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We investigate the estimation of the derivatives of a regression function in the nonparametric regression model with random design. New wavelet estimators are developed. Their performances are evaluated via the mean integrated squared error. Fast rates of convergence are obtained for a wide class of unknown functions.

Introduction

We consider the nonparametric regression model with random design described as follows. Let (Y 1 , X 1 ), . . . , (Y n , X n ) be n random variables defined on a probability space (Ω, A, P), where

Y i = f (X i ) + ξ i , i = 1, . . . , n, (1.1) 
wavelet estimators for f (m) from (1.1) but defined with a deterministic equidistant design, i.e., X i = i/n. The consideration of a random design complicates significantly the problem and no wavelet estimators exist in this case. This motivates our study.

In a first part, assuming that g is known, we propose two wavelet estimators: the first one is linear nonadaptive and the second one, nonlinear adaptive. Both use the approach of Prakasa [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF] initially developed in the context of the density estimation problem. Then we determine their rates of convergence by considering the mean integrated squared error (MISE) and assuming that f (m) belongs to Besov balls. In a second part, we develop a linear wavelet estimator in the case where g is unknown. It is derived from the one introduced by [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] considering the estimation of f (0) = f from (1.1). We evaluate its rate of convergence again under the MISE over Besov balls. The obtained rates of convergence are similar those attained by wavelet estimators for the derivatives of a density (see, e.g., Prakasa [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF][START_REF] Chaubey | Wavelet based estimation of the derivatives of a density for a negatively associated process[END_REF]).

The organization of this note is as follows. The next section describes some basics on wavelets and Besov balls. Our estimators and their rates of convergence are presented in Section 3. The proofs are carried out in Section 4.

Preliminaries

This section is devoted to the presentation of the considered wavelet basis and the Besov balls.

Wavelet basis

We set

L 2 ([0, 1]) = h : [0, 1] → R; ||h|| 2 = 1 0 (h(x)) 2 dx 1/2 < ∞ .
We consider the wavelet basis on [0, 1] introduced by [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. Let φ and ψ be the initial wavelet functions of the Daubechies wavelets family db2N with N ≥ 1 (see, e.g., [START_REF] Daubechies | Ten lectures on wavelets[END_REF]). These functions have the distinction of being compactly supported and belong to the class C a for N > 5a. For any j ≥ 0, we set Λ j = {0, . . . , 2 j -1} and, for k ∈ Λ j ,

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
With appropriated treatments at the boundaries, there exists an integer τ such that, for any integer ℓ ≥ τ ,

B = {φ ℓ,k , k ∈ Λ ℓ ; ψ j,k ; j ∈ N -{0, . . . , ℓ -1}, k ∈ Λ j }
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h(x) = k∈Λ ℓ c ℓ,k φ ℓ,k (x) + ∞ j=ℓ k∈Λj d j,k ψ j,k (x), x ∈ [0, 1],
where

c j,k = 1 0 h(x)φ j,k (x)dx, d j,k = 1 0 h(x)ψ j,k (x)dx. (2.1)
These quantities are called the wavelet coefficients of h. See, e.g., [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF] and [START_REF] Mallat | A wavelet tour of signal processing[END_REF].

Besov balls

We consider the following wavelet sequential definition of the Besov balls. We say that h ∈ B s p,r (M ) with s > 0, p ≥ 1, r ≥ 1 and M > 0 if there exists a constant C > 0 such that c j,k and d j,k (2.1) satisfy

2 τ (1/2-1/p) k∈Λτ |c τ,k | p 1/p +    ∞ j=τ   2 j(s+1/2-1/p)   k∈Λj |d j,k | p   1/p    r    1/r ≤ C, with the usual modifications if p = ∞ or r = ∞.
The interest of Besov balls is to contain various kinds of homogeneous and inhomogeneous functions h. For particular choices of s, p and r, B s p,r (M ) correspond to standard balls of function spaces, as the Hölder and Sobolev balls (see, e.g., [START_REF] Meyer | Wavelets and Operators[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]).

Results

In this section, we set the assumptions on the model, present our wavelet estimators and determine their rates of convergence under the MISE over Besov balls.

