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Smooth Gevrey normal forms of vector fields near a fixed point

Laurent Stolovitch ∗

January 7, 2014

Abstract

We study germs of smooth vector fields in a neighborhood of a fixed point having
an hyperbolic linear part at this point. It is well known that the “small divisors” are
invisible either for the smooth linearization or normal form problem. We prove that
this is completely different in the smooth Gevrey category. We prove that a germ of
smooth α-Gevrey vector field with an hyperbolic linear part admits a smooth β-Gevrey
transformation to a smooth β-Gevrey normal form. The Gevrey order β depends on
the rate of accumulation to 0 of the small divisors. We show that a formally linearizable
Gevrey smooth germ with the linear part satisfies Brjuno’s small divisors condition can
be linearized in the same Gevrey class.

Formes normales Gevrey lisses de champs de vecteurs au voisinage
d’un point fixe

Résumé

Nous étudions des germes lisses (i.e. C∞) de champs de vecteurs au voisinage d’un
point fixe en lequel la partie linéaire est hyperbolique. Il est bien connu que les petits
diviseurs sont “invisibles” dans les problèmes de linéarisation ou de mise sous forme
normale lisses. Nous montrons qu’il en est tout autrement dans la catégorie Gevrey
lisse. Nous montrons qu’un germe de champ de vecteurs α-Gevrey lisse ayant une par-
tie linéaire hyperbolique au point fixe admet une transformation β-Gevrey lisse vers une
forme normale β-Gevrey lisse où l’indice β dépend de la vitesse d’accumulation vers zéro
des “petits diviseurs”. De plus, si le germe de champ de vecteurs, formellement linar-
isable, est Gevrey lisse et admet une partie linaire vrifiant la condition dioophantienne
de Brjuno alors il est linarisable dans la mme classe Gevrey.

Keywords : Hyperbolic dynamical systems, normal forms, linearization, small divisors, res-
onances, Gevrey classes.
Mots-clés : Systèmes dynamique hyperbolique, formes normales, linéarisation, petits di-
viseurs, résonances, classes Gevrey.
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1 Introduction

This article is concerned with the local behavior of solutions of germs of vector fields in a
neighborhood of a fixed point in Rn. More precisely, we are interested in the problem of
classification under the action of the group of germs of diffeomorphisms preserving the fixed
point (which will be chosen to be 0 once for all). If X is a germ of smooth (i.e. infinitely
continuously differentiable) vector field and φ is a germ of diffeomorphism at the origin,
then the action of φ on X is defined to be : φ∗X := Dφ(φ−1)X(φ−1). The space of formal
diffeomorphisms also acts on the space of formal vector fields by the same formula. Since
Poincaré, one of the main goal is to transform such a vector field to a new one, a model,
which is supposed to be easier to study. Then, one then expects to obtain geometric and
dynamical informations on the model and then pull them back to the original problem us-
ing the inverse transformation. So, the more regular (that is Ck, smooth, analytic, ...) the
transformation is, the more faithful the information will be.

Let us consider a (nonzero) linear vector field L =
∑n

i=1

(
∑n

j=1 ai,jxj

)
∂
∂xi

of Rn. We

will consider smooth nonlinear perturbations of L, that is germs of vector fields of the form
X = L + R at the origin, where R is a smooth vector field vanishing at 0 as well as its
derivative. Such a vector field will be said formally linearizable if there exists a formal
change of coordinates xi = yi + φ̂i(y), i = 1, . . . , n. such that the system of differential
equations dxi

dt =
∑n

j=1 ai,jxj + Ri(x), i = 1, . . . , n can be written as dyi
dt =

∑n
j=1 ai,jyj, i =

1, . . . , n. It is well known [Arn80] that, if L =
∑n

i=1 λixi
∂
∂xi

and if there is no multiindex
Q = (q1, . . . , qn) ∈ Nn with |Q| := q1 + · · · + qn ≥ 2 such that

∑

j=1 qjλj = λi for some
1 ≤ i ≤ n, then any nonlinear perturbation of S is formally linearizable. We say, in this
situation, that there is no resonances. What about the regularity of the transformation ?
Is it possible to find a convergent or smooth linearization ? One of the first and main result
in this problem is the following theorem :

Theorem 1.1 (Sternberg linearization theorem). [Ste58] Assume that L is hyperbolic

(i.e. the eigenvalues of the matrix (ai,j) have nonzero real parts). Let X = L+R be a germ
of smooth nonlinear perturbation of L. If X is formally linearizable then X is also smoothly
linearizable; that is, there exists a germ of smooth diffeomorphism fixing 0 which conjugate
X to L.

We also refer to [Cha86b, Cha86a] for results and proofs in these circle of problems.
In the analytic category, the answer to the problem is not that simple : it involves the

small divisors problem; that is, the rate of accumulation to 0 of the nonzero numbers
∑

j=1 qjλj − λi where the λi’s are the eigenvalues of the linear part. Let us define Bruno
Diophantine condition :

(ω) −
∑

k≥0

lnωk

2k
< +∞

where ωk = inf{|(Q,λ)−λi| 6= 0, 1 ≤ i ≤ n, Q ∈ Nn, 2 ≤ |Q| ≤ 2k}. One of the main result
in the analytic category is the following :

Theorem 1.2 (Bruno-Siegel linearization theorem). [Bru72] Assume that S =
∑n

i=1 λixi
∂
∂xi

satisfies Bruno condition (ω) Let X = S + R be a germ of nonlinear analytic perturbation
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of S in a neighborhood of 0. If X is formally linearizable, then it is also analytically lin-
earizable. That is, there is a germ of analytic diffeomorphism fixing the origin and which
conjugate X to S.

C.L. Siegel [Sie42] was the first to prove such a statement under a stronger Diophantine
condition, namely Siegel condition of order τ ≥ 0 : there exists c > 0 such that, for all
Q ∈ Nn with |Q| ≥ 2 for which 0 6= |(Q,λ) − λi|, then

|(Q,λ)− λi| ≥
c

|Q|τ . (1)

Although we don’t know if condition (ω) is necessary in order to have analycity of the
linearizing transformation in dimension greater than 2 (in dimension 2, this result is a
consequence of Yoccoz theorem), it is easy to construct counter-example to convergence
when the eigenvalues strongly violate Siegel condition (1).

Theorem 1.1 shows that small divisors are invisible in the smooth category.
One of the main result of this article is to show that is not the same in the smooth Gevrey
category (see definition A.1 in appendix A). We first consider a germ of smooth α-Gevrey
non-linear perturbation of an hyperbolic linear part which is formally linearizable. We

shall show that the small divisors affect the Gevrey character of the data : not

only we show that there exists a germ of smooth Gevrey linearization at the

origin but its Gevrey order depends on the behavior of the small divisors. Let
us first give few definitions.

1.1 Definitions

Definition 1.3. Let Ω be an open set Rn and α ≥ 1. A smooth complex-valued function f
on an open set Ω of Rn is said to be α-Gevrey if for any compact set K ⊂ Ω, there exist
constants M and C such that, for all k ∈ Nn,

sup
x∈K

|Dkf(x)| ≤MC |k||k|!α.

