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ABOUT THE MASS OF CERTAIN SECOND ORDER ELLIPTIC

OPERATORS

ANDREAS HERMANN AND EMMANUEL HUMBERT

ABSTRACT. Let (M, g) be a closed Riemannian manifold of dimension n > 3
and let f € C°° (M), such that the operator Py := Ay + f is positive. If g is
flat near some point p and f vanishes around p, we can define the mass of Py
as the constant term in the expansion of the Green function of Py at p. In this
paper, we establish many results on the mass of such operators. In particular,
if f:= %597 i.e. if Py is the Yamabe operator, we show the following
result: assume that there exists a closed simply connected non-spin manifold
M such that the mass is non-negative for every metric g as above on M, then
the mass is non-negative for every such metric on every closed manifold of the
same dimension as M.
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2 ANDREAS HERMANN AND EMMANUEL HUMBERT

1. INTRODUCTION

Let (M,g) be a closed Riemannian manifold of dimension n > 3, let p € M
and assume that g is flat on an open neighborhood U of p. Let f € C°°(M) such
that f = 0 on U. Then, a Green function of Pr := Ay + f at p is a function
Gy e L' (M)NC>(M\ {p}) such that in the sense of distributions

PiGy =4, (1)
where ¢, is the Dirac distribution at p. It is well known that

Proposition 1.1. Assume that all eigenvalues of the operator Py are positive.
Then, there exists a unique Green function G¢ for Py at p. Moreover, Gy is strictly
positive on M \ {p} and has the following expansion at p:

1
(n —2)wp_1r"2

Gy = +mf—|—0(1) (2)
where 1 := dg(p,-) is the distance function to p, where w,_1 is the volume of the
standard (n — 1)-sphere and where my is a number called the mass of Py at the
point p.

Considering the importance of this proposition for this paper, we give the proof
in Section These objects play a crucial role in many problems of geometric
analysis in which blowing-up sequences of functions behave like Green function.
The most famous one is maybe the Yamabe problem which consists in finding a
metric with constant scalar curvature in a given conformal class. After Yamabe,
Trudinger and Aubin had found a solution to this problem in some special cases,
the remaining cases were solved by Schoen in 1984 with a test function argument in
which he used the Green function of the conformal Laplacian or Yamabe operator

n—2
4(n—1)
We give more information on the operator L, in Paragraph 241 With the nota-
tion above, Ly = P »n—2 _ . Schoen could show that the positivity of the number

4(n—1)°9
allows to solve the Yamabe problem. To prove this last step, he showed

Ly:=Ag+ Sg.

m_n—2 s
4(n—1)°9

that m_n—2 5, can be interpreted as the ADM mass of an asymptotically flat man-

4(n—1

ifold, Wl(lich) is regarded as the energy of an isolated system in general relativity
and which can be proved to be positive in this context. Even if this interpretation
is really specific to m LI the number my for a more general f is now called
mass of the operator P¢. For more information on the Yamabe problem, we refer
the reader for instance to [20].

At a first glance, we could think from the definition that the mass m only depends
on the local geometry around p. Unfortunately, this is not true which makes its

study very difficult. In particular, the question of whether m_»-2 . > 0 with

4(n—1)°9
equality if and only (M, g) is conformally equivalent to the stand;rd )sphere is still
open in full generality. It is proven only in some particular cases, including the
context of Yamabe problem (i.e. when (M, g) is locally conformally flat, see [25])
and the case of spin manifolds, solved by Witten in [27].

The first result of this paper is Theorem Bl in which we show that —mj can
be expressed as the minimum of a functional. Note that Hebey and Vaugon [10]
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have already proved a variational characterization of the mass m 22, but their
4(n—1 g
approach is different giving rise to different applications. We then exhibit four short

applications of Theorem [B.1}

e We first give an alternative proof of the positive mass theorem on spin
manifolds. This proof is not simpler than the one of Ammann-Humbert [I]
but has the advantage to enlighten the ingredients which make the proof
work.

e We prove in a very simple way a generalization of a result of Beig and
O’Murchadha who proved in [5] that near a metric of zero Yamabe constant,

the mass m_n»-2 _ is arbitrarily large.
4(n—1)°9

e We prove that on every manifold, we can find many non-negative func-
tions f for which my is negative.

e We prove that the positivity of m n=2 is preserved by surgery (see Sec-

Sg

tion for a precise statement).

These facts could also be proven directly but Theorem B.1lis nevertheless interesting
for many reasons:

e The variational characterization is really easy to manipulate and helps a
lot to simplify the proofs. For instance, the mass-to-infinity Theorem
becomes almost obvious with this approach.

e Theorem BTl makes it easy to have a good intuition without any computa-
tion of what is true or not, as can be seen for example in Section [6.4] about
the preservation of the positivity of mass by surgery.

e Theorem [B1] clarifies the situation a lot: this is particularly true for the
proof of the positive mass theorem on spin manifolds (see Section [6).

After these applications we prove that also the negativity of mon=2, is pre-
served by surgery (see Section [ for a precise statement). The proof is more difficult

than the proof of the preservation of the positivity of Mon=2 g and uses Theorem

B together with some techniques developed in the article [2].

