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Development and Application of a Reduced Order

Model for the Control of Self-Sustained Instabilities

in Cavity Flows
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Abstract. Flow around a cavity is characterized by a self-sustained mechanism in
which the shear layer impinges on the downstream edge of the cavity resulting in
a feedback mechanism. Direct Numerical Simulations of the flow at low Reynolds
number has been carried out to get pressure and velocity fluctuations, for the case of
un-actuated and multi frequency actuation. A Reduced Order Model for the isentropic
compressible equations based on the method of Proper Orthogonal Decomposition has
been constructed. The model has been extended to include the effect of control. The
Reduced Order dynamical system shows a divergence in time integration. A method
of calibration based on the minimization of a linear functional of error, to the sensitivity
of the modes, is proposed. The calibrated low order model is used to design a feedback
control of cavity flows based on an observer design. For the experimental implemen-
tation of the controller, a state estimate based on the observed pressure measurements
is obtained through a linear stochastic estimation. Finally the obtained control is in-
troduced into the Direct Numerical Simulation to obtain a decrease in spectra of the
cavity acoustic mode.

AMS subject classifications: 93C05, 93C10, 76N25
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1 Introduction

Self sustained instabilities in compressible cavities arise due to the impingement of the
shear layer on the downstream edge of the cavity, and is caused by the energetic coherent
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structure, resulting in a pressure feedback mechanism which induces the far field noise
in the cavity. The flow is characterized by a strong coupling between the hydrodynamic
instability and the acoustic propagation which can be sometimes intense. Applications of
such flows arise in airframe fuel vents, landing gears, weapon bays. Accurate modelling
of the cavity noise is important from the point of view of a search for quieter aircrafts.
The traditional tools for the modelling of the cavity like Direct Numerical Simulation
(DNS) and Large Eddy Simulation (LES) pose difficulties in terms of computational re-
sources, also the constraint increases when the ultimate aim of study is in the application
of control. The self sustained instabilities in cavity has been studied in the past by many
authors [1–5]. The principles of Reduced Order Modelling (ROM) based on Proper Or-
thogonal Decomposition (POD) and a Galerkin projection, has been in the past applied to
model and control to flows with self-sustained instabilities, like wake behind cylinder [6]
and high lift configurations [7]. Flow past an open cavity has already been studied using
ROM by [8] and [9] but without any application to flow control. More recently, ROM for
controlled configurations has been proposed by [10,11]. In [12] the ROM for flows issued
from an experiment has been used to design a controller. The major hurdle in using the
ROM for control applications is the accuracy of the model in predicting the dynamics of
the system even for short periods, also difficulty arises when the control parameters are
changed as in a real time simulation. Various numerical strategies termed as calibration
techniques has been developed in the recent past based on the solution of an optimiza-
tion problem and can be found in the works of [6, 13–16]. A summary of the application
of various method has been discussed in detail [17] where a method of calibration based
on the Tikhonov regularization has been proposed. The main contribution of this pa-
per is then to complete the full development as applied to cavities, like building up the
ROM, including the effect of control, calibrating the model and finally performing con-
trol studies. We give further developments to the calibration technique by performing a
sensitivity analysis to weight the importance of the errors in the different modes of the
ROM, and accurately predict the dynamics of the system. The ROM thus obtained has
been applied to perform the feedback control of cavity flows to obtain a reduction in the
noise level of the cavity.

The paper is organized as follows. In Section 2 the derivation of the plant model used
for control studies has been discussed. The general principles of model reduction is dis-
cussed in Subsection 2.1 where the usual ROM based on the principle of Galerkin projec-
tion is obtained as a special case. In Subsection 2.2 we discuss the general principles POD,
followed by a discussion of the ROM for the isentropic equations in Subsection 2.2.1. Ex-
tension of ROM to include the effect of actuation is presented in Subsection 2.3. Section 3
concerns the calibration of the ROM to accurately represent the temporal dynamics, the
various errors that define the dynamics of the ROM are presented in Subsection 3.1. A
new approach to Tikhonov based regularization based on the sensitivity analysis is pre-
sented in Subsection 3.2 to obtain an accurate representation of the dynamics. The ROM
has been applied to the cavity flow configuration in Section 4. Finally feedback control
law based on the estimation of the observer dynamics has been presented in Section 5.



2 Derivation of the plant model

2.1 Model reduction principles

To present the general ideas consider a physical system of the form

S :

{
ȧ(t)= f (t,a(t),γ(t)),

b(t)= g(t,a(t),γ(t)).
(2.1)

The RHS can be considered as any evolutionary model representing the dynamics, for
example the Navier-Stokes equations. Although the ideas are easily extended to infinite
dimension we present them for a finite dimensional case which is justified considering
the usual approach of numerically resolving the equations by discretization in n space
dimension. a ∈R

n represents the state variables, γ ∈R
m represents the inputs or the

control applied to the flow, and b∈R
p represents the output of observables. The RHS of

(2.1) can be linearized to obtain a state-space form as

SLTI :

{
E ȧ(t)=Aa(t)+Bγ(t),

b(t)=Ca(t)+Dγ(t),
(2.2)

where E∈R
n×n, A∈R

n×n, B∈R
n×m, C∈R

p×n and D∈R
p×m. E need not necessarily be

invertible. The dimension of the model usually corresponds to the dimension of the spa-
tial discretization which can be very large, hence the principle of model reduction seeks
a subspace V of dimension r≪n. The non-linear reduced order model corresponding to
(2.1) can be written as

Ŝ :

{
˙̂a(t)= f̂ (t,â(t),γ(t)), â∈R

r,

b̂(t)= ĝ(t,â(t),γ(t)), b̂∈R
p,

with r≪n, (2.3)

and the corresponding linear reduced model as

ŜLTI :

{
Ê ˙̂a(t)= Â â(t)+ B̂ γ(t),

b̂(t)= Ĉ â(t)+D̂ γ(t).
(2.4)

The reduced subspace has to have the following desirable properties when used as an
approximation to the high fidelity model (2.1):

1. ‖b− b̂‖<ǫ×‖γ‖ ∀γ where ǫ is the tolerance.

2. The model need to preserve the stability of the attractor, and be passive, i.e. entropy
conserving approximation to the high fidelity model S .