Definition 1.4. A formal power series f̂ =
∑

Q∈Qn fQx
Q is said to be β-Gevrey if there

exists positive constants M,C such that |fQ| ≤MC |Q|(|Q|!)β .
Remark 1.5. The Taylor expansion at the origin of a smooth α-Gevrey function is a
(α− 1)-Gevrey power series.

Definition 1.6. A germ of smooth function at a compact set K is said to be flat on K is
all its derivative vanish on K.

1.2 Statements

Our first main result is :

Theorem 1.7. Let β ≥ α ≥ 1. Assume that the linear part S is hyperbolic and satisfies to
the following condition :

(ωβ,α) : lim sup
k→+∞



−2

k∑

p=0

lnωp+1

2p
− 1

2k
ln(2k!)β−α



 < +∞. (2)
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Let X = S+R be a germ of smooth α-Gevrey nonlinear perturbation of S in a neighborhood
of the origin of Rn. If X is formally linearizable, then there exists a germ of smooth β-
Gevrey diffeomorphism linearizing X at the origin.

Corollary 1.8. If Brjuno condition (ω) is satisfied, then any hyperbolic smooth α-Gevrey
vector field which is formally linearizable, is smoothly α-Gevrey linearizable.

Corollary 1.9. If Brjuno series is divergent as 1
2k

ln(2k!)β−α, then any hyperbolic smooth
α-Gevrey vector field which is formally linearizable, is smoothly β-Gevrey linearizable.

What happens when X is not formally linearizable ? It is possible, via a formal diffeo-
morphism, to transform X into a (a priori formal) model, called a normal form.

Definition 1.10. Let S =
∑n

i=1 λixi
∂
∂xi

be a diagonal linear vector field of Rn. A formal
vector field U is a normal form with respect to S if it commutes with S : [S,U ] = 0, where
[., .] denotes the Lie bracket of vector fields.

An analytic perturbation of S does not have, in general, an analytic transformation
to a normal form. In fact, besides the small divisors condition, one also needs to impose
some algebraic conditions on the normal form (“complete integrability condition”) in order
to obtain the holomorphy of a normalizing transformation. These phenomena have been
studied in [Bru72, Sto00, Sto05, Vey79, Vey78, Ito89, Zun05]. For a recent survey and
lecture note, we refer to [Sto09, Sto08]. One of the main problem was then to quantify this
generic divergence : how far from convergence a formal transformation to a normal form
can be ? The fundamental problem was solved recently by G. Iooss and E. Lombardi [IL05]
and then generalized by E. Lombardi et L. Stolovitch [LS10]. They proved that a nonlinear
analytic perturbation of a linear vector field satisfying Siegel condition admits a formal
Gevrey transformation to a formal Gevrey normal form. The Gevrey order depends on the
rate of accumulation to zero of the small divisors. Since this is just at the formal level,
this is not suitable to get dynamical nor geometrical information. So we wanted to know
whether we could find a genuine smooth transformation having these Gevrey properties.
This is the goal our second main result deals with the conjugacy problem to a normal form
in the Gevrey category :

Theorem 1.11. Let α ≥ 1. Assume that S is an hyperbolic linear diagonal vector field
satisfying to Siegel condition of order τ . Let X = S + R be a smooth α-Gevrey nonlinear
perturbation of S, then there exists a germ of smooth (α+ τ +1)-Gevrey conjugacy of X to
a germ of smooth (α+ τ + 1)-Gevrey normal form at the origin.

The following presentation as been sugested by M. Zhitomirskii 1:

Corollary 1.12. Let X be a α-Gevrey vector field as in the previous theorem and let
β := α+ τ + 1. Then, for any smooth β-Gevrey flat vector field Z at the origin, X + Z is
smoothly β-Gevrey conjugate to X.

Proof. According to the previous theorem, there exists a smooth β-Gevrey diffeomorphism
Φ that conjugates X to a smooth β-Gevrey normal form N . Moreover, Z̃ := Φ∗Z is a

1added in proof
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smooth β-Gevrey flat vector field in a neighborhood of the origin. Hence, according to (8),
there exists a smooth β-Gevrey diffeomorphism Ψ that conjugates N + Z̃ back to N . As a
consequence, Ψ ◦ Φ∗(X + Z) = Φ∗X.

In fact, we will prove a stronger version of these two theorems since we will not assume
the linear part to be “diagonal”.

In these two results, one sees the impact of the small divisors on the Gevrey

order of the conjugacy to a normal form (which is the linear part in the first case).
This connection between small divisors and Gevrey character appeared also in the con-

text of holomorphic saddle-nodes [BS07]. In connection with KAM problem, G. Popov
already considered smooth Gevrey normal form [Pop00, Pop04]. He constructs smooth con-
jugacy of Hamiltonians to smooth Gevrey normal form up to an exponentially small

remainder. One of the main goal of this article is to show that, under the hyperbolic-
ity condition, one can get rid of this remainder, thus obtaining a genuine smooth Gevrey
conjugacy to a genuine smooth Gevrey normal form.

We have gathered in appendix A, all the results about Gevrey functions and formal
power series we use.

1.3 Idea of the proof

Let us give a sketch of the proof. The first ingredient are recent results about the existence
of a formal Gevrey transformation to a formal Gevrey normal form. For the first theorem,
we shall use the theorems by Marmi-Carletti[CM00] and by Carletti[Car03] that says that
there is a formal (β − 1)-Gevrey linearization. For the second theorem, we use the results
by Iooss-Lombardi[IL05] and by Lombardi-Stolovitch[LS10] that says there exists a formal
(α + τ)-Gevrey transformation to a formal (α + τ)-Gevrey formal form N̂ . Our second
ingredient is a Gevrey version of the Whitney extension theorem due to Bruna : we can
realize these formal Gevrey transformation and normal form as the Taylor expansion at
the origin of germs of smooth Gevrey objects at the origin. The realization of the formal
normal form as the Taylor expansion of a smooth normal form is not just an application
of Bruna theorem. Indeed, we have by definition [S, N̂ ] = 0. If Y is any germ of smooth
(α + τ + 1)-Gevrey vector field at the origin “realizing” N̂ , there is no reason to have also
[S, Y ] = 0. So, in order to find a smooth normal form realizing N̂ , we have first to solve
the cohomological equation [S,U ] = −[S, Y ] where U is the unknown and [S, Y ] is flat.
To do so, we already have to apply our main “sub-theorem” (theorem 2.8) that solves the
cohomological equation with flat Gevrey data right hand side. Then, N := Y + U will be
a smooth (α+ τ +1)-Gevrey normal form realizing N̂ . In that case, we set β := α+ τ +1.

We shall then show that there exists a germ of smooth β-Gevrey diffeomorphism φ (resp.
normal form N which is S in the first case) at the origin such that R := φ∗X−N is a germ
of smooth flat β-Gevrey vector field at the origin. The main problem now is to show that we
can get rid of the flat remainder by the mean of a germ of β-Gevrey smooth diffeomorphism
ψ such that ψ − Id is flat at the origin : ψ∗(N + R) = N . This will be solved also by
theorem 2.8. Since the composition of two β-Gevrey maps is also a β-Gevrey map, we will
obtain a smooth β-Gevrey conjugacy to a normal form (ψ ◦ φ)∗X = N . In order to prove
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theorem 3.2 (theorem 2.8 is special case of it), we shall follow and improve the estimates
of the proof that R. Roussarie gives for this problem in the smooth case [Rou75]. We shall
also give a Gevrey version of the stable and unstable manifold theorem.