Assumptions

We formulate the following assumptions:

(K1) We have f (q) (0) = f (q) (1) = 0 for any q ∈ {0, . . . , m}. (K2) There exists a constant

C 1 > 0 such that sup x∈[0,1] |f (m) (x)| ≤ C 1 .
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c 2 ≤ inf x∈[0,1] g(x). (K4) There exists a constant C 3 > 0 such that sup x∈[0,1] g(x) ≤ C 3 .

Wavelet estimators: when g is known

We consider the wavelet basis B with N > 5m to ensure that φ and ψ belongs to C m .

Linear wavelet estimator. We define the linear wavelet estimator

f (m) 1 by f (m) 1 (x) = k∈Λj 0 ĉ(m) j0,k φ j0,k (x), x ∈ [0, 1], (3.1) where ĉ(m) j,k = (-1) m n n i=1 Y i g(X i ) (φ j,k ) (m) (X i ) (3.2)
and j 0 is an integer chosen a posteriori. The definition of ĉ(m) j,k is motivated by the following unbiased property: using the independence between X 1 and ξ 1 , E(ξ 1 ) = 0, and m integrations by parts with (K1), we obtain

E(ĉ (m) j,k ) = E (-1) m Y 1 g(X 1 ) (φ j,k ) (m) (X 1 ) = E (-1) m f (X 1 ) g(X 1 ) (φ j,k ) (m) (X 1 ) + E(ξ 1 )E (-1) m 1 g(X 1 ) (φ j,k ) (m) (X 1 ) = (-1) m E f (X 1 ) g(X 1 ) (φ j,k ) (m) (X 1 ) = (-1) m 1 0 f (x) g(x) (φ j,k ) (m) (x)g(x)dx = (-1) m 1 0 f (x)(φ j,k ) (m) (x)dx = 1 0 f (m) (x)φ j,k (x)dx = c (m) j,k , (3.3) 
which is the wavelet coefficient of f (m) associated to φ j,k . This approach was initially introduced by Prakasa [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF] for the estimation of the derivatives of a density. Its adaptation to (1.1) gives a suitable alternative to the wavelet methods developed by [START_REF] Cai | On adaptive wavelet estimation of a derivative and other related linear inverse problems[END_REF] and [START_REF] Petsa | On the estimation of the function and its derivatives in nonparametric regression: a Bayesian estimation approach[END_REF] in the case X i = i/n, specially in the treatment of the random design.

Note that, for the standard case m = 0, this estimator has been considered and studied in [START_REF] Chesneau | Regression with random design: a minimax study[END_REF].

Theorem 3.1 below investigates the rate of convergence attained by f (m) 1 under the MISE assuming that f (m) belongs to Besov balls.

imsart-generic ver. 2009/12/15 file: deriv-reg.tex date: January 8, 2014

Theorem 3.1. Suppose that (K1), ( K2) and (K3) are satisfied and that

f (m) ∈ B s p,r (M ) with M > 0, p ≥ 1, r ≥ 1 and s ∈ (max(1/p -1/2, 0), N ). Let f (m)
1 be defined by (3.1) with j 0 such that

2 j0 = [n 1/(2s * +2m+1) ],
(3.4)

s * = s + min(1/2 -1/p, 0
) and [a] denotes the integer part of a.

Then there exists a constant C > 0 such that

E f (m) 1 -f (m) 2 2 ≤ Cn -2s * /(2s * +2m+1) .
The rate of convergence n -2s * /(2s * +2m+1) corresponds to the one obtained in the derivatives density estimation framework. See, e.g., Prakasa [START_REF] Rao | Nonparametric estimation of the derivatives of a density by the method of wavelets[END_REF], [START_REF] Chaubey | Wavelet based estimation of the derivatives of a density with associated variables[END_REF][START_REF] Chaubey | Wavelet based estimation of the derivatives of a density for a negatively associated process[END_REF]. For m = 0, Theorem 3.1 becomes (Chesneau, 2007, Theorem 3.1, p = 2).

