The next section describes some
basics on wavelets and Besov balls. Our estimators and their rates of convergence
are presented in Section 3. The proofs are carried out in Section 4.

2. Preliminaries

This section is devoted to the presentation of the considered wavelet basis and
the Besov balls.

2.1. Wavelet basis

We set

L
2([0, 1]) =

{

h : [0, 1] → R; ||h||2 =

(∫ 1

0

(h(x))2dx

)1/2

<∞
}

.

We consider the wavelet basis on [0, 1] introduced by Cohen et al. (1993). Let φ
and ψ be the initial wavelet functions of the Daubechies wavelets family db2N
with N ≥ 1 (see, e.g., Daubechies (1992)). These functions have the distinction
of being compactly supported and belong to the class Ca for N > 5a. For any
j ≥ 0, we set Λj = {0, . . . , 2j − 1} and, for k ∈ Λj ,

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

With appropriated treatments at the boundaries, there exists an integer τ
such that, for any integer ℓ ≥ τ ,

B = {φℓ,k, k ∈ Λℓ; ψj,k; j ∈ N− {0, . . . , ℓ− 1}, k ∈ Λj}
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forms an orthonormal basis of L2([0, 1]). For any integer ℓ ≥ τ and h ∈ L
2([0, 1]),

we have the following wavelet expansion:

h(x) =
∑

k∈Λℓ

cℓ,kφℓ,k(x) +

∞
∑

j=ℓ

∑

k∈Λj

dj,kψj,k(x), x ∈ [0, 1],

where

cj,k =

∫ 1

0

h(x)φj,k(x)dx, dj,k =

∫ 1

0

h(x)ψj,k(x)dx. (2.1)

These quantities are called the wavelet coefficients of h. See, e.g., Cohen et al.
(1993) and Mallat (2009).

2.2. Besov balls

We consider the following wavelet sequential definition of the Besov balls. We
say that h ∈ Bsp,r(M) with s > 0, p ≥ 1, r ≥ 1 and M > 0 if there exists a
constant C > 0 such that cj,k and dj,k (2.1) satisfy

2τ(1/2−1/p)

(

∑

k∈Λτ

|cτ,k|p
)1/p

+







∞
∑

j=τ






2j(s+1/2−1/p)





∑

k∈Λj

|dj,k|p




1/p






r





1/r

≤ C,

with the usual modifications if p = ∞ or r = ∞.
The interest of Besov balls is to contain various kinds of homogeneous and

inhomogeneous functions h. For particular choices of s, p and r, Bsp,r(M) cor-
respond to standard balls of function spaces, as the Hölder and Sobolev balls
(see, e.g., Meyer (1992) and Härdle et al. (1998)).

3. Results

In this section, we set the assumptions on the model, present our wavelet es-
timators and determine their rates of convergence under the MISE over Besov
balls.

3.1. Assumptions

We formulate the following assumptions:

(K1) We have f (q)(0) = f (q)(1) = 0 for any q ∈ {0, . . . ,m}.
(K2) There exists a constant C1 > 0 such that

sup
x∈[0,1]

|f (m)(x)| ≤ C1.
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(K3) There exists a constant c2 > 0 such that

c2 ≤ inf
x∈[0,1]

g(x).

(K4) There exists a constant C3 > 0 such that

sup
x∈[0,1]

g(x) ≤ C3.

3.2. Wavelet estimators: when g is known

We consider the wavelet basis B with N > 5m to ensure that φ and ψ belongs
to Cm.

Linear wavelet estimator. We define the linear wavelet estimator f̂
(m)
1 by

f̂
(m)
1 (x) =

∑

k∈Λj0

ĉ
(m)
j0,k

φj0,k(x), x ∈ [0, 1], (3.1)

where

ĉ
(m)
j,k =

(−1)m

n

n
∑

i=1

Yi
g(Xi)

(φj,k)
(m)(Xi) (3.2)

and j0 is an integer chosen a posteriori.