2 Formal Gevrey conjugacy

Let us recall some recent results about formal normalization.
First of all, we recall some facts from [LS10, LS09]. Let us define a scalar product on

the space of polynomials as follow : < xQ, xP >= Q!
|Q|! if P = Q ∈ Nn and 0 otherwise

[IL05, LS10, Fis17]. As usual, Q! = q1! · · · qn! and xQ = x
q1
1 · · · xqnn . It is known that a

formal power series
∑

k fk where fk is an homogeneous polynomial of degree k defines a
germ of analytic function at the origin if and only if there exists a c > 0 such that, for all k N,
|fk| ≤ ck [Sha89] where |fk| denotes the norm with respect to the scalar product. This means
that , if fk =

∑

Q∈Nn,|Q|=k fQx
Q, then |fk|2 =

∑

Q∈Nn,|Q|=k |fQ|2Q!
k! . The induced scalar

product on the space of polynomial vector fields is defined as : < X,Y >=
∑n

i=1 < Xi, Yi >

where we have written X =
∑n

i=1Xi
∂
∂xi

. Let L =
∑n

i=1

(
∑n

j=1 ai,jxj

)
∂
∂xi

be a linear vector

field of Rn. Let Hk be the space of homogeneous vector fields of degree k. Let d0 : Hk → Hk

be the linear operator d0(U) := [L,U ] where [., .] denotes the Lie bracket of vector fields.
We define the box operator �k := d0d

t
0 where dt0 denotes the transpose of d0. It is known

[Bel79, ETB+87] that dt0|Hk
= 1

k! [L
t, .] where Lt :=

∑n
i=1

(
∑n

j=1 aj,ixj

)
∂

∂xi
. Let us define

ak := min
√
λ the minimum is taken over the set σk of nonzero eigenvalues λ of �k. We

shall say that L satisfies Siegel condition of order τ if there exists a constant c such
that, for all k ≥ 2,

ak ≥ c

kτ
. (3)

Remark 2.1. If L =
∑n

i=1 λixi
∂
∂xi

, then ak is the minimum of the nonzero |(Q,λ) − λi|’s
for all Q ∈ Nn with |Q| = k + 1 and 1 ≤ i ≤ n.

Theorem 2.2. [IL05] If X = L + R is a nonlinear analytic perturbation of L and if L
satisfies Siegel condition of order τ , then there exists a (1 + τ)-Gevrey formal conjugacy of
X to a formal (1 + τ)-Gevrey normal form.

This result does appear under this form in the aforementioned article. Although, it has
been generalized to perturbations of quasi-homogeneous vector fields [LS10, LS09], we only
use our version for perturbation of linear vector fields.

Theorem 2.3. [LS10, LS09] If X = L + R is a nonlinear smooth α-Gevrey perturbation
of L and if L satisfies Siegel condition of order τ , then there exists a (α+ τ)-Gevrey formal
conjugacy of X to a formal (α+ τ)-Gevrey normal form.

The proof amount to find a formal diffeomorphism Id +
∑

k≥1Uk where Uk is a homo-
geneous polynomial vector field of degree k + 1 such that

|Uk| ≤Mk!τ+αck
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Here
∑
ckt

k is a formal solution of nonlinear differential equation with an irregular singu-
larity at the origin which satisfies ck ≤Mk! (see [LS10][theorem 6.4, remark 6.7]).

Carletti and Marmi in dimension 1 [CM00] and then Carletti in any dimension [Car03],
have studied the problem of formal linearization of formal Gevrey vector fields and diffeo-
morphisms. The main result can be summarized as follow :

Theorem 2.4. [Car03] Let β ≥ α ≥ 0. Assume that the linear part S =
∑n

i=1 λixi
∂
∂xi

satisfies to the following condition :

(ωβ,α) : lim sup
k→+∞



−2
k∑

p=0

lnωp+1

2p
− 1

2k
ln(2k!)β−α



 < +∞. (4)

Let X̂ = S + R̂ be a formal α-Gevrey perturbation of S. If X̂ is formally linearizable, then
there is an β-Gevrey formal linearization.

In fact, in the aforementioned article, the condition of “non resonances” is assumed in
order to have formal linearization.

Corollary 2.5. • If the linear part S satisfies to Bruno condition (ω) and if the formal
α-Gevrey perturbation of S is formally linearizable, then there exists a α-Gevrey formal
transformation to the linear part.

• Assume that the linear part S satisfies to

lim sup
k→+∞



−2
k∑

p=0

lnωp+1

2p
− 1

2k
ln(2k!)β



 < +∞.

Let X = S+R be a non-linear analytic perturbation of S. If X is formally linearizable,
then there is a β-Gevrey formal linearization.

Proof. In the first case, apply theorem 2.4 with α = β. In the last case, set α = 0.

The proof when α = 0 amount to find a formal diffeomorphism Id+
∑

k≥1 Uk such that

|Uk| ≤ ηkck

where
∑
ckt

k is a formal solution of analytic implicit function problem (see [LS10][lemma
5.9]), hence ck ≤ mCk . Here, ηk is the sequence of positive numbers defined as follow :
η0 = 1, and for k > 0,

ak+1ηk = max
1≤µ≤k

max
k1+···+kµ+1+µ=k

ηk1 · · · ηkµ+1 .

In order to obtain the convergence, it is sufficient to assume that, for all positive integer
k, ηk ≤ ck for some positive constant c. If L is linear diagonal, then Bruno condition (ω)
precisely implies that this holds [Bru72, Sto94].

In order to obtain the α-Gevrey version with a general linear part L, if is sufficient to
consider instead the sequence ηk defined as follow : η0 = 1, and for k > 0,

ak+1ηk := max
1≤µ≤k

max
k1+···+kµ+1+µ=k

((µ+ 1)!)αηδ1 · · · ηδµ+1 .
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Proposition 2.6. Assume that there exists C > 0 such that for all k ∈ N∗,

ηk ≤ Ck(k!)β . (5)

Then, if the formal α-Gevrey perturbation of L is formally linearizable, then there is a
formal β-Gevrey linearization.

Proof. We just show how to adapt proof of [LS10][theorem 5.8] to Gevrey data. We refer
to this article for the full details. Let X = L + R be the nonlinear perturbation of L. Let
φ−1 = Id+U = Id+

∑

k≥1 Uk be a linearizing transformation. We have [L,U ] = R(I +U).
Thus, if we decompose into homogeneous components, we obtain the following estimate

∀δ ≥ 1,

(

min
λ∈σδ+1

√
λ

)

|Uδ | ≤ |{R(Id+ U)}δ |.

where {R(Id + U)}δ denotes the homogeneous polynomial of degree δ + 1 in the Taylor
expansion at 0. Let Rµ be the homogeneous polynomial of degree µ + 1 of the Taylor
expansion of R at the origin. We then denote by R̃µ the unique µ+1-linear map such that
R̃µ(x, . . . , x) = Rµ(x). We have

{R(Id+ U)}δ =







∑

µ>0

Rµ(Id+ U)







δ

=







∑

µ>0

R̃µ(Id+ U, . . . , Id+ U
︸ ︷︷ ︸

µ+ 1 times

)







δ

=
∑

µ>0

∑

δ1+···+δµ+1+µ=δ

R̃µ(Uδ1 , . . . , Uδµ+1)

where the δi’s are nonnegative integers and where we have set U0 := Id. Hence, since the
scalar product is sub-multiplicative [LS10][proposition 3.6], then

|{R(Id+ U)}δ | ≤
∑

µ>1

∑

δ1+···+δµ+1+µ=δ

‖R̃µ‖|Uδ1 | · · · |Uδµ+1 |.