As explained above, the question of whether m a2 > 0 with equality if and

Sg
only if (M, g) is conformally equivalent to the standz;rd sphere is still open. It is
known as the positive mass conjecture (weak version) and is a particular case of
the standard positive mass conjecture which says that the ADM mass of an asymp-
totically flat manifold with non-negative and integrable scalar curvature must be
non-negative and vanishes if and only if the manifold is R™ equipped with the flat
metric. It turns out that both versions of the positive mass conjecture are actually
equivalent: see Proposition 4.1 in [2I] or Section 5 in [I8] (this could also be proved
using Theorem B.I]1but the proof is not really simpler and not instructive so we omit
it in this paper). The positive mass conjecture is proved when n < 7 by Schoen
and Yau [22] or when (M, g) is spin by Witten [27]. More recently Lohkamp has
announced a complete proof in [I9]. Note that the conjecture has been proved by
Schoen and Yau [25] under the assumption that the manifold is conformally flat
leading to the complete solution of the Yamabe problem.

Now, let M be a closed manifold. We say that PMT (for Positive Mass Theorem)
is true on M if for every point p € M and for every metric g on M which is flat
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> 0. Using

around p and for which L, is a positive operator we have m_n-2
4(n—1

)59

that the negativity of m 22, is preserved by surgery we obtain the second main
4(n—1

result of this paper which is the following:

Theorem 1.2. Assume that PMT is true on a closed simply connected non-spin
manifold of dimensionn > 5, then PMT is true on all closed manifolds of dimension
n.

Note that using for instance Proposition 4.1 in [2I] or Section 5 in [I8] one can
conclude from the assumption of this theorem that every asymptotically flat Rie-
mannian manifold of dimension n with non-negative and integrable scalar curvature
has non-negative ADM mass.

This theorem should help a lot to prove the positive mass conjecture. Indeed, it
reduces the problem to finding a non-spin simply connected manifold M on which
PMT is true. For instance, CP?™ or CP?>™ x S*¥ with k > 2 could be a good
candidate to provide such an example by using its particular structure. We did not
succeed until now but let us explain how some structures could help a lot to prove
that PMT is true on a manifold. First, it is not difficult to find a simply connected
manifold for which PMT is true: it suffices to choose a manifold which is spin (the
sphere for instance). But we can also easily construct a non-spin manifold for which
PMT is true (unfortunately, it is not simply connected):

Proposition 1.3. Let n > 5, n = 1 mod4. Then, the projective space RP™
satisfies PMT.

The proof of this proposition is really simple and is given is Section [§

The paper is organized as follows:

e In Section 2] we give some general preliminaries which will be used in the
whole text;

e In Section[3] we give the statement of Theorem B Ilwhose goal is to establish
the variational characterization of the mass;

e Sections M and [B] are devoted to the proof of Theorem B.1}

e In Section [l we give several applications of Theorem B.1}

e In Section[7 we establish a surgery formula for the mass which will be the
main ingredient in the proof of Theorem [[.2}

e In Section [8] we show how the results of Section [7] can be applied to prove
Theorem

Acknowledgements: The authors would like to thank Bernd Ammann and
Mattias Dahl for many enlightening discussions on the subject. A. Hermann is
supported by the DFG research grant HE 6908/1-1. E. Humbert is partially sup-
ported by ANR-10-BLAN 0105 and by ANR-12-BS01-012-01.

2. PRELIMINARIES

In these sections, we introduce all the objects and the notation which will be
needed in the paper and we give some additional information on the context of the
problem.
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2.1. Notation. All manifolds are assumed to be connected and without boundary
unless otherwise stated. We denote by £ the Euclidean metric on R™ and by ¢”
the standard metric of constant sectional curvature 1 on S™. For any Riemannian
manifold (M, g) and for p € M and r > 0 we denote by B(p,r) or by BY(p,r) the
open ball of radius r centered at p. For a subset N of M we denote by vol(N) or
vol?(N) the volume of N with respect to g and by dy(x, N) the distance of z to N.
The scalar curvature of any Riemannian metric g will be denoted by s,. We will
use the abbreviation

/ = lim .
M\{p}  “70JSM\B(pe)
For any Riemannian manifold (M, g) and for any ¢ € [1,00] we denote by L(M)
the space of all measurable functions on M with finite L?-norm. The Sobolev space

HY2(M) is the space of all functions in L?(M) whose distributional derivative exists
and is in L2(M).

2.2. A cut-off formula. We state a formula which is used several times in the
article (see also Appendix A.3 in [2]). Let w and x be smooth functions on a
Riemannian manifold (M, g) and assume that x has compact support. Then we
have

/ |d(xu)|* dv? = / ludy + xdu|? dv?
M M
— / (uz|dx|2 + g(xzdu, du) + g(2uxdyx, du)) dv?
M
— / (uz|dx|2 + g(xzdu, du) + g(ud(xQ), du)) dv?
M
= [ (wlax + g, du)) dv?
= / (u?|dx|* + x*uAyu) dv. (3)
M

2.3. Properties of the Green function. Let (M,g) be a closed Riemannian
manifold of dimension n > 3. Let f € C°°(M) and assume that the operator
Py = Ay + f acting on C*°(M) has only positive eigenvalues. Fix p € M. A
function Gy € LY (M) N C>=(M \ {p}) is called a Green function for Py at p if for
all w € C*°(M) we have

/ GyPpudv? = u(p).
M\{p}

In our article we use the following properties of the Green function which are well
known.

Proposition 2.1. Assume that Py is a positive operator. Then the following holds.

1. At every point p € M there exists a unique Green function Gy for Py. Moreover
Gy is strictly positive on M \ {p}.
2. Let p € M and assume that there exists an open neighborhood U of p such that g
is flat on U and f =0 on U. Then the function G¢ has the following expansion
as x —p
1

(n —2)wp_1r"2

Gyl(x) = +mys+o(1), (4)
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where r = dg(p,-) is the distance function to p, wn,—1 is the volume of the
standard (n — 1)-sphere and my is a real number called the mass of Py at p.