The definition of ĉ
(m)
j,k is motivated by the following unbiased property: using

the independence between X1 and ξ1, E(ξ1) = 0, and m integrations by parts
with (K1), we obtain

E(ĉ
(m)
j,k ) = E

(

(−1)m
Y1

g(X1)
(φj,k)

(m)(X1)

)

= E

(

(−1)m
f(X1)

g(X1)
(φj,k)

(m)(X1)

)

+ E(ξ1)E

(

(−1)m
1

g(X1)
(φj,k)

(m)(X1)

)

= (−1)mE

(

f(X1)

g(X1)
(φj,k)

(m)(X1)

)

= (−1)m
∫ 1

0

f(x)

g(x)
(φj,k)

(m)(x)g(x)dx

= (−1)m
∫ 1

0

f(x)(φj,k)
(m)(x)dx =

∫ 1

0

f (m)(x)φj,k(x)dx = c
(m)
j,k , (3.3)

which is the wavelet coefficient of f (m) associated to φj,k.
This approach was initially introduced by Prakasa Rao (1996) for the esti-

mation of the derivatives of a density. Its adaptation to (1.1) gives a suitable
alternative to the wavelet methods developed by Cai (2002) and Petsa and Sap-
atinas (2011) in the case Xi = i/n, specially in the treatment of the random
design.

Note that, for the standard case m = 0, this estimator has been considered
and studied in Chesneau (2007).

Theorem 3.1 below investigates the rate of convergence attained by f̂
(m)
1

under the MISE assuming that f (m) belongs to Besov balls.
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Theorem 3.1. Suppose that (K1), (K2) and (K3) are satisfied and that
f (m) ∈ Bsp,r(M) with M > 0, p ≥ 1, r ≥ 1 and s ∈ (max(1/p− 1/2, 0), N). Let

f̂
(m)
1 be defined by (3.1) with j0 such that

2j0 = [n1/(2s∗+2m+1)], (3.4)

s∗ = s+min(1/2− 1/p, 0) and [a] denotes the integer part of a.
Then there exists a constant C > 0 such that

E

(

‖f̂ (m)
1 − f (m)‖22

)

≤ Cn−2s∗/(2s∗+2m+1).

The rate of convergence n−2s∗/(2s∗+2m+1) corresponds to the one obtained
in the derivatives density estimation framework. See, e.g., Prakasa Rao (1996),
Chaubey et al. (2006, 2008). For m = 0, Theorem 3.1 becomes (Chesneau, 2007,
Theorem 3.1, p = 2).

Hard thresholding wavelet estimator. We define the hard thresholding

wavelet estimator f̂
(m)
2 by

f̂
(m)
2 (x) =

∑

k∈Λτ

ĉ
(m)
τ,k φτ,k(x) +

j1
∑

j=τ

∑

k∈Λj

d̂
(m)
j,k 1{

|d̂
(m)
j,k

|≥κλj

}ψj,k(x), (3.5)

x ∈ [0, 1], where ĉ
(m)
j,k is defined by (3.2),

d̂
(m)
j,k =

(−1)m

n

n
∑

i=1

Yi
g(Xi)

(ψj,k)
(m)(Xi)1{∣

∣

∣

Yi
g(Xi)

(ψj,k)(m)(Xi)
∣

∣

∣
≤ςj

}, (3.6)

1 is the indicator function, κ > 0 is a large enough constant, j1 is the integer
satisfying

2j1 =
[

n1/(2m+1)
]

,

ςj = θψ2
mj

√

n

lnn
, λj = θψ2

mj

√

lnn

n

and θψ =
√

(2/c2)(C2
1 + E(ξ21))||ψ(m)||22.

The construction of f̂
(m)
2 is an adaptation of the hard thresholding wavelet

estimator introduced by Delyon and Juditsky (1996) to the estimation of f (m)

from (1.1). It used the modern version developed by Chaubey et al. (2013).