Since, R is α-Gevrey, then there exists C > 0 such that ‖R̃µ‖ ≤ Cµ+1((µ + 1)!)α. Let us
define the sequence {σδ}δ∈N of positive numbers defined by σ0 := ‖Id‖p,0 and if δ is positive,

σδ :=
δ∑

µ>0

∑

δ1+···+δµ+1+µ=δ

Cµ+1σδ1 · · · σδµ+1

where the δi’s are nonnegative integers. As in [LS10][lemma 5.10], we can show that the
series

∑
σδt

δ converges in a neighborhood of 0. Moreover, we can show by induction
as in [LS10][lemma 5.9], that for all δ ≥ 1, |Uδ| ≤ ηδσδ. Hence, if (5) is satisfied then
|Uδ| ≤ Dδ(δ!)β for some positive D. This ends the proof.
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Lemma 2.7. If L is a diagonal linear vector field that satisfies Bruno-Carletti-Marmi
condition (ωβ,α), then it satisfies condition (5).

Proof. In fact, according to the estimate of [Sto94][p.1411] (or [Bru72][p.216-222]), we have
for 2l + 1 ≤ k ≤ 2l+1,

ηk−1 ≤ (k!)α
l∏

j=0

(
2

ωj+1

)2n
k
2l

.

Therefore, by taking the log, we have

log ηk−1 ≤ k




log (k!)α

k
+



−2n
l∑

j=0

lnωj+1

2j
+ 2n ln 2

∑

j≥0

1

2j







 .

As a conclusion, if Carletti-Marmi condition (ωα,β) holds, then for some constant C, we
have

log ηk−1 ≤ k

(
log (k!)β

k
+ C

)

and we are done.

Let us give an example showing that we can obtain the prescribed divergence. This
example is adapted from the one constructed by J.-P. Françoise [Fra95] to show the defect
of holomorphy of the linearization of an analytic perturbation of a linear vector field with
Liouvillian eigenvalues.

Let β ≥ α ≥ 0. Let us assume that the irrational number ζ is Liouvillian and that there
exist two sequences of positive integers (pn), (qn) both tending to infinity with n such that

∣
∣
∣
∣
ζ − pn

qn

∣
∣
∣
∣
<

1

qn(qn!)β−α
.

for some β ≥ 1. Then, let us consider the formal α-Gevrey function (unit)

f(x, y) =
1

1−∑(qn!)αxpnyqn
.

Let us consider the linear vector field S := x ∂
∂x − ζy ∂

∂y . Let us consider the following
formal α-Gevrey perturbation of S : X = f.S. It is formally linearizable. It is shown
in [Sto08][example 1.3.3] that the unique linearizing transformation x′ = x exp(−V (x, y)),

y′ = y exp(−W (x, y)) is given by V (x, y) =
∑ (qn!)α

pn−ζqn
xpnyqn . It is a formal power series

that diverges at least as a β-Gevrey series since (qn!)
β <

(qn!)α

pn−ζqn
. If furthermore we require

that a lower bound
c

qn(qn!)β−α
≤
∣
∣
∣
∣
ζ − pn

qn

∣
∣
∣
∣

(6)

is satisfied as well then the linearizing transformation is exactly β-Gevrey.
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2.1 Proof of the main theorems 1.7 and 1.11

Let β ≥ α ≥ 1 and let X = S + R be a smooth α-Gevrey nonlinear perturbation of
S in a neighborhood of the origin in Rn. Its Taylor expansion at the origin is a formal
(α − 1)-Gevrey power series. If Siegel condition (1) of order τ is satisfied, then, according
to theorem 2.3, there exists a formal (α + τ)-Gevrey diffeomorphism Φ̂ conjugating X to
a formal (α + τ)-Gevrey normal form N̂ . If condition (5) is satisfied and if X is formally
linearizable then, according to proposition 2.6, there exists a formal (β−1)-diffeomorphism
Φ̂ conjugating X to the linear part S. In both cases, we have Φ̂∗X = N̂ . In the first case,
we shall set β := α+ τ + 1. In the second case, we shall set N̂ := S. Hence, we shall prove
that there exists a germ of smooth β-Gevrey diffeomorphism conjugating X to a germ of
smooth β-Gevrey normal form (in the second case, this normal form is just S itself).

Both Φ̂ and N̂ have components which are (β−1)-Gevrey formal power series. According
to a Gevrey-Whitney theorem A.7 applied to K = {0}, there exists a germ of smooth β-
Gevrey diffeomorphism Φ (resp. germ of smooth β-Gevrey vector field Y ) which has Φ̂
as Taylor jet at the origin (resp. N̂). In the linearization case, we can choose Y to be
S, which is, of course, β-Gevrey. Hence, the Taylor jet at the origin of Φ∗X and that
of Y are equal. Since β ≥ α, X can be regarded as a germ of smooth β-Gevrey vector
field at the origin of Rn. Let us first recall that Φ∗X(y) = DΦ(Φ−1(y))X(Φ−1(y)). Since
Φ−1 is smooth β-Gevrey map [Kom79], then X ◦ Φ−1 is also smooth β-Gevrey vector field
(the composition of two smooth β-Gevrey mappings is also β-Gevrey smooth). Since the
derivative of a smooth β-Gevrey function is also β-Gevrey smooth and the product of two
smooth β-Gevrey functions is also β-Gevrey smooth, we proved that obtain that Φ∗X is a
germ of smooth β-Gevrey vector field.

All 1-parameter families of smooth functions or vector fields considered are

supposed to be defined on a same neighborhood of the origin.

We shall postpone the proof of the following theorem to the next section.

Theorem 2.8. Let {Xt}t∈[0,1] be a 1-parameter family of germs of smooth β-Gevrey vector
fields at the origin of Rn vanishing of 0. Assume that {Xt}t∈[0,1] is hyperbolic, uniformly in
t ∈ [0, 1]. Let {Yt}t∈[0,1] be a 1-parameter family of germs of smooth β-Gevrey flat vector
fields at 0. Then, the equations for all 0 ≤ t ≤ 1

[Xt, Zt] = Yt (7)

have a 1-parameter of germs of smooth β-Gevrey flat solutions {Zt}t∈[0,1].
Let us go back to the proof of our main theorems. The first problem we face is that

Y is not, a priori, a normal form. We will show that we can add to it a germ of smooth
flat β-Gevrey vector field U at the origin so that N = Y +U is a smooth β-Gevrey normal
form. In fact, since N̂ is a normal form, we have [S, Ŷ ] = 0. Let us set r := [S, Y ]. It
is a germ of smooth flat β-Gevrey vector field at the origin since derivation and products
preserve the Gevrey character. If the linear part S is hyperbolic, then theorem 2.8 (applied
with the constant family Xt = S, Yt = −r) shows that there exists a smooth flat β-Gevrey
vector field U such that [S,U ] = −r. Hence, [S, Y + U ] = 0 and N := Y + U is a smooth
β-Gevrey vector field admitting N̂ as Taylor expansion at the origin.