Hard thresholding wavelet estimator. We define the hard thresholding wavelet estimator

f (m) 2 by f (m) 2 (x) = k∈Λτ ĉ(m) τ,k φ τ,k (x) + j1 j=τ k∈Λj d(m) j,k 1 | d(m) j,k |≥κλj ψ j,k (x), (3.5) x ∈ [0, 1], where ĉ(m) j,k is defined by (3.2), d(m) j,k = (-1) m n n i=1 Y i g(X i ) (ψ j,k ) (m) (X i )1 Y i g(X i ) (ψ j,k ) (m) (Xi) ≤ςj , (3.6) 
1 is the indicator function, κ > 0 is a large enough constant, j 1 is the integer satisfying

2 j1 = n 1/(2m+1) , ς j = θ ψ 2 mj n ln n , λ j = θ ψ 2 mj ln n n and θ ψ = (2/c 2 )(C 2 1 + E(ξ 2 1 ))||ψ (m) || 2 2 . The construction of f (m)
2 is an adaptation of the hard thresholding wavelet estimator introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] to the estimation of f (m) from (1.1). It used the modern version developed by [START_REF] Chaubey | Adaptive wavelet estimation of a density from mixtures under multiplicative censoring[END_REF]. The advantage of

f (m) 2 over f (m) 1 (3.1) is that f (m) 2
is adaptive ; thanks to the thresholding in (3.6), its performance does not depend on the knowledge of the smoothness of f (m) . The second thresholding in (3.6) enables us to relax some assumptions on the model, and, in particular, to only suppose E(ξ 2 1 ) < ∞ on ξ 1 (its density can be unknown). Basics and important results on hard thresholding wavelet estimators can be found in, e.g., Donoho andJohnstone (1994, 1995), Donoho et al. (1995[START_REF] Donoho | Density estimation by wavelet thresholding[END_REF] and [START_REF] Delyon | On minimax wavelet estimators[END_REF].

Theorem 3.2 below determines the rate of convergence attained by f (m) 2 under the MISE assuming that f (m) belongs to Besov balls.
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f (m) ∈ B s p,r (M ) with M > 0, r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ ((2m + 1)/p, N )}. Let f (m)
2 be defined by (3.5). Then there exists a constant C > 0 such that

E f (m) 2 -f (m) 2 2 ≤ C ln n n 2s/(2s+2m+1)
.

The proof is based on a general result proved by (Chaubey et al., 2013, Theorem 6.1). Let us observe that, for the case p ≥ 2, (ln n/n) 2s/(2s+2m+1) is equal to the rate of convergence attained by f (m) 1 up to a logarithmic factor (see Theorem 3.1). However, for the case p ∈ [1, 2), it is significantly better in terms of power.

Wavelet estimators: when g is unknown

In the case where g is unknown, we propose the linear wavelet estimator f (m) 3 defined by

f (m) 3 (x) = k∈Λj 2 c(m) j2,k φ j2,k (x), x ∈ [0, 1], (3.7) where c(m) j,k = (-1) m a n an i=1 Y i ĝ(X i ) 1 {|ĝ(Xi)|≥c2/2} (φ j,k ) (m) (X i ), (3.8) 
a n = [n/2], j 2 is an integer chosen a posteriori, c 2 refers to (K3) and ĝ is an estimator of g constructed from the random variables U n = (X an+1 , . . . , X n ).

For instance, we can consider the linear wavelet estimator ĝ by

ĝ(x) = k∈Λj 3 cj3,k φ j3,k (x), x ∈ [0, 1], (3.9) where cj,k = 1 n -a n n-an i=1 φ j,k (X an+i ),
and j 3 is an integer chosen a posteriori.

The estimator f (m) 3 is close to the "NES linear wavelet estimator" proposed by [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF] for m = 0. However, there are notable differences in the thresholding in (3.8), the partitioning of the variables and the definition of ĝ, making the study of its performance under the MISE more simpler (see the proofs of Theorem 3.3 below).