The advantage of f̂
(m)
2 over f̂

(m)
1 (3.1) is that f̂

(m)
2 is adaptive ; thanks to the

thresholding in (3.6), its performance does not depend on the knowledge of the
smoothness of f (m). The second thresholding in (3.6) enables us to relax some
assumptions on the model, and, in particular, to only suppose E(ξ21) <∞ on ξ1
(its density can be unknown). Basics and important results on hard thresholding
wavelet estimators can be found in, e.g., Donoho and Johnstone (1994, 1995),
Donoho et al. (1995, 1996) and Delyon and Juditsky (1996).

Theorem 3.2 below determines the rate of convergence attained by f̂
(m)
2 under

the MISE assuming that f (m) belongs to Besov balls.
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Theorem 3.2. Suppose that (K1), (K2) and (K3) are satisfied and that
f (m) ∈ Bsp,r(M) with M > 0, r ≥ 1, {p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2)

and s ∈ ((2m + 1)/p,N)}. Let f̂
(m)
2 be defined by (3.5). Then there exists a

constant C > 0 such that

E

(

‖f̂ (m)
2 − f (m)‖22

)

≤ C

(

lnn

n

)2s/(2s+2m+1)

.

The proof is based on a general result proved by (Chaubey et al., 2013,
Theorem 6.1). Let us observe that, for the case p ≥ 2, (lnn/n)2s/(2s+2m+1) is

equal to the rate of convergence attained by f̂
(m)
1 up to a logarithmic factor (see

Theorem 3.1). However, for the case p ∈ [1, 2), it is significantly better in terms
of power.

3.3. Wavelet estimators: when g is unknown

In the case where g is unknown, we propose the linear wavelet estimator f̂
(m)
3

defined by

f̂
(m)
3 (x) =

∑

k∈Λj2

c̃
(m)
j2,k

φj2,k(x), x ∈ [0, 1], (3.7)

where

c̃
(m)
j,k =

(−1)m

an

an
∑

i=1

Yi
ĝ(Xi)

1{|ĝ(Xi)|≥c2/2}(φj,k)
(m)(Xi), (3.8)

an = [n/2], j2 is an integer chosen a posteriori, c2 refers to (K3) and ĝ is an
estimator of g constructed from the random variables Un = (Xan+1, . . . , Xn).
For instance, we can consider the linear wavelet estimator ĝ by

ĝ(x) =
∑

k∈Λj3

c̄j3,kφj3,k(x), x ∈ [0, 1], (3.9)

where

c̄j,k =
1

n− an

n−an
∑

i=1

φj,k(Xan+i),

and j3 is an integer chosen a posteriori.

The estimator f̂
(m)
3 is close to the “NES linear wavelet estimator” proposed by

Pensky and Vidakovic (2001) for m = 0. However, there are notable differences
in the thresholding in (3.8), the partitioning of the variables and the definition
of ĝ, making the study of its performance under the MISE more simpler (see
the proofs of Theorem 3.3 below).

Theorem 3.3 below determines an upper bound of the MISE of f̂
(m)
3 , then

exhibits its rate of convergence when f (m) belongs to Besov balls.
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Theorem 3.3. Suppose that (K1), (K2) and (K3) are satisfied and that
f (m) ∈ Bs1p1,r1(M1) with M1 > 0, p1 ≥ 1, r1 ≥ 1 and s1 ∈ (max(1/p1 −
1/2, 0), N). Let f̂

(m)
3 be defined by (3.7). Then there exists a constant C > 0

such that

E

(

‖f̂ (m)
3 − f (m)‖22

)

≤ C

(

2(2m+1)j2 max

(

E
(

‖ĝ − g‖22
)

,
1

n

)

+ 2−2j2s∗

)

,

with s∗ = s1 +min(1/2− 1/p1, 0).
In addition, suppose that (K4) is satisfied, g ∈ Bs2p2,r2(M2) withM2 > 0, p2 ≥