As a consequence, R := Φ∗X − N is a germ of smooth β-Gevrey vector field which
Taylor jet at the origin vanishes. We will then prove that, if the linear part is hyperbolic,

10



there exists a germ of smooth β-Gevrey diffeomorphism Ψ at the origin of Rn, infinitely
tangent to the identity at this point, such that

Ψ∗(N +R) = N. (8)

We will adapt the proof of R. Roussarie [Rou75] who solves equation (8) in the smooth
flat category. We apply the homotopic method (”la méthode des chemins”), that is we are
looking for a 1-parameter family of germs of smooth β-Gevrey diffeomorphisms {Ψt}t∈[0,1]
fixing the origin such that for all t ∈ [0, 1],

(Ψt)
−1
∗ N = N + tR. (9)

Let us first solve the (family of) cohomological equation

[N + tR,Zt] = R (10)

where Zt is the unknown family of flat vector fields. Since the family N + tR is hyper-
bolic at the origin and smooth β-Gevrey then, according to theorem 2.8, there exists a
family of germs of smooth β-Gevrey vector fields Zt solution of 10). It is then well known
([DLA06][section 2.7]) that the solution obtained by solving equation 10) will give the so-
lution to (9). Indeed, (Ψt)

−1 is defined to be the solution of (see [DLA06][lemma 2.21])

d(Ψt)
−1

dt
= Zt((Ψt)

−1). (11)

Then, according to Komatsu theorem A.8, the unique solution Ψ−1
t is a germ of smooth

β-Gevrey map uniformly in t ∈ [0, 1]. Hence, Ψt has the same property.
On the one hand, Ψ1 ◦ Φ is a germ of smooth β-Gevrey diffeomorphism at the origin.

On the other hand, it satisfies to

(Ψ1 ◦ Φ)∗X = (Ψ1)∗(Φ∗X) = (Ψ1) ∗ (N +R) = N.

Hence, Ψ1 ◦Φ is a smooth β-Gevrey conjugacy to a smooth β-Gevrey normal form and we
are done.

3 Solution of cohomological equations with smooth Gevrey

flat data

The goal of the section is to prove theorem 2.8. In fact, we shall prove a more general result.
Let F := Rp × {0} ∈ Rp ×Rn−p = Rn. If x = (x1, . . . , xn) denotes local coordinates, we

write x′ := (x1, . . . , xp) and x
′′ := (xp+1, . . . , xn); so that F = {xp+1 = · · · = xn = 0}.

All 1-parameter families of smooth functions or vector fields considered are

supposed to be defined on a same neighborhood of the origin.

Let 1 < α. Let G<−α(F ) (resp. G<−α
t (F )) be the ring of (resp. 1-parameter families

of) germs of smooth α-Gevrey functions at th origin which are flat on F (resp. uniformly

11



in t ∈ [0, 1]). Let G<−α
n (F ), resp. G<−α

t,n (F )) be the vector space of (resp. 1-parameter
families of) germs of smooth α-Gevrey vector fields at the origin which are flat on F (resp.
uniformly in t ∈ [0, 1]).

Definition 3.1. Let {Xt}t∈[0,1] be a 1-parameter family of germs of smooth vector fields
vanishing on F , uniformly in t ∈ [0, 1]. We shall say that Xt is non-degenerate hyper-

bolic transversally to F if its linear part at the origin of Rn can be written as

J1(Xt) =
n∑

i,j=p+1

ai,j(t)xi
∂

∂xj
+

p
∑

j=1

n∑

i=p+1

bi,j(t)xi
∂

∂xj

and if the eigenvalues λp+1(t), . . . , λn(t) of the matrix (ai,j(t))i,j=p+1,...,n have a nonzero real
part.

We shall prove the following result :

Theorem 3.2. Let {Xt}t∈[0,1] be a 1-parameter family of germs of smooth β-Gevrey vector
fields at the origin of Rn vanishing of F . Assume that {Xt}t∈[0,1] is non-degenerate hyper-

bolic transversally to F , uniformly in t ∈ [0, 1]. If ht ∈ G<−β
t (F ) and Yt ∈ G

<−β
t,n (F ) then

the equations
LXt(ft) = ht (12)

and
[Xt, Zt] = Yt (13)

have a solution ft ∈ G<−β
t (F ) and Zt ∈ G

<−β
t,n (F ) respectively.

We follow the scheme of the proof that R. Roussarie has done in the context of smooth
flat objects [Rou75][chapitre 1, section 2, p.37-45]. Theorem 2.8 corresponds to the case
where F = {0}.

3.1 Case of a contraction

This section is devoted to prove the previous theorem in the case where we have a normal
contraction to a subspace F . Namely, we prove the following

Proposition 3.3. Let F := Rp × {0} ∈ Rp × Rn−p as above. Let {Xt = X ′
t + X ′′

t }t∈[0,1]
be 1-parameter family of germs of smooth β-Gevrey vector fields at the origin of Rn. We
assume that

(a) X ′
t =

∑n
i=p+1X

′
i(t, x)

∂
∂xi

vanishes on F = {xp+1 = · · · = xn = 0}, and X ′
t is normally

contracting to F , that is the eigenvalues λp+1(t), . . . , λn(t) of its linear part at the
origin have a negative real part.

(b) X ′′
t =

∑p
i=1X

′′
i (t, x)

∂
∂xi

(it is not assumed to vanish on F ).

Then, equations (12) and (13) have solutions ft ∈ G<−β
t (F ) and Zt ∈ G

<−β
t,n (F ) respectively,

whenever ht ∈ G<−β
t (F ) and Yt ∈ G

<−β
t,n (F ).
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Proof. We can assume that Xt is defined on V = B1 ×B2 ⊂ Rp ×Rn−p for some open ball
B1(resp. B2) centered at 0 ∈ Rp (resp. Rn−p) for all t ∈ [0, 1]. Let us set ρ2 := x2p+1+· · ·+x2n.
Since X ′

t is normally contracting to F , uniformly in t ∈ [0, 1], there exist positive constants
c, C such that

−cρ2 ≤ LXt(ρ
2) ≤ −Cρ2

where LXt(ρ
2) denotes the Lie derivative of ρ2 along Xt.