Proof. 1.: The proof is classical and we omit it here.
2.: Let n and F,, be as in Section 8l Since P; has only positive eigenvalues, Py is
invertible on C*®°(M). Let v := PJTI(F,,). The function G := nr?~" — v is smooth
on M\ {p}, is in L'(M) and satisfies PyGy = 0 on M \ {p}. Moreover, near p,

1
(n—2)wp_1r"2

Gy(x) =

+ ()

where Prv = Agv = 0. Since the manifold is flat around p and thus locally isometric
to a neighborhood of 0 in R™ and since the Green function for the Laplacian on R™
at 0 is W, we get that Prv = §, and thus G¢ is a Green function for
Py. This proves the existence.

If now G and G’ are Green functions for Py then P;(G — G’) = 0 in the sense
of distributions. By standard regularity theorems, G — G’ is smooth and hence, by
invertibility of Py we obtain G = G’. O

2.4. The Yamabe operator. Let (M,g) be a closed Riemannian manifold of

dimension n > 3. We define f := 4(’;—:21)% and denote the operator Py by

n—2 5
4(n—1)"7%

This operator is called the conformal Laplacian or Yamabe operator. If the metric g
is flat on an open neighborhood of a point p € M, we will denote the mass of L, at
p by m(M, g). There are several reasons why this operator is very important. First
it played a crucial role in the solution of the Yamabe problem, which is a famous
problem in conformal geometry. For more information on the subject, the reader
may refer to [3L 9] 20]. Furthermore the mass of the operator L, can be interpreted
as the ADM mass of an asymptotically flat Riemannian manifold, which is an
important quantity measuring the total energy of an isolated gravitational system
in general relativity (see [24]).

In this article we will use several properties of the operator L,. First it transforms

Lg:=A+

nicely under conformal changes of the metric. Namely, if ¢’ = w2 g are two
conformally related metrics, where v is a smooth positive function on M, then for
all ¢ € C°°(M) we have

_ _n+2

Ly (ulp) =u" "= Ly(p) ()

(see e.g. [20], p.43). Using this formula with ¢ = « we obtain the equation
n—2 nt2

Lg(u) = IS (6)

which gives a relation between the scalar curvatures of g and ¢’. Next we define
Sy uLgu dvd
Y(M,g) =i f{M—- e C®(M), o},
( g) m (f]w |U|p dvg)g/p u ( ) u $—é

where p := % This number is a conformal invariant called the Yamabe constant

of (M,g). The operator L, is positive (i.e. has only positive eigenvalues) if and
only if Y (M, g) is positive.
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If ¢ = u%g and if g and ¢’ are both flat in an open neighborhood of a point
p € M and if G and G’ denote the Green functions of L, and Ly respectively, we
have for all x € M \ {p}

G'(z) = u(p) " u(z)"'G(z)

(see e.g.]20], p. 63). If we write down the expansions of G and G’ given by Propo-
sition 2.l and use that u is constant on an open neighborhood of p, it follows that
m(M, g) and m(M, ¢’) have the same sign (see also [25] or [9], p.277).

3. A VARIATIONAL CHARACTERIZATION OF THE MASS

We keep the same notation as above and fix a function f such that the operator
Py is positive. Then the Green function G¢ of Pr at p and the associated mass
my are well defined. Let 6 > 0 such that the ball B(p,d) around p of radius &

is contained in U and let 7 be a smooth function on M such that n = W

on B(p,6§) and supp(n) C U, where w,_1 denotes the volume of S"~1 with the
standard metric. The function F,: M — R defined by

Fy () = { OA,Q(WQ*")(x), zig

is smooth on M. For every u € C*°(M) we define
I (u) := / (nr®~" + w) Pp(pr? ™" + u) dv?,
M\{p}

and

Jr(u) == /M\{ } nr? " E, dv? + 2 /M ukFy, dv? + /M uPru dv?.
P

We also define

v :=inf{I;(u)|u € C(M), u(p) = 0},
o= inf (T ()| w € C=(M)}.

Let us remark the following fact: if 7’ is another smooth function with the same
properties as 7, one can construct in a similar way:

I (u) = / ('r* " +u)Pr(n'r*™" 4+ u) dv?.
M\{p}
Note that, for all u,

Ip(u) = Ip(u—n'r*™" +9r*™")

and that u —n/r?>=" 4+ nr?~" has a smooth extension to all of M. As a consequence,
the number v does not depend on the choice of 7.
The following theorem is the main result of this article.

Theorem 3.1. We have v == —mys = Jp(Gy — nr*=").

The proof is obtained in several steps and is done in Section [l
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4. PROOF OF THEOREM [3.1]

The proof of Theorem [B.I] proceeds in several steps. The general idea is to show
that v and p are equal and that p is attained by exactly one smooth function u
which is such that

Gy = nr2T" 4 .

These facts will be established in the following lemmas. First we relate the func-
tionals Iy and Jy.

Lemma 4.1. For all u € C*° (M) we have
Iy (u) = Jy(u) + u(p).
Proof. Using that f = 0 on supp(n) we calculate

If(u) = /M\{ }nernAg(m"Q*") dvd + /M\{ }uAg(m"Q*") dv?d
p p

+/ nrz_"Agudvg—i—/ uPpudv.
M\{p} M

Let ¢ > 0 and let v be the unit normal vector field on 0B(p,e) pointing into
M \ B(p,¢e). Integrating by parts, we have

/ i Agudvd — / ulg(nr*=") dv?
M\B(p.e) M\B(p.e)

:/ nernauung—/ uau(n727n) ds’.
OB(p,e) 9B(p.e)

As € — 0, the first term on the right hand side tends to 0 and the second integral
on the right hand side tends to —u(p). The assertion follows. O

Lemma 4.2. We have pn > —oo and v > —oo. Furthermore there exists a unique
function w € C*°(M) such that p = Jg(u).