1, r2 ≥ 1 and s2 ∈ (max(1/p2 − 1/2, 0), N), consider f̂
(m)
3 with the estimator ĝ

defined by (3.9) with j3 such that

2j3 = [(n− an)
1/(2so+1)], (3.10)

so = s2 +min(1/2− 1/p2, 0) and j2 such that

2j2 = [n2so/((2so+1)(2s∗+2m+1))]. (3.11)

Then there exists a constant C > 0 such that

E

(

‖f̂ (m)
3 − f (m)‖22

)

≤ Cn−4s∗so/((2so+1)(2s∗+2m+1)).

The first point of Theorem 3.3 is proved for any estimator ĝ of g depending
on Un. Taking ĝ = g, it corresponds to the upper bound of the MISE for

f̂
(m)
1 established in the proof of Theorem 3.1. Note that the rate of convergence

described in the second point is slower to the one attained by f̂
(m)
1 (see Theorem

3.1). The fact that the smoothness of g influences the performance of ĝ and, a

fortiori, f̂
(m)
3 , seems natural. This phenomenon also appears in (Pensky and

Vidakovic, 2001, Theorem 2.1) for m = 0.

Remark 3.1. If c2 exists but is unknown, we can defined f̂
(m)
3 as (3.7) with

1/ lnn instead of c2 in the threshold of (3.8). The impact of this modification is
a logarithmic term in Theorem 3.3, i.e.,

E

(

‖f̂ (m)
3 − f (m)‖22

)

≤ C

(

2(2m+1)j2 max

(

(lnn)E
(

‖ĝ − g‖22
)

,
1

n

)

+ 2−2j2s∗

)

.

Moreover, choosing j2 such that

2j2 = [n2so/((2so+1)(2s∗+2m+1))(lnn)−1/(2s∗+2m+1)],

there exists a constant C > 0 such that

E

(

‖f̂ (m)
3 − f (m)‖22

)

≤ Cn−4s∗so/((2so+1)(2s∗+2m+1))(lnn)2s∗/(2s∗+2m+1).

Remark 3.2. Note that the assumption (K4) has been only used in the second
point of Theorem 3.3.
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Conclusion and perspective.We explore the estimation of f (m) from (1.1).
Distinguishing the cases where g is known or not, we propose wavelet methods
and prove that they attain fast rates of convergence under the MISE assuming
that f (m) ∈ Bsp,r(M).

A perspective of this work will be to develop an adaptive wavelet estimator,
as the hard thresholding one, for the estimation of f (m) in the case where g

is unknown. The extension of f̂
(m)
3 in this sense is not trivial and new theo-

retical problems raised. Another perspective is the consideration of dependent
(Y1, X1), . . . , (Yn, Xn). These two aspects need further investigations that we
leave for a future work.

4. Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its
value may change from one term to another and may depend on φ or ψ.

Proof of Theorem 3.1. First of all, we expand the function f (m) on B at
the level j0 given by (3.4) :

f (m)(x) =
∑

k∈Λj0

c
(m)
j0,k

φj0,k(x) +
∞
∑

j=j0

∑

k∈Λj

d
(m)
j,k ψj,k(x),

where c
(m)
j0,k

=
∫ 1

0
f (m)(x)φj0,k(x)dx and d

(m)
j,k =

∫ 1

0
f (m)(x)ψj,k(x)dx.