3. Must be efficient to reproduce the most important features of the high fidelity
model.



To present the idea of projection, from now on we just consider the linear model Ŝ . We
seek biorthogonal matrices V and W of size R

n×r such that WTQV = Ir where Q∈R
n×n

is a weight matrix. The Reduced Order Model is obtained by a projection of the state
variable a on the matrix V such that a =V â and ŷ≃ y. One defines the residue R to
measure the accuracy of the projection, a≃Vâ as

R=EV ˙̂a(t)−AVâ(t)−Bγ(t), (2.5a)

b̂(t)=CV â(t)+Dγ(t). (2.5b)

The Petrov-Galerkin projection is obtained by requiring the residue orthogonal to the
approximated space, i.e. WTQR= 0r. The projection matrices of the system ŜLTI can
now be obtained after a simple calculation as

Â=WTQAV, B̂=WTQB, Ĉ=CV,

D̂=D, Ê=WTQEV.

The well known Galerkin projection is obtained by taking V ≡W. Several projection
methods exist for the linear system (2.2). Examples are the Krylov subspace method for
the controllability matrix which relies on the identification of the moments of transfer
function [18], projection on the dominant modes of controllability and observability ma-
trix [19, 20], projection of global stability modes [21], POD based projection method on
the subspace determined from the snapshots [22] in which the flow fields are decom-
posed into energy ranked coherent structures. This is the method used in this work and
is briefly described in the next section.

2.2 Proper orthogonal decomposition

The basic idea of a POD is to decompose the flow field into energy ranked coherent struc-
tures represented by mathematical modes the details of which can be found in [23, 24].
Let H denote any Hilbert space with an inner product denoted by (·,·) and the norm
induced by the inner product denoted by ‖·‖. In the fluid dynamic context the space H
consist of functions defined on some spatial domain Ω on which the fluid evolves, usu-
ally H = L2(Ω). Let q(x,t) be any vector of flow variable, where x and t∈ [0,T] denote
respectively the spatial variables and the time of the numerical simulation or experimen-
tal measurements. We also assume a discrete sampling of our data in time and space. We
seek an expansion for q of the form

q(x,t)=q(x)+
n

∑
i=1

ai(t)φi(x), (2.6)

where q denotes the average of the n flow snapshots. The spatial modes φi(x) and the
temporal coefficients ai(t) are determined by solving an eigenvalue problem involving
the time correlation tensor that minimizes the average projection error:

E(‖q−PSq‖). (2.7)



E denotes the averaging operator, for instance the ensemble average (E = 1
n ∑

n
i=1) and

PS denote the projection operator over the space S⊂ H and dimension m. Note that
the problem of minimizing E(‖q−PSq‖) is equivalent to maximizing E(‖PSq‖2), the
”energy” of the orthogonal projection since by Pythogoraus theorem we have ‖q‖2 =
‖q−PSq‖2+‖Pq‖2. Solving the optimization problem leads to an eigenvalue problem for
the spatial modes φ given by

Rφ=λφ, (2.8)

where R : H→H is the linear operator defined as

R=E(qk⊗q∗k). (2.9)

Here q∗ ∈ H∗ denotes the dual of q, given by q∗(·) = (·,q) and ⊗ is the usual tensor
product†. One can easily verify that R is self adjoint i.e. (R x,y)=(x,R y) and hence by the
spectral theorem the eigenfunctions φ can be chosen to be orthonormal, The eigenvalues
λ are then determined by taking the inner product of Eq. (2.8) with φ to obtain

λ=E
(
|(qk,φ) |2

)
. (2.10)

The eigenvalues λ in the above equation represents the average energy in the projection
of the ensemble onto φ where energy is defined in sense of the induced norm. We also
conclude that the R is positive semi-definite, and the eigenfunctions φj which maximize
E(‖PSqk‖

2) are the eigenfunctions corresponding to the largest eigenvalues. Also the
eigenfunctions reproduce almost every member of the ensemble (except on a set of mea-
sure zero). One can also verify that the range of the operator R is contained in the span
of the ensemble qk and that any eigenfunction φ can be written as linear combination of
snapshots:

φ=
n

∑
k=1

ckqk , (2.11)

where the coefficients ck∈R. If the average operator E over the snapshots qk is given as

E( f (q))=
n

∑
k=1

αk f (qk), (2.12)

where αk > 0 satisfies ∑
n
k=1αk = 1 (usually giving equally weights to snapshots i.e. αk =

1/m). The eigenvalue problem (2.8) may be written in terms of the coefficients ck as

R c=λc, (2.13)

where c=(c1,··· ,cm) and R is an m×m correlation matrix with Rij =αi

(
qj,qi

)
. This is the

usual method of snapshots as described [22]. Here we note that the direct problem in-
volves solving an eigenvalue problem possibly on an infinite dimensional space H which

†We have (u⊗v∗)(ψ)=u(ψ,v), ∀u,v,ψ∈H.



may be very large, on the other hand the method of snapshots involve solving only an m
dimensional eigenvalue problem and the method proves computationally efficient if m is
small compared with the dimension of H. Having described the POD procedure we now
proceed to build a ROM as explained in the next section.

2.2.1 ROM for cavity flows

The Reduced Order Model is obtained by performing a Galerkin projection of the gov-
erning dynamics (for instance the Navier-Stokes equations) onto the spatial modes deter-
mined from the POD procedure. Two ROM models for cavities has been proposed in [9],
one using the full compressible equations and the other with an isentropic approxima-
tion. In this work we use the isentropic equations for compressible flows [8], which is a
valid physical models for flows at moderate Mach number. Scaling the stream-wise and
span-wise component of velocities u,v by the free stream velocity U∞, the local sound
speed c by the ambient sound speed c∞, the lengths by the cavity depth D (see Fig. 2),
and time by D/U∞, the equations are given by

ut+uux+vuy+
1

M2

2

γ−1
ccx =

1

Re
(uxx+uyy),

vt+uvx+vvy+
1

M2

2

γ−1
ccy=

1

Re
(vxx+vyy),

ct+ucx+vcy+
γ−1

2
c(ux+vy)=0,

where M=U∞/a∞ is the Mach number and Re=U∞D/ν is the Reynolds number. If we
denote q=(u,v,c) the vector of flow variables, the above equations can be recasted as

q̇=
1

Re
L(q)+

1

M2
Q1(q,q)+Q2(q,q), (2.14)

with

L(q)=




uxx+uyy

vxx+vyy

0


, Q1(q

1,q2)=−
2

γ−1




c1c2
x

c1c2
y

0


, Q2(q

1,q2)=−




u1u2
x+v1u2

y

u1v2
x+v1v2

y

u1c2
x+v1c2

y

+ γ−1
2 c1(u2

x+v2
y)


.