Proof. Assume that there exists a sequence (ux)gen in C°° (M) such that Jy(ug) —
—o00 as k — 0o. Since Py is a positive operator, there exists A > 0 such that for all
k € N we have

/ ik Prug dv® > Allug|[32(0p) > 0.
M

From our assumption and the definition of Jy it follows that [, upF), dv? — —oco
as k — oco. On the other hand with Hdélder’s inequality we have for all £ € N

}/ upFy, dv?
M

Thus we have |[ug||2(a) — 00 as k — oo and thus

< |1Fyllz2any Nkl L2(ary-

Jr(ur) 2/ y }mz_np,, dv? = 2||Fy | L2y 1l L2 ary + Allurl|Z2ary) = 00
M\{p

as k — oo, which is a contradiction. Thus we have yp > —oo. Next assume that there
exists a sequence (ug)gen in C°°(M) such that for every k € N we have u(p) =0
and Iy(uy) — —oo as k — 0o. By Lemma [L.1] we conclude Jy(ux) — —oo which is
a contradiction. Thus we have v > —oc.
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Let (ur)ren be a sequence in C*°(M) such that Jy(ug) — p as k — oco. As
above it follows that (u)ren is bounded in L?(M). Since for all k € N we have

Jg(uk) :/ nr¥ " F, dv? +2/ up k) dv?
M\{p} M

+/ |duk|2d“g+/ fuj, dv?,
M M

it follows that the sequence (|duy|)ren is bounded in L?(M) and thus that (ug)ken is
bounded in H'2(M). Since H'2(M) is reflexive there exists u € H?(M) such that
after passing to a subsequence we have uy — u weakly in HY2(M). Furthermore
since the embeddings of H%?(M) into L'(M) and into L?*(M) are compact we
obtain after passing again to sub-sequences that uj — u strongly in L!(M) and in
L?(M). For every k € N we have

0< / |du — dug|? dv?
M

:/ |du|2dvg—|—/ |duk|2dvg—2/ g(du, dug) dv?.
M M M

By weak convergence in H?(M) the third term on the right hand side converges
to —2 [, |[du* dv? as k — oco. It follows that

/ |du|2dvg§liminf/ |dup|? dv?.
M k—oo  Jar

Since the sequence (uy)ren converges strongly to u in L'(M) and in L?*(M) we

have
/ fuidvg—>/ fu?dv?, / uandvg—>/ uk, dv?
M M M M

as k — oo. It follows that
Jr(uw) < lminf J¢(ug) = p
: k— oo ’

and therefore Jy(u) = p. For every ¢ € C*°(M) we have
0= iJj'(u+t<p)| o= 2/ oF, dv? +2/ ©Prudv?
dt =0 M M
and therefore Pru = —F,,. Using standard results in regularity theory (see e.g. [7])

we see from this equation that w is smooth. We also see that w is the unique
minimizer of J; since Py is invertible on C°°(M). O

Lemma 4.3. We have p = —my.

Proof. Define v := u+nr*~". Then G — v has a smooth extension to all of M and
on M\ {p} we have
Py(Gy —v) = Py(Gy —ipr*™" —u) = —F, — Pru=0.

Since Py is invertible on smooth functions, we have v = G. It follows that u(p) =
my and therefore

p=Jg(u) = If(u) —my = / GiPiGypdv? —my = —my.
M\{p}
This ends the proof. 1
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We are now able to prove the result:

Lemma 4.4. We have
= v.
Together with Lemma [£3] this proves Theorem [3.1]

Proof. In order to show ”p < v” let € > 0 and let u € C°°(M) such that u(p) =0
and Iy(u) <v+e. Then we have Jy(u) = If(u) <v+¢c and thus p < v +e.

In order to show "p > v let € > 0 and let v € C°°(M) such that Jy(u) = p.
For s > 0 let x5: M — [0,1] be a smooth function such that x; = 0 on B(p, s),
Xs =1 on M\ B(p,2s) and |dy,| < 2. We write A, := B(p,2s) \ B(p,s) and we
obtain by (B

/ uxs Py (uxs) dv? = / (u®|dxs[* + xSuPyu) dv?
M M

4
< —2/ u? dvg—|—/ x2uPpudv?.
§7JA, M

Since there exists C' > 0 such that for all s we have vol(As) < Cs™, the first term
on the right hand side tends to 0 as s — 0. We conclude that

i <
lim Jy(uxs) < Jy(u).

Thus we can choose s so close to 0 that we have Jy(uxs) < p+ ¢. Since we have
Xs(p) = 0 the left hand side is equal to Iy(uxs). It follows that v < p +e. O

Finally we ask whether the infimum v is attained. We immediately obtain the
following answer.