Theorem 3.3 below determines an upper bound of the MISE of f (m)

Theorem 3.3. Suppose that (K1), (K2) and (K3) are satisfied and that

f (m) ∈ B s1 p1,r1 (M 1 ) with M 1 > 0, p 1 ≥ 1, r 1 ≥ 1 and s 1 ∈ (max(1/p 1 - 1/2, 0), N ). Let f (m)
3 be defined by (3.7). Then there exists a constant C > 0 such that

E f (m) 3 -f (m) 2 2 ≤ C 2 (2m+1)j2 max E ĝ -g 2 2 , 1 n + 2 -2j2s * , with s * = s 1 + min(1/2 -1/p 1 , 0). In addition, suppose that (K4) is satisfied, g ∈ B s2 p2,r2 (M 2 ) with M 2 > 0, p 2 ≥ 1, r 2 ≥ 1 and s 2 ∈ (max(1/p 2 -1/2, 0), N ), consider f (m) 3
with the estimator ĝ defined by (3.9) with j 3 such that

2 j3 = [(n -a n ) 1/(2so+1) ],
(3.10)

s o = s 2 + min(1/2 -1/p 2 , 0) and j 2 such that 2 j2 = [n 2so/((2so+1)(2s * +2m+1)) ]. (3.11)
Then there exists a constant C > 0 such that

E f (m) 3 -f (m) 2 2 ≤ Cn -4s * so/((2so+1)(2s * +2m+1)) .
The first point of Theorem 3.3 is proved for any estimator ĝ of g depending on U n . Taking ĝ = g, it corresponds to the upper bound of the MISE for f (m) 1 established in the proof of Theorem 3.1. Note that the rate of convergence described in the second point is slower to the one attained by f (m) 1

(see Theorem 3.1). The fact that the smoothness of g influences the performance of ĝ and, a fortiori, f (m) 3

, seems natural. This phenomenon also appears in [START_REF] Pensky | On non-equally spaced wavelet regression[END_REF], Theorem 2.1) for m = 0.

Remark 3.1. If c 2 exists but is unknown, we can defined f (m) 3 as (3.7) with 1/ ln n instead of c 2 in the threshold of (3.8). The impact of this modification is a logarithmic term in Theorem 3.3, i.e.,

E f (m) 3 -f (m) 2 2 ≤ C 2 (2m+1)j2 max (ln n)E ĝ -g 2 2 , 1 n + 2 -2j2s * .
Moreover, choosing j 2 such that

2 j2 = [n 2so/((2so+1)(2s * +2m+1)) (ln n) -1/(2s * +2m+1) ],
there exists a constant C > 0 such that

E f (m) 3 -f (m) 2 2 ≤ Cn -4s * so/((2so+1)(2s * +2m+1)) (ln n) 2s * /(2s * +2m+1) .
Remark 3.2. Note that the assumption (K4) has been only used in the second point of Theorem 3.3.
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Conclusion and perspective. We explore the estimation of f (m) from (1.1). Distinguishing the cases where g is known or not, we propose wavelet methods and prove that they attain fast rates of convergence under the MISE assuming that f (m) ∈ B s p,r (M ). A perspective of this work will be to develop an adaptive wavelet estimator, as the hard thresholding one, for the estimation of f (m) in the case where g is unknown. The extension of f (m) 3 in this sense is not trivial and new theoretical problems raised. Another perspective is the consideration of dependent (Y 1 , X 1 ), . . . , (Y n , X n ). These two aspects need further investigations that we leave for a future work.

Proofs

In this section, C denotes any constant that does not depend on j, k and n. Its value may change from one term to another and may depend on φ or ψ.

Proof of Theorem 3.1. First of all, we expand the function f (m) on B at the level j 0 given by (3.4) : Using (φ j0,k ) (m) (x) = 2 (j0/2)(2m+1) φ (m) (2 j0 x -k), the change of variables y = 2 j0 x -k and the fact that φ is compactly supported, we obtain