To obtain the reduced order model by means of a Galerkin projection we define an inner
product on the state space as

(q1,q2)Ω=
∫

Ω

(
u1u2+v1v2+

2α

γ−1
c1c2

)
dΩ,

where α is a constant and γ is the ratio of specific heats. In this work we choose the value
of α = 1, which gives the definition of stagnation enthalpy while calculating the norm.



The above definition ensures the stability of the origin of the attractor as demonstrated
by [8]. We use expansion (2.6) and the definition of the inner product given above to
perform the Galerkin projection of the isentropic equations onto the first n≪NPOD spatial
eigenfunctions, to obtain the Reduced Order Model as

ȧR
i (t)=

1

Re
C1

i +
1

M2
C2

i +C3
i +

n

∑
j=1

(
1

Re
L1

ij+
1

M2
L2

ij+L3
ij

)
aR

j (t)

+
n

∑
j,k=1

(
1

M2
Q1

ijk+Q2
ijk

)
aR

j (t)a
R
k (t)

=Ci+
n

∑
j=1

Lija
R
j (t)+

n

∑
j,k=1

QijkaR
j (t)a

R
k (t)

= fi(Ci,Li,Qi︸ ︷︷ ︸
y

,aR(t))= f (y,aR(t)), (2.15)

where fi is a polynomial of degree 2 in aR and the coefficients of the projection are given
by

C1
i =(φi,L(q))Ω , L1

ij =
(
φi,L(φj)

)
Ω

, Q1
ijk =

(
φi,Q1(φj,φk)

)
Ω

,

C2
i =(φi,Q1(q,q))Ω , L2

ij=
(
φi,Q1(q,φj)+Q1(φj,q)

)
Ω

, Q2
ijk =

(
φi,Q2(φj,φk)

)
Ω

,

C3
i =(φi,Q2(q,q))Ω , L3

ij=
(
φi,Q2(q,φj)+Q2(φj,q)

)
Ω

.

2.3 ROM for the actuated flow

Having discussed the ROM for the un-actuated case we now move on to introduce the ef-
fect of actuation. The advantage of the reduced order models can be fully exploited when
they are capable of being used in control studies. We would also like to have a dynamical
system where the actuation effect is naturally embedded. There has been recent attempts
to take care of the introduction of actuation in [10,25] for a feedback control where snap-
shots from the controlled case are augmented with the un-actuated modes (baseline flow
as it is usually called) to obtain a global representation for the controlled case. The regions
where the control is introduced is explicitly identified while performing the projections,
hence are termed as input separation methods. To explain further the flow domain Ω into
two sub-regions, such that Ω=Ωac+Ωunac where Ωac, Ωunac represents the actuated and
the un-actuated part of the domain respectively. The inner product for the corresponding
domains is defined as (·,·)=(·,·)Ωac

+(·,·)Ωunac
, with the corresponding boundary condi-

tion imposed for Ωac. This procedure yields an autonomous system of ODE’s of the form,
on using the summation convention as.

ȧk =Ck+Likak+Qijkaiaj+h1kγ+h2ikaiγ+h3kγ2, (2.16)

where γ is the actuation signal. Another procedure of introducing the actuation in the
ROM is to identify the system coefficients of the actuated model based on a stochastic



estimation technique, to give a ROM of the form (2.16) as in [25]. The main disadvantages
of the above methods is that they are quite cumbersome, as one has to explicitly identify
the region of separation where the actuation is introduced, where there is a possibility of
mismatch with the base line modes. Also the information of the input actuation is hidden
in the model. One then looks for an alternative separation method to include the effect
of actuation on the base line model as discussed in [11], i.e. one seeks an expansion of the
form

q(x,t)=q(x)+
n

∑
i=1

ai(t)φi(x)+γ(t)ψ(x), (2.17)

where γ is the actuation and ψ is the spatial actuated coefficient and which should ideally
satisfy the following conditions:

1. The actuation effect should be explicitly available in our ROM and should be able
to reproduce the un-actuated dynamics in case the value of actuation tends to zero.

2. Most of the actuated dynamics are well captured by the un-actuated POD modes
and hence the completion of the full actuated dynamics is obtained by an extension
of the bases of the un-actuated case. This condition is an additional constraint to
condition 1 in that we require a constraint on the dimension of our actuation, by
specifying that the base-line modes capture most of the dynamics. This is the crux
of the whole problem.

3. We further strengthen the above condition by imposing an optimality condition by
requiring that the energy not captured by (2.17) is minimal.

Fig. 1 summaries the above condition. The conditions above leads to the following algo-
rithm due to [11].

Unactuated Space

∑
N
i=1 aiφi

γψ

Figure 1: Schematic representation of the actuated expansion, the actuated mode is orthogonal to the unactu-
ated space.

Algorithm 2.1

1. To start with, let the actuated snapshot sets be denoted as
{

qac
k ,γk

}m
k=1

, where γk =γ(tk) is the

value of the actuation, qac
k =qac(x,tk) and m is the number of actuated snapshots.



2. We subtract the mean q of the un-actuated base flow from the snapshot set. We define a new set

of realizations by an innovation operator given as

q̃k=qac
k −PSqac

k =qac
k −

n

∑
i=1

(qac
k ,φi)Ω

φi

to care of the part of the actuated mode which can be captured well by the un-actuated subspace.

3. We then wish to construct an orthogonal subspace to the un-actuated space to capture the effect

of actuation. This is done by solving an L2 minimization problem for the functional given by

J (ψ)=E
[
‖q̃k−γkψ‖2

]
,

where E is any averaging operator.

4. The solution of the above minimization problem is given by

ψ=
E[γkq̃k]

E[γ2
k ]

.

5. The expansion for the flow field can now be written for the actuated case as

qac(x,t)=qac(x)+
n

∑
i=1

aac
i (t)φi(x)+γ(t)ψ(x).

With this expansion the Galerkin projection of (2.14) gives

ȧac
i (t)=Ci+

n

∑
j=1

Lija
ac
j (t)+

n

∑
j,k=1

Qijkaac
j (t)aac

k (t)+h1iγ(t)

+
n

∑
j=1

h2ija
ac
j (t)γ(t)+h3iγ

2(t), (2.18)

where

h1i =
1

Re
(φi,L(ψ))Ω+(φi,Q(q,ψ))Ω+(φi,Q(ψ,q))Ω ,

h2ij =
(
φi,Q(φj,ψ)

)
Ω
+
(
φi,Q(ψ),φj)

)
Ω

, h3i =(φi,Q(ψ,ψ))Ω ,

with Q(·,·)= 1
M2 Q1(·,·)+Q2(·,·).