Let ψ be a smooth β-Gevrey cutting function on Rp such that ψ ≡ 1 in 1
2B1, ψ ≡ 0 on

Rp \B1 and 0 ≤ ψ ≤ 1. Then, the vector field

Tt = X ′
t + ψX ′′

t (14)

still satisfies the same kind of estimates as Xt : (∗)− cρ2 ≤ LTt(ρ
2) ≤ −Cρ2. Let φTt

u (x) be
the flow of Tt at time u passing at x at u = 0. Then, for any x ∈ V ′ := 1

2B1 × B2 × [0, 1],
the half-nonnegative trajectory {φTt

u (x), u ≥ 0} is contained in V and, for all t ∈ [0, 1],
limu→+∞ φTt

u (x) ∈ B1 × {0}.
First of all, let us solve equation (12). As shown by R. Roussarie, the following integral

∀t ∈ [0, 1], ft(x) = −
∫ +∞

0
ht(φ

Tt
u (x))du (15)

defines a smooth function flat on F as soon as ht is. Moreover, this function is solution of

equation LTtft = ht for all t ∈ [0, 1] since we have LTtft(φ
Tt
u (x)) = dft(φ

Tt
u (x))
du .

We want to show that this integral preserves the Gevrey character. According to (∗),
we have

−cρ2(φTt
u (x)) ≤ dρ2(φTt

u (x))

du
≤ −Cρ2(φTt

u (x)).

Hence, the derivative with respect to u of ρ(φTt
u (x))e

cu
2 is nonnegative. Since its value at

u = 0 is ρ(x), we obtain the following inequality (we proceed in the same way for the upper
bound) :

ρ(x)e−
cu
2 ≤ ρ(φTt

u (x)) ≤ ρ(x)e−
Cu
2 . (16)

Let us show that the solution (15) is a smooth β-Gevrey function, uniformly in t. Accord-
ing to Komatsu theorem [Kom80], for each t, the flow φTt

u (x) is uniformly (in u) β-Gevrey
smooth. Therefore, by the composition lemma of Gevrey functions [Wag79], for all t ∈ [0, 1]
and u ≥ 0, ht(φ

Tt
u (x)) is also a smooth β-Gevrey function.

We shall omit to write the depdce on t and also we shall write φu(x) = φTt
u (x). As shown

by R. Roussarie, the derivative of the integrant converges uniformly in x in a neighborhood
of the origin when u→ +∞. Hence, for all v ∈ Rn, we have

Dkf(x).vk =

∫ +∞

0
Dk(h(φu))(x).v

kdu.

Let us apply Faa di Bruno formula [Wag99][p.44](see also [Cha08]), we obtain

Dk(h(φu))(x).v
k =

k∑

j=1

∑

i∈(N∗)j

|i|=k

k!

i!j!
(Djh)(φu(x)).(D

i1φu(x).v
i1 , . . . ,Dijφu(x).v

ij )
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where i! = i1! · · · ij ! and |i| = i1 + · · ·+ ij . Therefore, we have the following estimate

|Dk(h(φu))(x).v
k| ≤

k∑

j=1

∑

i∈(N∗)j

|i|=k

k!

i!j!
‖(Djh)(φu(x))‖|Di1φu(x).v

i1 | · · · |Dijφu(x).v
ij |

≤
k∑

j=1

∑

i∈(N∗)j

|i|=k

k!

i!j!
‖(Djh)(φu(x))‖‖Di1φu(x)‖ · · · ‖Dijφu(x)‖|v|i1+···+ij

Since φu is a β-Gevrey smooth function, for any compact set K ′ ⊂ V ′, there exists a positive
constant CK ′ such that supx∈K ′ ‖Drφu(x)‖ ≤ Cr

K ′(r!)β. Since h is a smooth β-Gevrey flat
function along F , we have (Djh)(πF (φu(x))) = 0 where πF denotes the projection onto
F = {zp+1 = · · · = zn = 0}. According to lemma A.3, we have for all 0 < λ < L, all J ∈ Nn

such that |J | = j,
∣
∣
∣
∂jh
∂xJ (φu(x))

∣
∣
∣ ≤ C‖ ∂jh

∂xJ ‖β,L−λ;V̄ exp
(

−ηρ(φu(x))−
1

β−1

)

for any 0 < η < (L − λ)β/(β−1) and C := (1 − η
(L−λ)β/β−1 )

−(β−1). Therefore, according to

lemma A.2, we obtain
∑

J∈Nn,|J |=j

∣
∣
∣
∂|J|h
∂xJ (φu(x))

∣
∣
∣ ≤ C exp

(

−ηρ(φu(x))−
1

β−1

) ∑

J∈Nn,|J |=j

∥
∥
∥
∂|J|f
∂Jy

∥
∥
∥
β,L−λ;V̄

≤ C exp
(

−ηρ(φu(x))−
1

β−1

)

j!βλ−jβ‖h‖β,L;V̄

Moreover, according to inequality (16), we have, for all k ∈ N,

exp

(

−ηρ(φu(x))
−

1
β−1

)

≤ exp

(

−η
(
ρ(x) exp(−Cu

2 )
)−

1
β−1

)

≤
(

ρ(x) exp(−Cu
2 )

ηβ−1

) k
β−1

Using the previous estimate with k = j, we finally obtain the following estimate

|Dk(h(φu))(x).v
k| ≤ |v|k‖h‖β,L;V̄ Ck

K ′C exp(−Cu
2 )

k∑

j=1

∑

i∈(N∗)j

|i|=k

k!

i!j!




ρ(x)

1
β−1

ηλβ





j

(j!)β(i!)β

According to lemma 2.6 of [SCK03], there exists a constant Hβ such that

∑

i∈(N∗)j

|i|=k

(i!)β−1

(k!)β−1
≤

H
j
β

(j!)β−1
.

Therefore, we obtain

k∑

j=1

∑

i∈(N∗)j

|i|=k

k!

i!j!
D

j
K(j + 1!)β(i!)β ≤ (k!)β

k∑

j=1




Hβρ(x)

1
β−1

ηλβ





j
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Since the series
∑k

j=1




Hβρ(x)

1
β−1

ηλβ





j

is converging if ρ(x) is small enough. Hence, we finally

obtain

|Dk(h(φu))(x).v
k | ≤ (k!)β |v|kEk

K ′e
−
Cu
2 (17)

for some positive constant EK ′ . Therefore, |Dk(h(φu))(x).v
k| is uniformly convergent (w.r.t.

x in K ′ in a small enough neighborhood) when u → +∞. Hence, the resulting function f
is a smooth β-Gevrey flat function along F on a neighborhood V ′′ of the origin.

Let us consider the cohomological equation (13). In order to solve it in neighborhood of
the origin, it is sufficient to find a 1-parameter family {Zt}t∈[0,1] of germs smooth β-Gevrey
vector fields such that (∗) [Tt, Zt] = Yt where Yt a given 1-parameter family of germs smooth
β-Gevrey vector fields at the origin which are flat along F and where Tt is defined by (14).
As above, we omit the dependence in t ∈ [0, 1]. Let γ(x, u) denotes the flow of T at time u
passing through x at u = 0. Following [DLA06], let us evaluate equation (∗) at the point
γ(x, u). We obtain :

DZ(γ(x, u))T (γ(x, u)) −DT (γ(x, u))Z(γ(x, u)) = Y (γ(x, u)).

Let us set V (x, u) := Z(γ(x, u)). Then it satisfies to

dV (x, u)

du
= DT (γ(x, u))V (x, u) + Y (γ(x, u)).