Lemma 4.5. Let u € C*°(M) be the unique smooth function with Js(u) = p given

by Lemma .3

1. Ifu(p) = 0, then there is exactly one w € C*°(M) with w(p) =0 and Iy(w) = v,
namely w = u.

2. If u(p) # 0, then there is no w € C*°(M) with w(p) =0 and If(w) =v.

Proof. If w € C°°(M) satisfies w(p) = 0 and Iy(w) = v then by Lemma [£1] and
Lemma (4] we have Jy(w) = p and thus w = u. Both 1.and 2.follow from this
observation. g

5. ANOTHER PROOF OF THE CASE Py = L,

We give an alternative proof of Theorem[B.Ilin the special case f = 4(’;—121)59. Let
(M, g) be a closed Riemannian manifold such that g is flat on an open neighborhood
U of a fixed point p € M and assume that Y(M,g) > 0. Then the mass m(M, g)
of L, at the point p is well defined. Let 6 > 0 such that B(p,d) C U and let n be a
smooth function on M such that n = e on B(p,d) and supp(n) C U, where
wn—1 denotes the volume of S™~! with the standard metric. For every u € C°°(M)
with u(p) = 0 we define

I,(u) == /M\{ O L ot
P

and
v = inf{I (u)|u € C>(M), u(p) = 0}.
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We denote by G the Green function for the conformal Laplacian L, at the point
p. Tt is strictly positive on M \ {p} by Proposition 21l Thus § := G* "2 g is a
Riemannian metric on M \ {p}. Furthermore for every v € C°°(M) with u(p) =0
the function

= (pr " +u)G?

has a smooth extension to all of M and in an isometric chart on U it has the
expansion

O, (r)=1—Ar""240o(r" %) asx —p (7)
with A := (n — 2)w,_1m(M, g). We prove the following theorem.

Theorem 5.1. For every u € C*°(M) with u(p) = 0 we have
I,(u) = / 1, [2 do? — m(M, g). (8)
M\{p} 4

Proof. Let u € C*°(M) with u(p) = 0. We write w := nr>~" +u. By the conformal
transformation law (Bl for L, we obtain

n+2
Ly®, =G~ w2 Lyw.

Since we have dv? = G*/("=2)dy9 and since by the conformal transformation law
(@) for the scalar curvature we have s; = 0 it follows that

I(u) = / wLyw dv? = / D, AP, dvd.
M\{p} M\{p}

Integrating by parts, we have for every € > 0

/ D, AG®, dvI = / |, |2 dv? — / B, 05, ds?,
M\B(p,e) M\B(p,e) OB (p,e)

where ds9 is the induced volume form on OB(p, ) and where
U=—G "0,

is the outer unit normal vector field on the boundary of M \ B(p,e). Using (7)) we
compute the following expansions as z — p

v=—(n 72+ o(r?))dy
(bu817¢u - A(TL — 2)’)’]7%7-"71 + 0(,,,.7171)

1) 2(n—1)

ds¥ = GZ= ds9 = (n 5= p=2D) | (2= 1) Yy g

Thus we obtain

lim ®,05P, ds? = m(M, g)
e—0 aB(p,E)

and the assertion follows. O

We now obtain the following special case of Theorem B.11

Corollary 5.2. We have v = —m(M,g). The infimum is attained if and only if
m(M,g) =0.
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Proof. Tt follows from (8] that v = —m(M, g) since one can choose u € C*° (M) with
u(p) = 0 in such a way that the first term on the right hand side becomes as small
as one wants. If the infimum is attained at w € C°°(M), then ®,, is constant and by
@) we conclude m(M,g) = 0. On the other hand if m(M, g) = 0, then G — nr?—"
has a smooth extension u to all of M satisfying u(p) = 0. Then with the notation
from above we have w = G and ®,, = 1 and therefore I;(u) = —m(M, g). O

6. SEVERAL APPLICATIONS

6.1. Application 1: Positive mass theorem on spin manifolds. Let (M, g)
be a closed Riemannian manifold with positive Yamabe constant Y (M, g) which
means that the operator Ly :== A, + 4(’;—’_21)59 is positive (see Paragraph [2Z4). We
assume that g is flat on an open neighborhood U of p € M. Furthermore we
assume in this section that M is a spin manifold with a fixed orientation and a
fixed spin structure. We denote by G the Green function of L, and by m(M, g) the
associated mass. In this section we prove the following positive mass theorem for
spin manifolds.

Theorem 6.1. Let (M,g) be a closed Riemannian spin manifold with positive
Yamabe constant Y (M, g) such that g is flat on an open neighborhood of a point
p € M. Then we have m(M, g) > 0. Furthermore we have m(M,g) = 0 if and only
if (M, g) is conformally equivalent to (S™,c™).

This theorem solves the positive mass conjecture in the particular case of spin
manifolds. This was already known by the work of Witten [27]. Let us come back
on the name "mass” used for m(M,g) and more generally for the numbers m

associated to the operators Py. Set ¢’ := G w g. This new metric is defined on
M\ {p}. As observed by Schoen, the manifold (M \ {p}, ¢’) is asymptotically flat.
We will not explain in detail what this means, but asymptotically flat manifolds are
the standard models for isolated system in general relativity. To each asymptotically
flat manifold with positive L' scalar curvature one can associate a number called
the ADM-mass of the manifold which is interpreted as the energy of the isolated
system. For this reason, this number should be positive but this is far to be obvious
from its mathematical definition. It was proven to be true e. g. on spin manifolds by
Witten [27] and in dimension n € {3, ..., 7} by Schoen and Yau [22] but the problem
in its full generality is still open. In the particular case that the asymptotically
flat manifold was obtained by blowing-up a closed manifold as above with the
Green function of L, (this procedure is sometimes called stereographic projection
since, starting with a closed manifold (M, ¢g) conformally equivalent to the standard
sphere, then (M \ {p},¢’) = (R™,¢§)), Schoen proved that the number m(M,g) is
a positive multiple of the ADM mass of (M \ {p},g’). This is the reason why the
number m(M, g) is called the mass. In this special context, which is actually not
restrictive, the positivity of the ADM mass, i.e. on M, is also open. Schoen and Yau
gave a proof when the manifold is locally conformally flat in [25]. Later, inspired by
Witten’s proof, Ammann and Humbert gave a very simple proof for spin manifolds
which are conformally flat or of dimension 3, 4 or 5 (see [1]). This last method was
adapted to other situations: Jammes [I4] obtained another proof of Schoen-Yau’s
theorem [25] for conformally flat manifolds of even dimension and Humbert, Raulot
in [I3] could prove a positive mass theorem for the Paneitz operator. The proof we
give here is quite similar to the one of Ammann and Humbert and not simpler but
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it allows to understand the crucial role played by the Green function of the Dirac
operator in their proof. Namely, we prove that the norm of this Green function can
be used as a test function in the variational characterization of the mass given by
Theorem 311