To study the effect of actuation on the unactuated baseline modes we observe from
(2.18) the actuated temporal modes are given by

aac
i (t)=(φi,q

ac−qac−γ(t)ψ)Ω .

Here we make the assumption that the average of the mean flow in un-actuated and
actuated cases are equal (qac = q), since the value of actuation introduced is small. The
term qac−qac can now be interpreted as a translation of the reduced order subspace. On



noting this and the fact that the actuated mode is orthogonal to the un-actuated subspace
i.e. ψ⊥φ the term aac

i (t)−→0. This fact is important in that while calibrating the ROM, it
is sufficient to just calibrate the un-actuated parts, as will be explained in the next section.
Another point worth mentioning is that the time derivative of control vanishes due to the
orthogonal property of the actuated modes. We also introduce, an error to take care of
the difference in the average values while performing the Galerkin projections as

εi=
(δqac,φi)

(φi,q
ac)

. (2.19)

3 Calibration of the ROM

The reduced order model (2.18) has an intrinsic problem of converging to the wrong at-
tractor when used to simulate the flow for long time periods. Hence there is a need to
identify the coefficients of the dynamical system so as to minimis the error between the
actual time coefficients aP

i (t) from the POD and that obtained from the ROM aR
i (t) using

a suitable norm for the error. The reasons for the inaccurate behavior of the ROM can be
attributed to the truncation of the POD bases where the dissipative scales of the higher
POD modes are neglected. An analogous problem occurs in the Large Eddy Simulation
(LES) of flows when there is lack of dissipation due to the smaller scales. Even including
all the modes in Galerkin projection may still lead to the wrong attractor due to structural
instability as has been demonstrated in [26]. Other problems may arise due to the contri-
bution of pressure at the boundaries of the domain, which is usually neglected [27]. The
stability properties of the compressible POD-Galerkin approximation has been studied
by [28].

3.1 Definition of errors

Three definitions of error have been defined in [17]. The natural choice is in defining
e1( f ,t)=aP(t)−aR(t) but this leads to a nonlinear constrained problem (see Section 3.1.1).
The other two choices being state calibration error e2 without the dynamical constraint
given by

e2(y,t)=aP(t)−aP(0)−
∫ T

0
f(y,aP(τ))dτ

and the flow calibration e3( f ,t)= ȧP(t)− f (aP(t)) where f is characterized by the coeffi-
cients of (2.15).

3.1.1 Nonlinear constrained problem

In this method we have to find the coefficients of the dynamical system such that the error
e1 is minimized under the constraints that the coefficients Ci,Li,Qi (i = 1,··· ,n) satisfy



(2.15). We rather seek to minimize I1( f )= 〈‖e1( f ,t)‖2
Λ〉T where 〈·〉T is a time averaging

operator over [0,T], for Nt equally spaced elements on [0,T] we have

〈 f (t)〉T =
1

Nt

Nt

∑
i=1

f (ti), with ti =(i−1)∆t and ∆t=
T

Nt−1
,

‖.‖Λ is a norm on R
N. For any positive definite matrix Λ∈R

N×N the norm of any vector
e∈R

N is given by

‖e‖2
Λ =eTΛe.

The matrix Λ acts as a weight function giving importance to the specific POD modes,
when Λ= IN it means that all the POD modes have the same importance in terms of the
error. This leads us to a constrained optimization problem as in [6], in which we solve
backward in time, an adjoint equation given by

ξ̇i(t)=−
n

∑
j=1

Ljiξ j(t)−
n

∑
j,k=1

ξ j(t)(Qjik+Qjki)a
R
i (t)−2

(
aR

i (t)−aP
i (t)

)

︸ ︷︷ ︸
s

= gi(Ci,Li,Qi︸ ︷︷ ︸
y

,aR(t),ξR(t))+s = g(y,aR,ξR(t))+s, (3.1)

where ξi is the adjoint variable and s the source term. The terminal condition of the above
equation is given by ξi(T)= 0. The gradients of the cost functional I (1) with respect to
the coefficients Ci and Li of the ROM are

∇I1
Ci
=
∫ T

0
ξi(t)dt, ∇I1

Li
=
∫ T

0
ξi(t)a

R
j (t)dt

and represent the sensitivity of the functional to the coefficients. The corresponding op-
timality system (state equations, adjoint equations, optimality conditions) is solved by a
gradient based method to obtain the coefficients of the reduced order model.

3.2 A weighted approach to Tikhonov regularization

In this section we introduce a new method of calibration. As demonstrated in [14] min-
imization of I3( f )= 〈‖e3( f ,t)‖2〉T leads to the solution of a linear system for the coeffi-
cients y defining f . Unfortunately, this linear system is not well conditioned and lead to
numerical divergence when the calibrated coefficients are used to integrate in time (2.15).
For that purpose, [14] have introduced a new cost functional defined as a weighted sum
of a term measuring the normalized error between the behavior of the model (2.15) with
f and with the coefficients determined directly by Galerkin projection f GP and another
term linked to the distance between f and f GP. The value of the weighting factor which



represents the cost of calibration was chosen rather arbitrarily and hence was user de-
pendent. In [17], a Tikhonov regularization method was suggested to improve the con-
ditioning of the linear system. The idea of this method is to seek a regularized solution
yρ as the minimizer of the following weighted functional

Φρ(y)=‖Ay−b‖2
2+ρ‖L(y−y0)‖

2
2 ,

where the first term corresponds to the residual norm, and the second to a side constraint
imposed on the solution. L represents the discrete approximation matrix of a differential
operator of order d and y0 a reference solution. The value ρ is chosen so as to compromise
between the minimization of the norm of the residual for the linear system and the semi-
norm of the solution. Here, the regularization parameter ρ is determined by the classical
L-curve method, as described in [17]. We have the error defined for the minimization of
the functional I i as

I i(y)=
〈
‖ei(y,t)‖2

Λ

〉
T

.

Usually the matrix Λ is chosen as Identity, which means that we give equal weights to all
the modes in the definition of calibration. However this matrix can be chosen in suitable
way so as to include the effect of mode selection in the definition. Two ways of defining
the weights can be proposed:

1. We consider that the main interest is in modelling the effect of the energetic struc-
tures and hence the eigen-spectra themselves serve as a measure of the relative
importance of the modes, which is the most natural choice of the weights for the
definition of error.