Since B forms an orthonormal basis of L2([0, 1]), we get

E

(

‖f̂ (m)
1 − f (m)‖22

)

=
∑

k∈Λj0

E

(

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)2
)

+

∞
∑

j=j0

∑

k∈Λj

(d
(m)
j,k )2. (4.1)

Using the fact that ĉ
(m)
j0,k

is an unbiased estimator of c
(m)
j0,k

(see (3.3)), (Y1, X1), . . . , (Yn, Xn)

are i.i.d., the inequalities : V(D) ≤ E(D2) for any random variable D and
(a+ b)2 ≤ 2(a2 + b2), (a, b) ∈ R

2, (K2) and (K3), we have

E

(

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)2
)

= V

(

ĉ
(m)
j0,k

)

=
1

n
V

(

Y1
g(X1)

(φj0,k)
(m)(X1)

)

≤ 1

n
E

(

(

Y1
g(X1)

(φj0,k)
(m)(X1)

)2
)

≤ 1

n
2E

(

(f(X1))
2 + ξ21

(g(X1))2
((φj0,k)

(m)(X1))
2

)

≤ 1

n

2

c2

(

C2
1 + E(ξ21)

)

E

(

1

g(X1)
((φj0,k)

(m)(X1))
2

)

. (4.2)
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Using (φj0,k)
(m)(x) = 2(j0/2)(2m+1)φ(m)(2j0x − k), the change of variables y =

2j0x− k and the fact that φ is compactly supported, we obtain

E

(

1

g(X1)
((φj0,k)

(m)(X1))
2

)

=

∫ 1

0

1

g(x)
((φj0,k)

(m)(x))2g(x)dx

= 22mj0
∫ 1

0

2j0(φ(m)(2j0x− k))2dx

≤ 22mj0 ||φ(m)||22. (4.3)

Therefore

E

(

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)2
)

≤ C22mj0
1

n

and, for j0 satisfying (3.4), it holds

∑

k∈Λj0

E

(

(

ĉ
(m)
j0,k

− c
(m)
j0,k

)2
)

≤ C2(2m+1)j0
1

n
≤ Cn−2s∗/(2s∗+2m+1). (4.4)

On the other hand, we have f (m) ∈ Bsp,r(M) ⊆ Bs∗2,∞(M) [see Härdle et al.
(1998), Corollary 9.2], which implies

∞
∑

j=j0

∑

k∈Λj

(d
(m)
j,k )2 ≤ C2−2j0s∗ ≤ Cn−2s∗/(2s∗+2m+1). (4.5)

It follows from (4.1), (4.4) and (4.5) that

E

(

‖f̂ (m)
1 − f (m)‖22

)

≤ Cn−2s∗/(2s∗+2m+1).

Theorem 3.1 is proved.

Proof of Theorem 3.2. Observe that, for γ ∈ {φ, ψ}, any integer j ≥ τ
and any k ∈ Λj ,

• using arguments similar to (3.3), we obtain

E

(

(−1)m

n

n
∑

i=1

Yi
g(Xi)

(γj,k)
(m)(Xi)

)

=

∫ 1

0

f (m)(x)γj,k(x)dx.

• using arguments similar to (4.2) and (4.3), we have

n
∑

i=1

E

(

(

(−1)m
Yi

g(Xi)
(γj,k)

(m)(Xi)

)2
)

= nE

(

(

Y1
g(X1)

(γj,k)
(m)(X1)

)2
)

≤ C2
∗n2

2mj ,

with C2
∗ = (2/c2)(C

2
1 + E(ξ21))||γ(m)||22.
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Applying (Chaubey et al., 2013, Theorem 6.1) (presented in Appendix) with
µn = υn = n, δ = m, θγ = C∗, Wi = (Yi, Xi),

qi(γ, (y, x)) = (−1)m
y

g(x)
γ(m)(x)

and f (m) ∈ Bsp,r(M) with M > 0, r ≥ 1, either {p ≥ 2 and s ∈ (0, N)} or
{p ∈ [1, 2) and s ∈ (1/p,N)}, we prove the existence of a constant C > 0 such
that

E

(

‖f̂ (m)
2 − f (m)‖22

)

≤ C

(

lnn

n

)2s/(2s+2m+1)

.

Theorem 3.2 is proved.