Before we give the proof we recall some facts from spin geometry which we will
need. Since M is spin, for every Riemannian metric ¢ on M we can define the
spinor bundle $9M over M which is a complex vector bundle of rank 2["/? with a
bundle metric (.,.) and a connection V. Smooth sections of £9M are called spinors.
We denote by

Dy,: T(XM)—-T(XM)
the Dirac operator acting on spinors. For an introduction to the concepts of spin
geometry the reader may consult the books [I7] or [6]. We will mainly use two

important results. First, by the Schrédinger-Lichnerowicz formula we have for all
Y eT(XIM)

(D) = V"V + 1,0 )

where V*V denotes the connection Laplacian on X9M. Second, if ¢’ = wﬁg is a
metric conformal to g, where w is a smooth positive function on M, then by [12],
[11] there exists an isomorphism of vector bundles

Byt IM — ¥ M
which is a fiberwise isometry such that for all ¢ € T'(39M) we have

Dy (w_lﬂg,g/d}) = wiz_iﬂg,g’ng)- (10)

Furthermore one can show that for every element 1y of the fiber ¥4 M over p there

exists a unique Green function of D, i.e.a spinor ¢ on M \ {p} such that for every
¢ € IN(X9M) we have

/ (4, Dyp)dv® = (o, 9(p))-
M\{p}

Using our assumptions one can also write down the expansion of 1) around p simi-
larly as for the Green function of A, + f in Proposition 21l Namely we use that g
is flat on an open neighborhood U of p and we choose 6 > 0 such that B(p, ) C U.
We may assume that there exists an isometric chart B(p,d) — B(0,d) C R™ and
that $9M is trivial on B(p,d). Since L, is positive, it is well known that D, is
invertible. Using these facts Ammann and Humbert described the expansion of i
as follows (see [I]).

Lemma 6.2. Let 1o € XJM. Then there is a unique spinor i on M\ {p} such
that Dy = 0 and such that for all x € B(p,d) = B(0,0) C R™ we have in the above
chart and trivialization

1

Wn—1

¥lB() (@) = ——— = v + () (11)

where 0 is a smooth spinor on B(p,d).

From now on we assume that

ol = ((n — 2)wn_1) "2 (12)
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Then on B(p,d) we have by ([T
n—2 1
|th(z)| =T = (= 2)on 2 +o(1) asr—0. (13)
Now, let n and F;, be defined as in Section Bl By Theorem B.] we have
—m(M, g) = inf{Iy(u)|u € C (M), u(p) =0}
= inf{Jy(u)|u e C*(M)} (14)

where

I (u) = /M\{ O Ly )
P

Jg(u) :/ y }777"27"F77 dv? —|—2/ uk, dv9 —|—/ uLgudv?.
M\{p M M

The function

w: MR, u@) ;:{ |Ow<x>|%—n<x>r<x>2*% g;fg (15)

is smooth on the complement of the zero set of .

The idea for our proof of Theorem is to use the characterization (4] of
m(M, g) and to use u as a test function for our functional I,. If ¢ has non-empty
zero set, then u is not smooth and we will approximate u by a sequence of smooth
functions. Since the zero set of ¢ has Hausdorff dimension at most n — 2 (see [4]),
the proof will also work in this case. This is the content of the following proposition.

Proposition 6.3. There exists a sequence (ug)ren of smooth functions on M such
that ug(p) = 0 for all k and limy_ oo Jg(ug) = limg_oo Iy (ug) < 0.

Proof. We first write down the proof in the case that v is nowhere zero and consider
the case of non-empty zero set afterwards. If ¢ is nowhere zero then ¢’ := |1/)|ﬁg
is a Riemannian metric on M\ {p}. As explained above there exists an isomorphism
of vector bundles

Bog i TUMN\{p}) = = (M \ {p})

which is a fiberwise isometry. Furthermore with ¢ := 1|13, % we have Dy 1)’ =
0 by ([IQ). Let € > 0 be small. In what follows, the set B(p,¢) is the ball of center
p and radius € for the metric g. By (@) we have

/ 1 /
o= [ @wna = [ (0 s ) (10)
M\B(pe) M\B(p.e) 4
Note that [¢'| = 1. Hence, integrating by parts:

/ (VW' ¢ )dv? = / V' |2dv?’ + / (V' )ds?
M\ B(p,e) M\B(p,e)

9B(p,e)

’ 1 ’
:/ |V |2 dvd +—/ Y’ 2ds?
M\B(p,e) 2 JoB(p.e)

_ / IV 2. (17)
M\B(p,e)



ABOUT THE MASS OF CERTAIN SECOND ORDER ELLIPTIC OPERATORS 15

where v is the outer unit normal vector field on B(p,e) and ds? is the volume
element induced by ¢’ on 9B(p,e). By Equation (@), we also have

4n—1)  _nt2 n-2
= — 7 n—1 [, n—1 ),
s = A0 W52t 1, 3=H)
Since dv?d = |4} "1 dv9, we obtain that

, 4(n —1 e e
[ P = An—1) [ e
M\B(p,e) n =2 Ja\Bp.e)

Taking the limit as € tends to 0, we obtain

. 4(n—1 . L
lim Sy [2dv? :M/ 7T Ly (o] 577 )du?
=0 JM\B(p,e) n=2 Ju\(p}
4(n—1)

where u is defined in (). Together with (I8) and (7)) we obtain

. on—1
0 :/ IV 2dv? + 2T () (18)
M\{p} n—2

which implies I;(u) < 0. Furthermore by (I3]) we have u(p) = 0 and by Lemma [41]
it follows that Jg(u) = I4(u). This finishes the proof if ) is nowhere zero.