The classical theory of linear differential equations (cf. [Was87] for instance) then gives

V (x, u) = −
∫ ∞

0
F (x, τ)−1Y (γ(x, τ))dτ

where F (x, τ) is the fundamental solutions matrix of the linear homogeneous system :

dF (x, τ)

dτ
= DT (γ(x, τ))F (x, τ), F (x, 0) = Id.

According to Komatsu theorem A.8, γ(x, u) is a β-Gevrey function in x, uniformly in u.
Hence, DT (γ(x, τ)) is also β-Gevrey smooth as the composition of two β-Gevrey smooth
maps. Thus, again according to Komatsu theorem, both F (x, τ) and F (x, τ)−1 are smooth
β-Gevrey matrix-valued functions (uniformly in τ). As a consequence, the components of
F (x, τ)−1Y (γ(x, τ)) are a finite sum of function of the form f(x, τ)y(γ(x, τ)) where f(x, τ)
is a smooth β-Gevrey function and y is a smooth β-Gevrey function flat on F . Combining
estimate (17) together with Leibniz formula, we find that

|Dk(f(x, τ)y(γ(x, τ)).vk | ≤
∑

k1+k2=k

k!

k1!k2!
|Dk1(f(x, τ)).vk1 ||Dk2(y(γ(x, τ)).vk2 |

≤
∑

k1+k2=k

k!

k1!k2!
(k1!)

β |v|k1F k1
K (k2!)

β |v|k2Ek2
K ρ(x)e

−
Cu
2

≤ Gk
K |v|k(k!)βρ(x)e−

Cu
2
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for some positive constant GK . Therefore, as above,
∫∞
0 f(x, τ)y(γ(x, τ)dτ defines a smooth

β-Gevrey function, flat on F , in a neighborhood of the origin. As a consequence, the solution
of equation (∗) is also a smooth β-Gevrey vector field, flat on F , in a neighborhood of the
origin. This ends the proof of proposition 3.3.

3.2 Gevrey stable and unstable manifolds

It is well known that a smooth vector field near an hyperbolic fixed point admits a germ
of smooth stable and unstable manifold which are tangent to generalized eigenspaces Es

(resp. Eu) associated to eigenvalues with negative real part (resp. positive real parts). In
this section, we shall show that these manifolds are β-Gevrey smooth as soon as the vector
field considered is also β-Gevrey smooth (β ≥ 1).

Theorem 3.4. Let us consider the germ of smooth β-Gevrey vector field at the origin, an
hyperbolic fixed point :

dx

dt
= Ax+ g(x) (18)

where A is an hyperbolic matrix, g a smooth β-Gevrey vector field in a neighborhood of 0
with g(0) = 0, Dg(0) = 0. Let φt(w) denote its flow. Then, there exists a neighborhood V
of the origin such that

W s
loc = {x ∈ V | {t 7→ φt(x)} ∈ C1

b (R
+)}, W u

loc = {x ∈ V | {t 7→ φt(x)} ∈ C1
b (R

−)}

are smooth β-Gevrey manifolds passing through 0 and tangent respectively to Es, Eu. These
are the local stable and unstable manifolds respectively.

Proof. We follow the proof of Benzoni-Cavage [Ben07][p.42-45]. We consider the case of the
local unstable manifold. Let us define Z := C0

b (R
−) (resp. X := C1

b (R
−)) to be the space

of bounded continuous functions (resp. with bounded derivative) on R−, and the linear
continuous operator B : x ∈ X 7→ dx

dt −Ax ∈ Z. Let us define

S : Eu → X

w 7→ Sw = {t 7→ etAw}

and let P : X → X be the projector onto KerB. A solution x to (18) satisfying to
x(0) = w belongs to X if and only if Px = Sπu(w) and x1 = x − Px ∈ X1 := KerP

solves Bx1 = g(Sπu(w)+x1). Then, we can show [Ben07] that there exists a neighborhood
V1 ×W of (0, 0) in X1 × Eu and a C1 map χ from W to V1 such that for all w ∈ π−1

u (W),
equation (18) admits a unique solution x ∈ X with x(0) = w given by

x = Sζ + χ1(ζ), with ζ = πu(w)

Moreover, we have χ1(0) = 0 and Dζχ1(0) = 0. According to theorem A.8 [Kom80], since g
is β-Gevrey in a neighborhood of the origin, then x is also β-Gevrey in w uniformly in t. In
particular, the map ζ 7→ χ1(ζ)(0) is β-Gevrey in ζ. Therefore, the local unstable manifold

{w ∈ π−1
u (W) | t 7→ φt(w) ∈ X} = {w = Sζ + χ1(ζ)(0); ζ ∈ W}

is a smooth β-Gevrey manifold. The local stable manifolds is obtained considering X :=
C1
b (R

+), Z := C0
b (R

+) instead.

16



Remark 3.5. We can apply a linear change of coordinates so that Eu = {x1 = · · · = xp =
0} and Es = {xp+1 = · · · = xn = 0}. As a consequence, there are local β-Gevrey coordinates
(y1, . . . , yn) such that Ws

loc = {yp+1 = · · · = yn = 0}∩U and Wu
loc = {y1 = · · · = yp = 0}∩U

for some neighborhood U of the origin.

4 Proof of theorem 3.2

Let {Xt}t∈[0,1] be a 1-parameter family of germs of smooth β-Gevrey vector fields at the
origin of Rn vanishing of F (defined on same neighborhood of the origin). Assume that
{Xt}t∈[0,1] is non-degenerate hyperbolic transversally to F , uniformly in t ∈ [0, 1]. Let us
apply the Gevrey local stable and unstable manifold theorem 3.4 as well as remark 3.5 :
there is a family of good β-Gevrey change of variables in which F1 = {y1 = · · · = yp = 0}
and F2 = {yp+1 = · · · = yn = 0} are the unstable and stable manifolds of Xt respectively.

Let us decompose Xt as Xt = X ′
t + X ′′

t where X ′
t =

∑n
i=p+1Xt,i(y)

∂
∂yi

(resp. X ′′
t =

∑p
i=1Xt,i(x)

∂
∂yi

) is parallel to F1 (resp. F2).
Let us first solve equation (12) : Let ft be a family of germs of smooth β-Gevrey functions

flat at the origin. Next lemma allow us to decompose the family ft = ft,1 + ft,2 as the sum
of two families ft,1 and ft,2 which are flat on F1 and F2 respectively. It is a Gevrey version
of lemma 4 of [IY91] :

Lemma 4.1. Let Rn = Es ⊕ Eu be an arbitrary decomposition of Rn into direct sums.
Let f ∈ G<−β be a germ of smooth β-Gevrey function flat at the origin. Then, there exist
smooth β-Gevrey functions fs, fu in a neighborhood of the origin which are flat on Es and
Eu respectively such that f = fs + fu.

Proof. Let K be the compact set defined to be the intersection of a neighborhood of the
origin with Es ∪ Eu. Let f̃ = (fk)k∈Nn be the jet defined to be fk(x) = 0 if x ∈ K ∩ Es

and fk(x) = Dkf(x) if x ∈ K ∩ Eu. Since f is flat at 0, the functions fk are continuous.
Moreover, f̃ is a β-Gevrey-Whitney jet on K since f is a smooth β-Gevrey function. Thus,
according to theorem A.7, there exists a smooth β-Gevrey function f s such that Dkf s(x) =
fk(x) on K. Hence, it is flat on Es∩K. Let us define fu = f −f s. It is a smooth β-Gevrey
function which is flat on Eu ∩K.