2. The error can be based on an overall sensitivity of the model with respect to a cost
functional.

The weight matrix Λ for the definition of error for the first case can be simply written as
a diagonal matrix:

Λii =
σi

max σi
for i={1,··· ,N},

where σ is the singular value obtained as a solution of the eigenvalue problem of the time
correlation matrix. For the second case consider the state equations

ȧR = f(y,aR). (3.2)

Variation of any convex cost functional J with respect to the state variables aR={aR
i }

N
i=1

gives the adjoint equation of (3.2) as

ξ̇R=g(y,aR,ξR), (3.3)



where ξR(t)={ξR
i }

N
i=1 is the adjoint variable. The overall sensitivity of the cost functional

J with respect to aR is obtained as

S=
dJ

daR
= 〈aR(t)ξR(t)〉, (3.4)

where 〈·〉 is any time averaging operator. We can then define the weight matrix Λ with
respect to the sensitivity as

Λii=
Si

max Si
for i={1,··· ,N}.

In this study we have taken the cost functional J based on the energy of the temporal
modes as

J =
1

2

∫ T

0

N

∑
i=1

(aR
i (t))

2dt. (3.5)

The above functional is minimized subject to the constraint (3.2), by the method of La-
grange multipliers with the adjoint state equation of (3.3) given by

ξ̇(t)=−ai(t)−
N

∑
i=1

(
Lij+

N

∑
i=1

(
Qjik+Qjki

)
ak(t)

)
ξ j(t). (3.6)

4 Application of POD ROM for cavity flows

The typical cavity flow configuration used in this study is shown in Fig. 2. The cavity
is of an Le/D ratio of 2. The flow is initialized by a laminar boundary layer so as to
have a thickness of δ/D= 0.28 at the leading edge of the cavity. The Reynolds number
of the flow based on the cavity depth is 1500 and the flow Mach number is 0.6. The
equations of Navier-Stokes are discretize using a 4th order accurate scheme in time and
space. Snapshots are taken once the flow has stabilized and 56 snapshots are uniformly
sampled which corresponds to 1 period of the flow oscillation (2.8 in non dimensional
time) corresponding to the first Rossiter mode [29]. Fig. 3 demonstrates a degenerate
eigen-spectrum showing eigenvalues which occur in pairs. Also the first 4 eigenmodes
capture around 98.5% of the total fluctuation energy as shown by the Relative Informa-
tion Content (RIC) defined as RIC(i)=∑

i
j=1σj/∑

M
j=1 σj. The temporal coefficients shown

in Fig. 4 and demonstrates a phase difference of π/2 between the paired modes. The
representation of the first 4 spatial POD modes for the vorticity is shown in Fig. 5.

Although the modes occur in pairs and their values are distinct the representation is
topologically equivalent. We note that the cascade of the energy in the POD representa-
tion in terms of the size of the eddies represented. The vorticity being a hydrodynamic
phenomenon represents the low frequency dynamics of the flow. In Fig. 6 a comparison
of the two weight matrix used for the purpose of calibration is given. We note a similar
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Figure 7: Temporal comparison of the first 6 modes, with the POD coefficients:ROM calibrated (solid line),

reference POD dynamics (o). POD ROM is calibrated using the I (3) minimization for all coefficients. The
Tikhonov regularization is applied for (L=0, y0=0), and the weight matrix Λ based on the overall sensitivity.

behavior between the two weights as an energy based cost functional is used in both the
cases†. The sensitivity based weight is different for mode 3, and this allows us to specu-
late that in the case where the ROM is not built using the POD bases, but on a different
criteria, such as the observability as described in [30], the above analysis may yield a
sensitivity weight for the lower modes.

The time evolution and phase plot for the case of the calibrated model is shown in

†Although the sense of energy is different in two cases, it is a energy of projection in the case of POD and the
energy contained of the flow dynamics, for the sensitivity based analysis.
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Figure 8: Phase portrait comparison of the first 6 modes, with the POD coefficients:ROM calibrated (solid line),

reference POD dynamics (o). POD ROM is calibrated using the I (3) minimization for all coefficients. The
Tikhonov regularization is applied for (L=0, y0=0), and the weight matrix Λ based on the overall sensitivity.

Fig. 7 and Fig. 8 respectively. For the case of the introduction of the actuation mode,
snapshots are obtained from the DNS by introducing an actuation of the form Asin(ωt)
just before the leading edge of the cavity (x∈ [−0.15;−0.05] and y=0), where the flow is
more sensitive to actuation. The spatial modes for the components of velocity are shown
in Fig. 9 and exhibit a local behavior capturing the effect of actuation which is the salient
feature of the L2 optimization method. The difference in average values δqac for the
stream-wise and span-wise component of velocity u, v is shown in Fig. 10. The value
of the error in the projection εi as described in Eq. (2.19) is shown in Fig. 11, showing
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Figure 9: u and v velocity components of the actuation mode ψ corresponding to an actuation defined by
vwall =0.2sin(0.4t).

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

u: -0.012 -0.006 -0.001 0.004 0.008

(a)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

v: -0.006 -0.004 -0.001 0.003 0.005

(b)

Figure 10: u and v of the difference in the average value δqac between the actuated and the unactuated case.

a small errors for the most energetic modes. We are unable to explain the behavior of
the error at the certain higher modes which seem pretty large. Since we are dealing with
periodic flow it is natural to expect the temporal dynamics be valid for a time longer than
the period of snapshot acquisition. As shown by [31] although the system is initialized
with correct state the solution may drift away for a long period of integration even after
calibration. Fig. 12 shows that the calibrated model predicts the dynamics for a non-
dimensional time 11, which corresponds to around 4 cycle of the flow period, after which
it diverges rapidly.

This is different from the results where the calibrated model is shown to work for
a much longer period. The reason is that the neglected modes which contribute to the
regularization of the system is not modelled during calibration. The validity of ROM for
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a longer time of integration is still open, where the coefficients need to be given suitable
weights to model the neglected term. While performing control, since the time period
where the control law is applicable is much larger than the period of validity of the model,
it is imperative that we calibrate more than one period of the flow as demonstrated in the
next section.