If ¢ has non-empty zero set IV, then for every s > 0 we define
By(N) :={z € M|d4(z,N) < s}
and for every k € N we define
2
M, = {x € M|dy(z, N) > E}'

Then the calculation (6] holds with M}, instead of M. If we do the calculation
(@) with M}, instead of M then we obtain an extra boundary term

/ (V! ¢)ds?
OMy,

which vanishes since |¢)'| = 1. Thus we conclude

’ - 1 n— n—
o= [ wwpar 25 [ L e 9)
Mi\{p} n =2 Jan\ip}
For every k € N we choose a smooth function xy: M — [0, 1] such that xx(z) = 0 if
dg(z,N) < 1, xi(z) =1 if dg(z,N) > 2 and |dxk|y < 2k and we define uj, := xyu
and Ay, := {x € M|+ < dy(z,N) < 2}. Then we have

n-2 n-2
[ WLl o
M \{p}

n

1, (ux) - /A Xe 01553 Ly (i 16 555) o (20)
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Next we define v as the outer unit normal vector field on A, and we obtain

n—2 n—2
/ Nl A (o 55) do?
Ay
:/ |d<xk|¢|’i%?>|2dvg—/ el 0, (] 53 ds?
Ap DAL

n—2 n=2 n=2
= [ WoalelEOEar - [ e e e
Ay aBQ/k(N)

n—1)

In order to estimate the derivatives of |¢|("=2)/( near N we note that for all

Y € T(M\ {p}) we have
Ay | =T =

n

-2 n
“n-TRe(V .
—— [Vl e(Vy,v)
Thus there exists C1 > 0 such that for all k¥ € N large enough, for all x € B,/ (N)

and for all Y € T, M with |Y| =1 we have the estimate
n=2 L
Oy [¢[=1 (z)| < Crl ()| ™=

Since [1)|? is a C'-function there exists Co > 0 such that for all £ € N large enough
and for all # € By (N) we have [i)(z)[* < Cady(z, N). Thus there exists Cs > 0

such that for all £ € N large enough, for all x € By, (N) and for all Y € T, M with
|Y] =1 we have

By |51 (z)| < C3k7m . (22)

Furthermore since N has Hausdorff dimension at most n — 2 there exists C4y > 0
such that for all £ € N large enough we have

vol(Ay) < %, VOl(aBQ/k(N)) < % (23)

Using (22), [23) and using that |dxx|s < 2k we obtain from (2I)) that

n-2 n-2

| ol L aul ) ot 0
k

as k — oo. Therefore we obtain from (I9), 20) that liminfy_ o I,(ug) < 0.

Furthermore by ([I3]) we have ug(p) = 0 for all k£ and by Lemma ET] it follows that

Jg(ug) = Iy(uy) for all k. This finishes the proof in the general case. O

Proof of Theorem[61l. The first statement follows immediately from Proposition
and from Lemma

Next let m(M,g) = 0 and let (ug)ren be the sequence in C*° (M) constructed in
the proof of Proposition We have liminfy_,o Jg(ur) = 0 and therefore there
exists a subsequence of (uy)ren which is a minimizing sequence for the functional Jj.
From the proof of Lemmal4.2]it follows that after passing again to a subsequence the
sequence (ug)ken converges pointwise almost everywhere to the minimizer G —nr2="
of the functional J;. Therefore we have

n=2
|¢| 1 =@
almost everywhere on M \ {p} and since both functions are continuous the equality
holds everywhere on M \ {p}. By Proposition 2] the function G is strictly positive

on M\ {p}. In particular v is nowhere zero and |¢)| and the metric ¢’ constructed in
the proof of Proposition [6.3] are independent of the choice of ¢y € £, M satisfying
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(@2). For every such spinor 1y € X,M the spinor ¢’ constructed from )y as in
the proof of Proposition [6.3]is a parallel spinor for the metric ¢’ by ([I8]). Since the
choice of 1) is arbitrary we obtain a trivialization of the spinor bundle $9' (M \ {p})
by parallel spinors. As in the proof of Theorem 2.2 in [I] it follows that (M, g) is
conformally equivalent to (S™, ™). O

6.2. Application 2: A mass-to-infinity theorem. Let M be a closed Rie-
mannian manifold of dimension n > 3. We consider a sequence g, of metrics which
converges in C2(M) to a metric go,. We assume that all the metrics gx, goo are flat
on a fixed neighborhood U of p € M. Let also (fi)ren be a sequence in C°°(M)
such that for every k we have fr = 0 on U and such that for every k all eigenvalues
of the operator Py := Ay, + fi are positive. Furthermore we assume that there
exists foo € C°°(M) such that fr, — fo in C*°(M) and we write Py := Ay + foo-
Note that we just prove the result for C'*° for simplicity but these assumptions
could easily be weakened. For every k € N the Green function of the operator P
has an expansion as in Proposition 2.1 and we will denote the mass of Py by my.