Proof of Theorem 3.3. As in the proof of Theorem 3.1, we first expand
the function f (m) on B at the level j2 given by (3.11) :

f (m)(x) =
∑

k∈Λj2

c
(m)
j2,k

φj2,k(x) +

∞
∑

j=j2

∑

k∈Λj

d
(m)
j,k ψj,k(x).

Since B forms an orthonormal basis of L2([0, 1]), we get

E

(

‖f̂ (m)
3 − f (m)‖22

)

=
∑

k∈Λj2

E

(

(

c̃
(m)
j2,k

− c
(m)
j2,k

)2
)

+

∞
∑

j=j2

∑

k∈Λj

(d
(m)
j,k )2. (4.6)

Using f (m) ∈ Bsp,r(M) ⊆ Bs∗2,∞(M) [see Härdle et al. (1998), Corollary 9.2], we
have

∞
∑

j=j2

∑

k∈Λj

(d
(m)
j,k )2 ≤ C2−2j2s∗ . (4.7)

Let ĉ
(m)
j2,k

be (3.2) with n = an and j = j2 (3.11). The elementary inequality:

(a+ b)2 ≤ 2(a2 + b2), (a, b) ∈ R
2, yields

∑

k∈Λj2

E

(

(

c̃
(m)
j2,k

− c
(m)
j2,k

)2
)

≤ 2(T1 + T2), (4.8)

where

T1 =
∑

k∈Λj2

E

(

(

c̃
(m)
j2,k

− ĉ
(m)
j2,k

)2
)

, T2 =
∑

k∈Λj2

E

(

(

ĉ
(m)
j2,k

− c
(m)
j2,k

)2
)

.

Proceeding as in (4.4), we get

T2 ≤ C2(2m+1)j2
1

an
≤ C2(2m+1)j2

1

n
. (4.9)

Let us now investigate the upper bound for T1.
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The triangular inequality gives

∣

∣

∣c̃
(m)
j2,k

− ĉ
(m)
j2,k

∣

∣

∣ =

∣

∣

∣

∣

∣

(−1)m

an

an
∑

i=1

Yi(φj,k)
(m)(Xi)

(

1

ĝ(Xi)
1{|ĝ(Xi)|≥c2/2} −

1

g(Xi)

)

∣

∣

∣

∣

∣

≤ 1

an

an
∑

i=1

|Yi||(φj,k)(m)(Xi)|
∣

∣

∣

∣

1

ĝ(Xi)
1{|ĝ(Xi)|≥c2/2} −

1

g(Xi)

∣

∣

∣

∣

.

Moreover, we have

1

ĝ(Xi)
1{|ĝ(Xi)|≥c2/2} −

1

g(Xi)

=
1

g(Xi)

((

g(Xi)− ĝ(Xi)

ĝ(Xi)

)

1{|ĝ(Xi)|≥c2/2} − 1{|ĝ(Xi)|<c2/2}

)

.

It follows from the triangular inequality, the indicator function, (K3), {|ĝ(Xi)| < c2/2} ⊆
{|ĝ(Xi)− g(Xi)| > c2/2} and the Markov inequality that

∣

∣

∣

∣

1

ĝ(Xi)
1{|ĝ(Xi)|≥c2/2} −

1

g(Xi)

∣

∣

∣

∣

≤ 1

g(Xi)

(

2

c2
|ĝ(Xi)− g(Xi)|+ 1{|ĝ(Xi)−g(Xi)|>c2/2}

)

≤ 4

c2

|ĝ(Xi)− g(Xi)|
g(Xi)

.

Hence
∣

∣

∣c̃
(m)
j2,k

− ĉ
(m)
j2,k

∣

∣

∣ ≤ CAj2,k,n,

where

Aj,k,n =
1

an

an
∑

i=1

|Yi||(φj,k)(m)(Xi)|
|ĝ(Xi)− g(Xi)|

g(Xi)
.