5 Feedback design

In this section we propose a feedback law based on an observer design, obtained from
the pressure measurements inside the cavity. The plant model utilized in this study is
shown in Fig. 13. It consists of the system i.e. linearized ROM and a feedback controller.
When all the states of the system are difficult to measure we build an observer to esti-
mate the state while only measuring the output. Regarding the use of ROM for optimal
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control studies one can refer [6,32,33] where the optimal control has been applied for the
control of wake flows behind a cylinder. Since the ROM is designed for a particular flow
condition, [34] propose a method where the model is refined during the optimization
process, to take care of the validity of the model to the variation of control parameters.
This method has been applied for the optimal control of wake flows by [35]. Control of
cavity flows, using experimental data to build the ROM has been performed in [12], but
without any calibration of the temporal dynamics. In this work, the feedback law is de-
termined using the linear part of the dynamical system, neglecting the influence of the
quadratic terms. When information of the full state a is not available, an observer C̃ is
construct from the measured output y. This is true in case of experimental data, where
wall sensors to measure the instantaneous pressure are used. Prediction of flow field
from the observed states has been studied in the past by performing a Linear Stochas-
tic Estimation (LSE) by [36, 37], where sensor signals are correlated with flow data base
information. A higher order correlation is also demonstrated in [38], where a Quadratic
Stochastic Estimation (QSE) is performed. The main drawback of the LSE and QSE is that
they take into account the correlations at a particular time only without considering the
time history of the previous measurements, hence they are termed as ’static’ estimators.
In an experimental setup this poses a problem due to the measurement noise and also
on the limitations of the number of sensors that can be placed. A combination of the
isentropic model with the data obtained from experiments has been studied in [12]. The
technique of LSE which is used in this work for observer design is briefly explained in
the next section.

5.1 Linear Stochastic Estimation (LSE)

The LSE technique enables us to determine the observer matrix C̃, as shown in Fig. 13,
given a limited number of pressure measurements obtained from sensors along the walls



of the cavity. For each sensor i∈ [1 Ns], we can estimate the pressure p̃i(t) coefficients by
a series expansion of the discrete temporal POD coefficients aj(t) as

p̃i(t)=
n

∑
j=1

C̃ij aj(t)+
n

∑
j=1

n

∑
k=1

D̃ijk aj(t)ak(t)+··· . (5.1)

The expansion can be truncated above the linear term or the quadratic term correspond-
ing to the LSE or QSE problem. The coefficients C̃ij and D̃ijk are determined so as to
minimize the mean square error between the estimated pressure signal p̃i(t) and the one
obtained from measurement pi(t)

ei=
∫ T

0
[p̃i(t)−pi(t)]

2 dt= 〈[ p̃i(t)−pi(t)]
2〉. (5.2)

Since the number of snapshots is much larger than pressure sensors, the above system is
overdetermined and the coefficients are determined using the method of least squares by
solving an overdetermined linear system given by

dei

dC̃ij

=0 and
dei

dD̃ijk

=0. (5.3)

On noting the orthogonality of the temporal modes 〈aj,ak〉=σiδjk, the pressure field can
be simply expanded in terms of the temporal modes as

p̃i(t)=
N

∑
i

C̃ijaj(t), where C̃ij=
〈pi,aj〉

〈aj,aj〉
. (5.4)

In this study Ns =4 sensors along the wall are used to measure the pressure. It is also
worthwhile mentioning that solving the system of equation given by (5.3) leads to an ill
conditioned problem. A luxury afforded by numerical simulations is that we can modify
the condition number by changing the location of the pressure sensors, however for data
obtained from experimental simulations where the sensor positions are fixed we can use
the method of Tikhonov regularization mentioned in Section 3.2. The observer dynamics
for the construction of the pressure signals, issued from (5.4) is shown in Fig. 14, and
provides a good estimation of the wall pressure, due to the orthogonality property of the
eigenmodes.

5.2 Linearization of the plant

Once through the observer design, the plant (2.18) is built by linearizing the ROM around
a suitable equilibrium point a0. To determine the influence of various terms of the ROM
while linearizing, we perform a sensitivity analysis. Sensitivity studies help in analyz-
ing the variation of a given quantity (generally given by a functional) with respect to a
parameter of the model. In this study a sensitivity analysis is performed to identify the
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Figure 14: LSE reconstruction of the pressure signals. The pressure value from the sensor are denoted by line,
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terms to be neglected in the linearization of the model. We seek the sensitivity of the
time-independent coefficients h1i, h2ij and h3i of the actuated model, with respect to an
energy based functional given by (3.5). A variation of the augmented Lagrangian func-
tional based on an adjoint vector ξ and the state equation (2.18) yield the sensitivities:

∂J

∂h1i
= 〈ξi(t),γ(t)〉,

∂J

∂h2ij
= 〈aj(t),ξi(t)γ(t)〉,

∂J

∂h3i
= 〈ξi(t),γ

2(t)〉, (5.5)

and
∂J

∂γ
=

n

∑
i

h1iξi(t)+
n

∑
i

n

∑
j

h2ijξi(t)aj(t)+2
n

∑
i

h3iξi(t)γ(t),

where the adjoint equation is given by:

ξ̇i(t)= gi(Ci,Li,Qi,a(t),ξ(t))+
n

∑
j

h2jiξ j(t)γ(t)−ai(t). (5.6)

The sensitivities are plotted in Fig. 15 and shows that the constant term of the actuated
model h1i has a higher sensitivity when compared to the quadratic terms h3i by an order
of magnitude and hence plays an important role in linearization.

It is also important to note that the first two modes which drives the actuation dynam-
ics do not contribute significantly to the sensitivity of the terms h1i and h3i as compared
to h2ij, this signifies that more care has to be taken while linearizing these terms.