Now, −X ′
t is normally contracting to F2 while X

′′
t is normally contracting to F1. In fact,

we have

Xt =

p
∑

i=1





p
∑

j=1

Xt,i,j(y)yj




∂

∂yi
+

n∑

i=p+1





n∑

j=p+1

Xt,i,j(y)yj




∂

∂yi

and the matrices (Xt,i,j(0))1≤i,j≤p and (Xt,i,j(0))p+1≤i,j≤n have eigenvalues with negative
and positive real parts respectively. Therefore, according to proposition 3.3, equation
L−X′

t−X′′
t
(h′t) = −ft,2 has a β-Gevrey solution h′t which is flat on F2. On the other hand,

equation LX′′
t +X′

t
(h′′t ) = ft,1 has a β-Gevrey solution h′′t which is flat on F1. As a conse-

quence, we have LXt(h
′
t + h′′t ) = ft and ht := h′t + h′′t is a family of germs of β-Gevrey

functions flat at the origin.
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We do the same reasoning in order to solve (13) : we decompose the family of β-Gevrey
flat vector fields Yt as the sum of Yt,1 and Yt,2 which are β-Gevrey flat on F1 and F2

respectively. We the apply the second part of proposition 3.3. We are done.

A Gevrey functions

In this section, we recall some result that we will use about Gevrey functions. First of all,
let Ω be an open set Rn and α ≥ 1. A smooth complex-valued function f on an open set Ω
of Rn is said to be α-Gevrey if for any compact set K ⊂ Ω, there exist constants M and
C such that, for all k ∈ Nn,

sup
x∈K

|Dkf(x)| ≤MC |k||k|!α.

We refer to [Rod93] for more information about Gevrey functions. Following Marco-Sauzin
[MS02],

Definition A.1. Let K be a compact set in Ω. We define the Banach algebra of complex
valued α-Gevrey functions on K of width L to be

Gα,L;K := {f ∈ C∞(Ω;C) | ‖f‖α,L;K < +∞} with

‖f‖α,L;K :=
∑

Q∈Nn

Lα|Q|

q!α

∥
∥
∥
∂|Q|f
∂Qy

∥
∥
∥
C0(K)

.

Let f be a smooth complex-valued α-Gevrey function in an open set Ω of Rn. Then, for any
compact subset K of Ω, there exists LK > 0 such that ‖f‖α,LK ;K < +∞.

The following lemma will be useful :

Lemma A.2 (Lemma A.2). [MS02] Let α ≥ 1 and φ ∈ Gα,L;K . Then, for any 0 < λ < L,
all partial derivative of φ belong to Gα,L−λ;K . Moreover, we have, for all k ∈ N,

∑

Q∈Nn,|Q|=j

∥
∥
∥
∂|Q|φ
∂Qy

∥
∥
∥
α,L−λ;K

≤ j!αλ−jα‖φ‖α,L;K (19)

Let us recall a classical result about flatness of Gevrey functions. For safe of complete-
ness, we give a proof of D. Sauzin :

Proposition A.3. Let α > 1. Let K ⊂ L be compact subsets of Ω, with L convex. Let

f ∈ Gα,L;L be a smooth α-Gevrey function flat on K, that is ∂|Q|f
∂Qy

(y0) = 0 for all Q ∈ Nn,

for all y0 ∈ K. Then, for all y ∈ L such that dist(y,K) = ε, we have

|f(y)| ≤ C‖f‖α,L;L exp
(

−λε−
1

α−1

)

for any 0 < λ < Lα/α−1 and where C = (1− λ
Lα/α−1 )

−(α−1).
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Proof. Let y0 be a point of K and let y ∈ L be such that ‖y0 − y‖ = ε. For each j ∈ N, let
us Taylor expand f(y) at the point y0 at order j. We have

f(y) =
∑

Q∈Nm, |Q|=k

(y − y0)
Q

Q!

∫ 1

0

∂kf
∂Qy

(y0 + t(y − y0))k(1 − t)kdt

since all the derivatives of f at y0 vanish. Therefore, we have

|f(y)| ≤ εk
∑

Q∈Nm, |Q|=k

∥
∥
∥
∂kf
∂Qy

∥
∥
∥
C0(L)

Q!

≤ εk
∑

Q∈Nm, |Q|=k

Lkα

Q!α
‖ ∂kf
∂Qy

‖C0(L)Q!α−1L−kα.

Since Q! ≤ k! in the previous sum, we obtain the following estimate

|f(y)| ≤ εkk!α−1L−kα‖f‖α,L;L.

Therefore, we obtain

ε−k/(α−1)λk

k!
|f(y)|1/(α−1) ≤

(
λ

Lα/(α−1)

)k

‖f‖1/(α−1)
α,L;L .

Then summing over the k’s yields

exp
(

λε
− 1

(α−1)

)

|f(y)|1/(α−1) ≤ C1/α−1‖f‖1/(α−1)
α,L;L .

Definition A.4. Let α ≥ 0. A formal power series f̂ =
∑

Q∈Nn fQx
Q ∈ C[[x1, . . . , xn]]

is said to be α-Gevrey if there exist positive constants M,C such that, for all Q ∈ Nn,
|fQ| ≤MC |Q|(|Q|!)α.

First, let us recall the definition of Gevrey-Whitney jets as well as the Gevrey-Whitney
extension theorem. These are due to J. Bruna (see also [Pop04]) :

Definition A.5. [Bru80] Let α ≥ 1. Let K be a compact set in Rn. A α-Gevrey-Whitney
jet is a collection F = (fk)k∈Nn of continuous functions such that there exist C > 0 and
M > 0 and

(a) |fk(x)| ≤MC |k|(|k|!)α, for all k ∈ Nn and x ∈ K; .

(b) |(Rm
x F )k(y)| ≤M

|x−y|m−|k|+1

(m−|k|+1)! C
m+1(m+ 1)!α, for all x, y ∈ K, m ∈ N, |k| ≤ m

where

(Rm
x F )k(y) := fk(y)−

∑

|k+j|≤m

fk+j(x)

j!
(y − x)j .
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Remark A.6. If K is reduced to a point, say 0, then a α-Gevrey-Whitney jet is just the

(α− 1)-Gevrey formal power series
∑

Q∈Nn
fQ(0)
Q! xQ.

Theorem A.7. [Bru80] Let F be a α-Gevrey-Whitney jet on a compact set K. Then, there
exists a α-Gevrey smooth function f on Rn such that Dkf(x) = fk(x) for all x ∈ K and
k ∈ Nn.

Let us recall the theorem of Komatsu about solutions of Gevrey differential equations :

Theorem A.8. [Kom80] Let f1(t, x), . . . , fn(t, x) be smooth functions on ]−T, T [×Ω, where
Ω is an open subset of Rn. We assume that they are α-Gevrey functions in x uniformly in
t. Then, the initial value problem

dxi

dt
= fi(t, x), i = 1, . . . , n

and x(0) = y ∈ Ω admits a unique solution x(t, y) which is α-Gevrey in y on Ω uniformly
in t.
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