f (m) (x) = k∈Λj 0 c (m) j0,k φ j0,k (x) + ∞ j=j0 k∈Λj d (m) j,k ψ j,k (x), where c (m) j0,k = 1 0 f (m) (x)φ j0,k (x)dx and d (m) j,k = 1 0 f (m) (x)ψ j,k (x)dx. Since B forms an orthonormal basis of L 2 ([0, 1]), we get E f (m) 1 -f (m) 2 2 = k∈Λj 0 E ĉ(m) j0,k -c (m) j0,k 2 + ∞ j=j0 k∈Λj (d ( 
E ĉ(m) j0,k -c (m) j0,k 2 = V ĉ(m) j0,k = 1 n V Y 1 g(X 1 ) (φ j0,k ) (m) (X 1 ) ≤ 1 n E Y 1 g(X 1 ) (φ j0,k ) (m) (X 1 ) 2 ≤ 1 n 2E (f (X 1 )) 2 + ξ 2 1 (g(X 1 )) 2 ((φ j0,k ) (m) (X 1 )) 2 ≤ 1 n 2 c 2 C 2 1 + E(ξ 2 1 ) E 1 g(X 1 ) ((φ j0,k ) (m) (X 1 )) 2 . ( 4 
E 1 g(X 1 ) ((φ j0,k ) (m) (X 1 )) 2 = 1 0 1 g(x) ((φ j0,k ) (m) (x)) 2 g(x)dx = 2 2mj0 1 0 2 j0 (φ (m) (2 j0 x -k)) 2 dx ≤ 2 2mj0 ||φ (m) || 2 2 . (4.3) Therefore E ĉ(m) j0,k -c (m) j0,k 2 ≤ C2 2mj0 1 n
and, for j 0 satisfying (3.4), it holds

k∈Λj 0 E ĉ(m) j0,k -c (m) j0,k 2 ≤ C2 (2m+1)j0 1 n ≤ Cn -2s * /(2s * +2m+1) . (4.4)
On the other hand, we have

f (m) ∈ B s p,r (M ) ⊆ B s * 2,∞ (M ) [see Härdle et al. (1998), Corollary 9.2], which implies ∞ j=j0 k∈Λj (d (m) j,k ) 2 ≤ C2 -2j0s * ≤ Cn -2s * /(2s * +2m+1) . (4.5) 
It follows from (4.1), (4.4) and (4.5) that

E f (m) 1 -f (m) 2 2 ≤ Cn -2s * /(2s * +2m+1) .
Theorem 3.1 is proved.

Proof of Theorem 3.2. Observe that, for γ ∈ {φ, ψ}, any integer j ≥ τ and any k ∈ Λ j ,

• using arguments similar to (3.3), we obtain

E (-1) m n n i=1 Y i g(X i ) (γ j,k ) (m) (X i ) = 1 0 f (m) (x)γ j,k (x)dx. 
• using arguments similar to (4.2) and (4.3), we have

n i=1 E (-1) m Y i g(X i ) (γ j,k ) (m) (X i ) 2 = nE Y 1 g(X 1 ) (γ j,k ) (m) (X 1 ) 2 ≤ C 2 * n2 2mj , with C 2 * = (2/c 2 )(C 2 1 + E(ξ 2 1 ))||γ (m) || 2 2 .
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Applying (Chaubey et al., 2013, Theorem 6.1) (presented in Appendix) with

µ n = υ n = n, δ = m, θ γ = C * , W i = (Y i , X i ), q i (γ, (y, x)) = (-1) m y g(x) γ (m) (x)
and f (m) ∈ B s p,r (M ) with M > 0, r ≥ 1, either {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ (1/p, N )}, we prove the existence of a constant C > 0 such that

E f (m) 2 -f (m) 2 2 ≤ C ln n n 2s/(2s+2m+1)
.

Theorem 3.2 proved.

Proof of Theorem 3.3. As in the proof of Theorem 3.1, we first expand the function f (m) on B at the level j 2 given by (3.11) :

f (m) (x) = k∈Λj 2 c (m) j2,k φ j2,k (x) + ∞ j=j2 k∈Λj d (m) j,k ψ j,k (x).
Since B forms an orthonormal basis of L 2 ([0, 1]), we get 

E f (m) 3 -f (m) 2 2 = k∈Λj 2 E c(m) j2,k -c (m) j2,k 2 + ∞ j=j2 k∈Λj (d (m) j,k ) 2 . (4.6) Using f (m) ∈ B s p,r (M ) ⊆ B s * 2,∞ ( 
(a + b) 2 ≤ 2(a 2 + b 2 ), (a, b) ∈ R 2 , yields k∈Λj 2 E c(m) j2,k -c (m) j2,k 2 ≤ 2(T 1 + T 2 ), (4.8) 
where

T 1 = k∈Λj 2 E c(m) j2,k - ĉ(m) j2,k 2 , T 2 = k∈Λj 2 E ĉ(m) j2,k -c (m) j2,k 2 .
Proceeding as in (4.4), we get

T 2 ≤ C2 (2m+1)j2 1 a n ≤ C2 (2m+1)j2 1 n . (4.9)
Let us now investigate the upper bound for T 1 .
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The triangular inequality gives

c(m) j2,k - ĉ(m) j2,k = (-1) m a n an i=1 Y i (φ j,k ) (m) (X i ) 1 ĝ(X i ) 1 {|ĝ(Xi)|≥c2/2} - 1 g(X i ) ≤ 1 a n an i=1 |Y i ||(φ j,k ) (m) (X i )| 1 ĝ(X i ) 1 {|ĝ(Xi)|≥c2/2} - 1 g(X i )
.