Let us now consider Un = (Xan+1, . . . , Xn). For any random variable D, we
have the equality:

E(D2) = E(E(D2|Un)) = E(V(D|Un)) + E((E(D|Un))2),

where E(D|Un) denotes the expectation of D conditionally to Un and V(D|Un),
the variance of D conditionally to Un. Therefore

T1 ≤ C
∑

k∈Λj2

E(A2
j2,k,n) = C(Wj2,n + Zj2,n), (4.10)

where

Wj2,n =
∑

k∈Λj2

E (V (Aj2,k,n|Un)) , Zj2,n =
∑

k∈Λj2

E

(

(E (Aj2,k,n|Un))
2
)

.
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Let us now observe that, owing to the independence of (Y1, X1), . . . , (Yn, Xn),
the random variables |Y1||(φj,k)(m)(X1)| |ĝ(X1)− g(X1)| /g(X1), . . . ,

|Yan ||(φj,k)(m)(Xan)| |ĝ(Xan)− g(Xan)| /g(Xan) conditionally to Un are in-
dependent. This remark combines with the inequalities: V(D|Un) ≤ E(D2|Un)
for any random variable D and (a+ b)2 ≤ 2(a2 + b2), (a, b) ∈ R

2, the indepen-
dence between X1 and ξ1, (K2) and (K3), yields

V (Aj2,k,n|Un) =
1

an
V

(

|Y1||(φj2,k)(m)(X1)|
|ĝ(X1)− g(X1)|

g(X1)

∣

∣

∣

∣

Un

)

≤ 1

an
E

(

Y 2
1

(

(φj2,k)
(m)(X1)

)2
(

ĝ(X1)− g(X1)

g(X1)

)2
∣

∣

∣

∣

∣

Un

)

≤ 1

an

2

c2
(C2

1 + E(ξ21))E

(

(

(φj2,k)
(m)(X1)

)2 (ĝ(X1)− g(X1))
2

g(X1)

∣

∣

∣

∣

∣

Un

)

=
2

c2
(C2

1 + E(ξ21))
1

an

∫ 1

0

(

(φj2,k)
(m)(x)

)2 (ĝ(x)− g(x))
2

g(x)
g(x)dx

≤ C
1

n

∫ 1

0

(

(φj2,k)
(m)(x)

)2

(ĝ(x)− g(x))
2
dx.

Thanks to the support compact of φ(m), we have
∑

k∈Λj2

(

φ(m)(2j2x− k)
)2 ≤ C.

Therefore, using (φj2,k)
(m)(x) = 2(j2/2)(2m+1)φ(m)(2j2x− k),

Wj2,n ≤ C
1

n
E





∫ 1

0

(ĝ(x)− g(x))
2
∑

k∈Λj2

(

(φj2,k)
(m)(x)

)2

dx





≤ C2(2m+1)j2
1

n
E
(

‖ĝ − g‖22
)

. (4.11)

On the other hand, by the Hölder inequality for conditional expectations, argu-
ments similar to (4.2) and (4.3), we get

E (Aj2,k,n|Un) = E

(

|Y1||(φj2,k)(m)(X1)|
|ĝ(X1)− g(X1)|

g(X1)

∣

∣

∣

∣

Un

)

≤
(

E

(

Y 2
1

g(X1)

(

(φj2,k)
(m)(X1)

)2
∣

∣

∣

∣

Un

))1/2
(

E

(

(ĝ(X1)− g(X1))
2

g(X1)

∣

∣

∣

∣

∣

Un

))1/2

=

(

E

(

Y 2
1

g(X1)

(

(φj2,k)
(m)(X1)

)2
))1/2

(

∫ 1

0

(ĝ(x)− g(x))
2

g(x)
g(x)dx

)1/2

≤ C2mj2‖ĝ − g‖2.