To determine the equilibrium point a0 to be used for linearization we solve a nonlinear
algebraic matrix equation for the unactuated case γ=0. Eq. (2.18) can be recasted for the
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unactuated part as:

f (a) :=C+La+




aTQ1a
...

aTQNa


. (5.7)

In this study a Newton’s iterative method is used to calculate the equilibrium point a0

using the following algorithm:

ak+1=ak− J−1(ak) f (ak), (5.8)

where J(a) is the Jacobian matrix: J = ∂ f (a)
∂a . Also note that the solution of the Newton

method (Eq. (5.8)) depends on initial conditions and is not unique. To find the equilib-
rium point, we have chosen the initial conditions of the dynamical system at t= 0. On
using a linearization at the origin, the plant model can be written in the form (refer to
appendix for details)

˙̃a= Ãã+ B̃γ, p̃= C̃ã. (5.9)

5.3 Controller

After linearizing the plant, one can perform the feedback control. The full plant, control
and estimator model are shown in Fig. 13. The model for the controller is given by the
equations for a LQG design as

ȧ= Ãa+ B̃γ+w1 , y= C̃a+w2 . (5.10)

where for the sake of clarity we denote a= ã and y= p̃. The controller noise w1 and the
measurement noise w2 are assumed to be uncorrelated, zero mean, white Gaussian pro-
cesses with modelled spectral densities Q1 and Q2. In this work the matrices Q1 and Q2



matrices are set to identity. We also introduce the noise perturbation vector w=[w1 w2].
The response of the state can be separated into three components, the natural response
a0(Ã,a(0);t) which depends on the eigenvalues of the main plant matrix Ã and on the
initial condition a(0), the response to a given control γ(t) denoted by aγ(Ã,B̃,γ;t) and
the response to the noise w1 given by aw(Ã,w1;t). The solution of the plant model (5.10)
can be written as

a(t)= e Ãta(0)+
∫ t

0
e Ã(t−τ) B̃ γ(τ) dτ+

∫ t

0
e Ã(t−τ) w1(τ) dτ

=a0(Ã,a(0);t)+aγ(Ã,B̃,γ;t)+aw(Ã,w1;t). (5.11)

Assuming a full information state, the feedback law is given by

γ=−Kc a, (5.12)

where the matrix Kc is chosen so as to stabilize the plant and minimize the quadratic cost
functional given by:

J =
∫ T

0

(
aTWa+ℓ

2γ2
)

dt, (5.13)

where W is a weight matrix (here it is identity) and ℓ represents the cost of the control.
By a simple variational approach, it can be demonstrated that the gain vector Kc is given
by

Kc=
1

ℓ2
B̃TX, (5.14)

where X is the solution of the steady Riccati equation to get infinite horizon stabilization:

ÃTX+XÃ−
1

ℓ2
XB̃B̃TX+W=0. (5.15)

5.4 Observer

In many cases the state a is known only from a limited number of output measurements
y, and must be built from an observation ŷ which is an approximation of the real value
of the measurement y. Denoting â the approximation of the state, the observer equations
can be written as:

˙̂a= Ãâ+ B̃γ+Ko(y− ŷ), ŷ= C̃â. (5.16)

The observer gain matrix Ko is obtained by solving the Ricatti equation for Y and the
observer matrix C̃ and is given by

ỸAT+ ÃY−YC̃TC̃Y+Q2=0. (5.17)

As described in [39] the observer problem is dual of the controller problem described in
(5.15). The estimation gain Ko is obtained finally as

Ko =YC̃T. (5.18)



5.5 Stabilization of the full system

The full system for the controller and observer, defined in terms of the state and the
estimator error ea= a− â, with the state denoted by x=[a, ea], can be written as:

ẋ=Atx+Dtw, (5.19)

where

At=

[
Ã− B̃Kc B̃Kc

(0)dimÃ Ã−KoC̃

]
, Dt=

[
Id 0
Id −Ko

]
.

To get the system the feedback is applied on the observer state, â, as γ =−Kc â. The
eigenvalue of the full matrix At are the same as the eigenvalue of the matrices Ã− B̃Kc

and Ã−KoC̃, and are chosen stable by the Riccati equations. In the absence of any noise,
the state errors goes to zero in the infinite horizon, hence the estimation state â goes to
the real state a, and in the same way, the observer error ey = y− ŷ= C̃ea goes to zero. In
presence of Gaussian noise w, errors ea and ey remains under a given threshold, and are
functions of the correlation matrices Q1 and Q2 as stated in [40]. Following the notation
of (5.11), the solution can written as:

x(t)= x0(At,x(0);t)+xw(At,Dtw;t),

where ||x0||→0 when t→∞.

5.6 Application to cavity flow

The control has been designed for different values of the cost ℓ ∈ [0.01,5000], and the
result was found to be roughly independent of the value of ℓ. Finally the value of ℓ= 1
was chosen for this study. In Fig. 16 the eigenvalues of the open loop matrix Ã and the
closed loop matrix Ã− B̃Kc are represented.

The feedback control clearly mirrors the unstable eigenvalues, with dominant eigen-
values of the closed loop λmax=−0.038±i2.26. For values of ℓ>5000, it seems numerically
difficult to use the Matlab system toolbox for the solution of the Ricatti equation, to find
an accurate and stable eigenvalue of Ã− B̃Kc.

The value of the feedback gain ||Kc||≈950 seems quite large comparing to some usual
experimental or numerical data. When ℓ→∞ the cost of the control goes to zero and the
system can not be stabilized. In the same manner the norm of the gain goes to zero, sim-
ilarly when ℓ is small, the efficiency increases due to the large amplitude of the control.
However in practical cases the value of the control that can be fed into the actuator is
limited by a range of the input signal as a large gain may damage the actuator [12].

To scale down the large gain and to decrease the amplitude of the control, a new
parameter α is introduced such that γα(t)= αKc with α∈ [0,1.1]. In Fig. 17 the real part
of the largest eigenvalue of Ã−αB̃Kc is plotted with respect to α. The value of α = 1
corresponds to the optimal control, while α=0 corresponds to the uncontrolled case.
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Figure 16: Circle: eigenvalues of the plant; (o): eigenvalues of Ã; (+): eigenvalues of Ã− B̃Kc.
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The value of α=0.5 corresponds to the stability limit of the controlled system, and is
the result of mirroring the unstable eigenvalues about the imaginary axis. It means that
to stabilize the plant, the norm of the gain control vector should be at least equal to 475,
which is a large value for physical application.

The observer response is directly related to the largest eigenvalue of the matrix Ã−
KoC̃. For our case we found a real value of−0.45 which is sufficient to ensure the decrease
of the estimation errors ea with time. To determine the optimal control input γ(t)opt,
we solve the full system (Eq. (5.19)) and we use the feedback law γ(t)opt =−Kc(a−ea).
To remind of the overall procedure, a simulation without control is performed, and the
unactuated ROM model is constructed using a Galerkin projection. The model is further
calibrated as explained in Section 3.2 to avoid the divergence of solution when integrated
in time. To introduce the effect of actuation, the high fidelity model is forced with a chirp
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Figure 19: Spectra of the initial chirp.

excitation of the form

γg(t)=A1sin(2πSt1t)×sin(2πSt2t−A2sin(2πSt3t)) (5.20)

at the upstream corner of the cavity where A1=0.1, A2=27, f1=1/60, f2=2/3, f3=1/30.
The form of the excitation is shown in Fig. 18.

