Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes - Archive ouverte HAL
Article Dans Une Revue Nature Communications Année : 2013

Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes

Résumé

The optical properties of single-wall carbon nanotubes are very promising for developing novel opto-electronic components and sensors with applications in many fields. Despite numerous studies performed using photoluminescence or Raman and Rayleigh scattering, knowledge of their optical response is still partial. Here we determine using spatial modulation spectroscopy, over a broad optical spectral range, the spectrum and amplitude of the absorption cross-section of individual semiconducting single-wall carbon nanotubes. These quantitative measurements permit determination of the oscillator strength of the different excitonic resonances and their dependencies on the excitonic transition and type of semiconducting nanotube. A non-resonant background is also identified and its cross-section comparable to the ideal graphene optical absorbance. Furthermore, investigation of the same single-wall nanotube either free standing or lying on a substrate shows large broadening of the excitonic resonances with increase of oscillator strength, as well as stark weakening of polarization-dependent antenna effects, due to nanotube-substrate interaction.
Fichier principal
Vignette du fichier
ncomms3542.pdf (610.97 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00925394 , version 1 (03-02-2021)

Identifiants

Citer

J.-C. Blancon, Matthieu Paillet, Huy-Nam Tran, X. T. Than, S. A. Guebrou, et al.. Direct measurement of the absolute absorption spectrum of individual semiconducting single-wall carbon nanotubes. Nature Communications, 2013, 4, pp.2542. ⟨10.1038/ncomms3542⟩. ⟨hal-00925394⟩
62 Consultations
41 Téléchargements

Altmetric

Partager

More