Hence

Zj2,n ≤ C2(2m+1)j2E
(

‖ĝ − g‖22
)

. (4.12)
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It follows from (4.10), (4.11) and (4.12) that

T1 ≤ C2(2m+1)j2E
(

‖ĝ − g‖22
)

. (4.13)

Putting (4.8), (4.9) and (4.13) together, we get

∑

k∈Λj2

E

(

(

c̃
(m)
j2,k

− c
(m)
j2,k

)2
)

≤ C2(2m+1)j2 max

(

E
(

‖ĝ − g‖22
)

,
1

n

)

. (4.14)

Combining (4.6), (4.7) and (4.14), we obtain

E

(

‖f̂ (m)
3 − f (m)‖22

)

≤ C

(

2(2m+1)j2 max

(

E
(

‖ĝ − g‖22
)

,
1

n

)

+ 2−2j2s∗

)

.(4.15)

A slight adaptation of (Donoho et al., 1996, Proposition 1) gives the following
result. Suppose that (K4) is satisfied and g ∈ Bs2p2,r2(M2) with M2 > 0, p2 ≥ 1,
r2 ≥ 1 and s2 ∈ (max(1/p2 − 1/2, 0), N). Let ĝ be defined by (3.9) with j3 as
(3.10). Then there exists a constant C > 0 such that

E
(

‖ĝ − g‖22
)

≤ C(n− an)
−2so/(2so+1) ≤ Cn−2so/(2so+1).

Therefore, chosing j2 as (3.11) and using (4.15), we have

E

(

‖f̂ (m)
3 − f (m)‖22

)

≤ C
(

2(2m+1)j2n−2so/(2so+1) + 2−2j2s∗
)

≤ Cn−4s∗so/((2so+1)(2s∗+2m+1)).

Theorem 3.3 is proved.

Appendix

Let us now present in details (Chaubey et al., 2013, Theorem 6.1) used in the
proof of Theorem 3.2.

We consider a general form of the hard thresholding wavelet estimator denoted
by f̂H for estimating an unknown function f ∈ L

2([0, 1]) from n independent
random variables W1, . . . ,Wn:

f̂H(x) =
∑

k∈Λτ

α̂τ,kφτ,k(x) +

j1
∑

j=τ

∑

k∈Λj

β̂j,k1{|β̂j,k|≥κϑj}ψj,k(x), (4.16)

where

α̂j,k =
1

υn

n
∑

i=1

qi(φj,k,Wi),

β̂j,k =
1

υn

n
∑

i=1

qi(ψj,k,Wi)1{|qi(ψj,k,Wi)|≤ςj},
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ςj = θψ2
δj υn√

µn lnµn
, ϑj = θψ2

δj

√

lnµn
µn

,

κ ≥ 2 + 8/3 + 2
√

4 + 16/9 and j1 is the integer satisfying

2j1 = [µ1/(2δ+1)
n ].

Here, we suppose that there exist

• n functions q1, . . . , qn with qi : L
2([0, 1]) × Wi(Ω) → C for any i ∈

{1, . . . , n},
• two sequences of real numbers (υn)n∈N and (µn)n∈N satisfying limn→∞ υn =
∞ and limn→∞ µn = ∞

such that, for γ ∈ {φ, ψ},
(A1) any integer j ≥ τ and any k ∈ Λj,

E

(

1

υn

n
∑

i=1

qi(γj,k,Wi)

)

=

∫ 1

0

f(x)γj,k(x)dx.

(A2) there exist two constants, θγ > 0 and δ ≥ 0, such that, for any integer
j ≥ τ and any k ∈ Λj,

n
∑

i=1

E

(

|qi(γj,k,Wi)|2
)

≤ θ2γ2
2δj υ

2
n

µn
.

Let f̂H be (4.16) under (A1) and (A2). Suppose that f ∈ Bsp,r(M) with r ≥ 1,
{p ≥ 2 and s ∈ (0, N)} or {p ∈ [1, 2) and s ∈ ((2δ+1)/p,N)}. Then there exists
a constant C > 0 such that

E

(

‖f̂H − f‖22
)

≤ C

(

lnµn
µn

)2s/(2s+2δ+1)

.

�
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