The spectra of the chirp is represented Fig. 19 depicts a large spectral band in the
range 0.2−1.5 with a concentration around the value of 1.5.

300 snapshots are sampled in the time interval t∈ [0,T] with T=15, corresponding to
half the period of excitation of the full chirp. The actuated mode and the plant model are
constructed with the help of these realizations. The plant model with the input γg(t) is
simulated. The feedback law γ(t)=−Kcag is built from the response of the plant ag(t):

γ(t)=−Kc

(
e Ãta(0)+

∫ t

0
e Ã(t−τ) B γg(τ) dτ

)
. (5.21)

The new updated control is found to be of large magnitude max γ(t)=Gmax≈250. The
evolution of the final optimal control in comparison with the initial solution is as shown
in Fig. 20.

A curve fitting approach demonstrates that γ(t) is given by

γ(t)=Gmaxsin(ωt+ϕ), (5.22)

where ω = 2.27, corresponding to a non-dimensional frequency f = 0.3617 and a phase
ϕ=−1.406. The frequency is in good approximation to the imaginary part of the largest
eigenvalue of the controlled plant (matrix Ã− B̃Kc). As is seen from (5.21), the gain vec-
tor Kc acts as a filter and signals out the frequency which correspond to the shear layer
instability of the second Rossiter mode.

To avoid numerical divergence of the numerical solution of the Navier-Stokes equa-
tions with the introduction of control, the amplitude (gain) G0 of any control is set to a
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maximum value of G0 = 0.08. So the updated of control is of the same form as γ(t) but
with an amplitude G0. The power spectral density for the vertical component of velocity
at a point in the shear layer is compared with the simulation from the unactuated case as
shown in Fig. 21 and shows a decrease in amplitude of the second Rossiter mode.

However there is an increase in amplitude at lower frequency due to the effect of
actuation as we add energy to the flow. The additional energy goes in furthering the
impingement length of the shear layer on the downstream cavity edge, thereby reduc-
ing the strength of the pressure signals propagating upstream. The increase in the lower
frequency does not correspond to any acoustic modes. The full system response corre-
sponding to (5.19) is shown in Fig. 22 showing an asymptotic stability.

The errors are plotted in Fig. 23, also the response of the observer model is shown in
Fig. 24.
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The response of the observer shows that the state for the pressure goes to zero asymp-
totically, but we find large values of gain for the short period of the DNS simulation,
where we implement the control, which necissates the scaling of the final control intro-
duced.

6 Conclusion

In this work different tools of reduced order modelling for the simulation and control
fluid systems with instabilities has been presented with an application to cavity flow.
The methods presented in this work for the case of a cavity are as well applicable to
other systems with instabilities. Numerical simulations were performed to obtain the
variables of the isentropic compressible model, which was used to construct the POD
Galerkin based reduced order model. Results for the cavity flow configuration has been
presented. The extension of the ROM to the actuated case is obtained by solving an
optimal problem for capturing the dynamics not captured by the unactuated modes. A
new error to measure the effect of actuation on the mean flow has been proposed.

Calibration of the ROM is performed using a Tikhonov based regularization obtained
from a sensitivity analysis to obtain an accurate representation of the dynamics. It is also
shown that the model diverges for a long time of integration even after calibration, and
it is necessary to calibrate over a long period of time, especially when performing control
studies.

A feedback control law based on the estimation of the observer dynamics has been
presented. The observer matrix is constructed using a linear stochastic estimation. A
sensitivity study of the actuated dynamics has been performed to determine the relevant
terms in the linearization of the model. Finally an LQG based feedback law is obtained
to find the optimal solution. The optimal control law is shown to have a single frequency,
corresponding to the second Rossiter mode of the cavity flow. The LQG control provides
stabilization over infinite time horizon with a huge control amplitude, unrealistic to be
utilized in the Direct Numerical Simulation which are solved over a short time interval.
To resolve this problem, the control amplitude has been scaled down before introducing
in Direct Numerical Simulation. The control provides a decrease in spectra correspond-
ing to the second Rossiter mode.

As a future perspective it is observed that the POD modes which is an optimal rep-
resentation of the energy fields is not suitable to resolve the far field acoustic, one of the
extension of POD to include the effect of far field acoustic noise is the Most Observable
Decomposition, as demonstrated in [30] which represent a good choice of bases to per-
form control studies for acoustics.
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Appendix

To obtain the linearization equation (2.18) can be written as

f (a) :=C+La+




aTQ1a
...

aTQNa


+h1γ+



(h1

21jγ)
Ta

...
(hN

2Njγ)
Ta


. (A.1)

In this system the quadratic term γ2 is neglected. As the equilibrium point is unaltered
in the presence of a feedback, we introduce a perturbation ã= a−a0 to write the above
system with the perturbation and the equilibrium state:

˜̇a= ȧ=C+L(ã+a0)+



(ã+a0)TQ1(ã+a0)

...
(ã+a0)TQN(ã+a0)


+h1γ+



(h1

21jγ)
T(ã+a0)
...

(hN
2Njγ)

T(ã+a0)




=C+La0+




aT
0 Q1a0

...
aT

0 QNa0


+Lã+




ãTQ1a0+aT
0 Q1ã

...
ãTQNa0+aT

0 QN ã


+




ãTQ1ã
...

ãTQ1ã




+h1γ+



(h1

21jγ)
Ta0

...
(hN

2Njγ)
Ta0


+



(h1

21jγ)
Tã

...
(hN

2Njγ)
Tã


. (A.2)

Since a0 is the equilibrium point of the unactuated model it satisfies (5.7). The terms in
(A.2) can be rearranged as the function of the perturbation of the state ã as

˜̇a= L̃ã+




ãTQ1ã
...

ãTQN ã


+ h̃1γ+



(h1

21jγ)
Tã

...
(hN

2Njγ)
T ã


, (A.3)

where

L̃= L+




ãT
0 (Q

1+Q1)T)
...

ãT
0 (Q

N+QN)T)


, h̃1 =h1+



(h1

21j)
T

...
(hN

2Nj)
T


a0.

The observer model can be written with a perturbation p̃= p−p0 as:

p̃= p−p0= C̃a−C̃a0= C̃ã. (A.4)

The plant model (5.9) is obtained by taking Ã= L̃ and B̃= h̃1.
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