Moreover, we have

1 ĝ(X i ) 1 {|ĝ(Xi)|≥c2/2} - 1 g(X i ) = 1 g(X i ) g(X i ) -ĝ(X i ) ĝ(X i ) 1 {|ĝ(Xi)|≥c2/2} -1 {|ĝ(Xi)|<c2/2} .
It follows from the triangular inequality, the indicator function, (K3), {|ĝ

(X i )| < c 2 /2} ⊆ {|ĝ(X i ) -g(X i )| > c 2 /2} and the Markov inequality that 1 ĝ(X i ) 1 {|ĝ(Xi)|≥c2/2} - 1 g(X i ) ≤ 1 g(X i ) 2 c 2 |ĝ(X i ) -g(X i )| + 1 {|ĝ(Xi)-g(Xi)|>c2/2} ≤ 4 c 2 |ĝ(X i ) -g(X i )| g(X i ) . Hence c(m) j2,k - ĉ(m) j2,k ≤ CA j2,k,n ,
where

A j,k,n = 1 a n an i=1 |Y i ||(φ j,k ) (m) (X i )| |ĝ(X i ) -g(X i )| g(X i
) .

Let us now consider U n = (X an+1 , . . . , X n ). For any random variable D, we have the equality:

E(D 2 ) = E(E(D 2 |U n )) = E(V(D|U n )) + E((E(D|U n )) 2 ),
where E(D|U n ) denotes the expectation of D conditionally to U n and V(D|U n ), the variance of D conditionally to U n . Therefore

T 1 ≤ C k∈Λj 2 E(A 2 j2,k,n ) = C(W j2,n + Z j2,n ), (4.10) 
where

W j2,n = k∈Λj 2 E (V (A j2,k,n |U n )) , Z j2,n = k∈Λj 2 E (E (A j2,k,n |U n )) 2 .
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Let us now observe that, owing to the independence of (Y 1 , X 1 ), . . . , (Y n , X n ), the random variables

|Y 1 ||(φ j,k ) (m) (X 1 )| |ĝ(X 1 ) -g(X 1 )| /g(X 1 ), . . . , |Y an ||(φ j,k ) (m) (X an )| |ĝ(X an ) -g(X an )| /g(X an
) conditionally to U n are independent. This remark combines with the inequalities: V(D|U n ) ≤ E(D 2 |U n ) for any random variable D and (a + b) 2 ≤ 2(a 2 + b 2 ), (a, b) ∈ R 2 , the independence between X 1 and ξ 1 , (K2) and (K3), yields

V (A j2,k,n |U n ) = 1 a n V |Y 1 ||(φ j2,k ) (m) (X 1 )| |ĝ(X 1 ) -g(X 1 )| g(X 1 ) U n ≤ 1 a n E Y 2 1 (φ j2,k ) (m) (X 1 ) 2 ĝ(X 1 ) -g(X 1 ) g(X 1 ) 2 U n ≤ 1 a n 2 c 2 (C 2 1 + E(ξ 2 1 ))E (φ j2,k ) (m) (X 1 ) 2 (ĝ(X 1 ) -g(X 1 )) 2 g(X 1 ) U n = 2 c 2 (C 2 1 + E(ξ 2 1 )) 1 a n 1 0 (φ j2,k ) (m) (x) 2 (ĝ(x) -g(x)) 2 g(x) g(x)dx ≤ C 1 n 1 0 (φ j2,k ) (m) (x) 2 (ĝ(x) -g(x)) 2 dx.
Thanks to the support compact of φ (m) , we have k∈Λj 2 φ (m) (2 j2 x -k) 2 ≤ C.

Therefore, using (φ j2,k ) (m) (x) = 2 (j2/2)(2m+1) φ (m) (2 j2 x -k),

W j2,n ≤ C 1 n E   1 0 (ĝ(x) -g(x)) 2 k∈Λj 2 (φ j2,k ) (m) (x) 2 dx   ≤ C2 (2m+1)j2 1 n E ĝ -g 2 2 .
(4.11)

On the other hand, by the Hölder inequality for conditional expectations, arguments similar to (4.2) and (4.3), we get

E (A j2,k,n |U n ) = E |Y 1 ||(φ j2,k ) (m) (X 1 )| |ĝ(X 1 ) -g(X 1 )| g(X 1 ) U n ≤ E Y 2 1 g(X 1 ) (φ j2,k ) (m) (X 1 ) 2 U n 1/2 E (ĝ(X 1 ) -g(X 1 )) 2 g(X 1 ) U n 1/2 = E Y 2 1 g(X 1 ) (φ j2,k ) (m) (X 1 ) 2 1/2 1 0 (ĝ(x) -g(x)) 2 g(x) g(x)dx 1/2 ≤ C2 mj2 ĝ -g 2 .
Hence Z j2,n ≤ C2 (2m+1)j2 E ĝ -g 2 2 .

(4.12) 

E f (m) 3 -f (m) 2 2 ≤ C 2 (2m+1)j2 max E ĝ -g 2 2 ,
1 n + 2 -2j2s * . (4.15)

A slight adaptation of (Donoho et al., 1996, Proposition 1) gives the following result. Suppose that (K4) is satisfied and g ∈ B s2 p2,r2 (M 2 ) with M 2 > 0, p 2 ≥ 1, r 2 ≥ 1 and s 2 ∈ (max(1/p 2 -1/2, 0), N ). Let ĝ be defined by (3.9) with j 3 as (3.10). Then there exists a constant C > 0 such that E ĝ -g 2 2 ≤ C(n -a n ) -2so/(2so+1) ≤ Cn -2so/(2so+1) .

Therefore, chosing j 2 as (3.11) and using (4.15), we have

E f (m) 3 -f (m) 2 2
≤ C 2 (2m+1)j2 n -2so/(2so+1) + 2 -2j2s * ≤ Cn -4s * so/((2so+1)(2s * +2m+1)) .

Theorem 3.3 is proved.

  (see (3.3)), (Y 1 , X 1 ), . . . , (Y n , X n ) are i.i.d., the inequalities : V(D) ≤ E(D 2 ) for any random variable D and (a + b) 2 ≤ 2(a 2 + b 2 ), (a, b) ∈ R 2 , (K2) and (K3), we have

  M ) [see[START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF], Corollary 9.2be (3.2) with n = a n and j = j 2 (3.11). The elementary inequality:

  imsart-generic ver. 2009/12/15 file: deriv-reg.tex date: January 8, 2014It follows from (4.10), (4.11) and (4.12) thatT 1 ≤ C2 (2m+1)j2 E ĝ -g 2 2 .

								(4.13)
	Putting (4.8), (4.9) and (4.13) together, we get		
	k∈Λj 2	E	c(m) j2,k -c	(m) j2,k	2	≤ C2 (2m+1)j2 max E ĝ -g 2 2 ,	1 n	. (4.14)
	Combining (4.6), (4.7) and (4.14), we obtain		
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Appendix

Let us now present in details (Chaubey et al., 2013, Theorem 6.1) used in the proof of Theorem 3.2.

We consider a general form of the hard thresholding wavelet estimator denoted by fH for estimating an unknown function f ∈ L 2 ([0, 1]) from n independent random variables W 1 , . . . , W n :

where 

κ ≥ 2 + 8/3 + 2 4 + 16/9 and j 1 is the integer satisfying

Here, we suppose that there exist

• n functions q 1 , . . . , q n with q i : L

(A2) there exist two constants, θ γ > 0 and δ ≥ 0, such that, for any integer j ≥ τ and any k ∈ Λ j ,

Let fH be (4.16) under ( A1) and (A2). Suppose that f ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s ∈ (0, N )} or {p ∈ [1, 2) and s ∈ ((2δ + 1)/p, N )}. Then there exists a constant C > 0 such that

.