Theorem 6.4. Assume that the first eigenvalue Aoy 0f P is 0. Then we have
my — 00 as k — 00.

This is a generalization of a result by Beig and O’Murchadha [5] who proved
it with fr = 4(’;—__21)5%, i.e. Py is the Yamabe operator of the metric gi. The

limiting metric g, was assumed to have a vanishing Yamabe constant (i.e. the first
eigenvalue of P = L, is equal to 0). With the use of Theorem B1] the proof is
much simpler than the proof by Beig and O’Murchadha.

Proof. Let k € N. We choose 6, > 0 such that the ball B(p, d;) centered at p and of
radius d with respect to the metric gy is contained in U. Then we define a smooth
non-negative function n, on M such that n, = (n_2)+71 on B(p, i) and such that

supp(nr) C U. For & € M let r(x) denote the distance of  to p with respect to
the metric gi. The function F;,: M — R defined by

_ B i) (@), w#p
ch(x)—{o’ T=p
is smooth on M. For every u € C*° (M) we define
T (u) := / nery " Fy, dv?* + 2/ ukFy, dv?* +/ uPpu dv?*.
M\{p} M M
Then by Theorem B we have for all k € N

—my, = inf{J(u)| u € C>°(M)}.

Let u € C°°(M) be an eigenfunction associated to As. It is a classical result that
the eigenfunctions corresponding to the first eigenvalue of an operator of the form
Py are either strictly positive or strictly negative. Thus we may assume that u is
strictly positive. As in the proof of Lemma [ one obtains for every k:

/ uF,, dv’* :/ ul g, (nery™ ™) dvd* :/ nery "Ag,u dvdt — u(p).
M M\{p} M\{p}

Since gr — goo in C*(M) we have Ay, u — Ay_u in C°(M). Since Pu = 0 and
since foo = 0 on U it follows that Ay u = 0 on U. Since supp(ni) C U we conclude



18 ANDREAS HERMANN AND EMMANUEL HUMBERT
that
/ uFy, dv?* — —u(p) <0

M
as k — 00. Since Pyu — Pyu = 0 in C°(M) it follows that

ak :z/ uPpu dvd* — 0

M
as k — oco. Now for every k € N we have
—mp < Jk(a,jl/%) = / nery” " Fy, dv? + 2(1,;1/3/ uly, dv’t + a,ZQ/?’ak
M\{p} M

and the right hand side tends to —oo as k — oo. The assertion follows. 0

6.3. Application 3: Real analytic families of masses and negative mass.
In this section, we study the family of masses associated to a family of operators
of the type Ay + f. As an application, we prove that on any manifold, there exists
a function f such that the operator A, + f is positive but with negative mass.
This shows in particular that a proof of a positive mass theorem as studied in
Section must use the conformal properties of the operator L,. Let (M,g) be
a closed Riemannian manifold such that ¢ is flat on an open neighborhood U of
a point p € M. Let ¢, f € C°>°(M) such that f =0 and ¢ =0 on U. For every
a € R we define the operator P, := A, + f + ap. We assume that for ¢ = 0 all
eigenvalues of Py are positive. Since the operator Py is invertible, it follows from
the Neumann series expansion of the inverse that there exists an open interval
containing 0 such that for every a € I the operator P, is invertible (see e.g. [15]
IV-1.16]). Since by a theorem of Rellich the eigenvalues of P, are real analytic
functions of a (see [I5, VII-3.9]), it follows that for every a € I the operator P, has
only positive eigenvalues. Moreover we can choose I as the maximal interval with
this property. For every a € I we can define the mass of P, and we denote it by
m(a). Furthermore, for every a € R and for every u € C*°(M) we define

I, (u) := / (™™ +u) Py (nr®™" + u) dv?,
M\{p}

Jo(u) ::/ nr? " E, dv? + 2/ uky, dv? —I—/ uPpu dv?,
M\{p} M M

where 1 and F;, are as in Section Bl By Theorem Bl we have

—m(a) = inf{I,(u)|u € C°(M), u(p) = 0}
= inf{J,(u)|u € C*(M)}.

The main result of this section is the following theorem.

Theorem 6.5. 1. The function I — R, a — m(a) is real analytic.

2. The function I — R, a — m(a) is conver.

3. Assume that there exists a point ¢ € M such that ¢(q) < 0. Then there exists
(oo > 0 such that m(a) can be defined for all a € [0, a00) and we have m(a) — oo
as a4 — Qoo



ABOUT THE MASS OF CERTAIN SECOND ORDER ELLIPTIC OPERATORS 19
4. If ¢ > 0, then m(a) can be defined for all a > 0, the function a — m(a) is
non-increasing and we have
ILm m(a) = —inf{Jo(u)|u € C°°(M), supp(u) C M \ supp(p)}
= —inf{lo(u)|u € C(M), u(p) = 0, supp(u) C M \ supp(p)}
=+ f, M\supp(yp) = OO
Corollary 6.6. There exists a function f such that Py is positive and such that
my < 0.

Corollary 6.7. Let p € S™. There exists a Riemannian metric g on S™ which is
conformal to o™ and flat on an open neighborhood of p such that for the operator
P, := Ay + asy we have m(a) <0 for all a > 4(’;—7_21).

6.3.1. Proof of Theorem[G.0 Point 1. For every a € I we denote the Green function
for the operator P, by G,. We have

(PO + acp)Ga = 51,, PyGy = 6p

and therefore
(Po + ap)(Ga — Go) = —apGo, (24)

where the right hand side is smooth, since ¢ vanishes on an open neighborhood of
p. The family of bounded linear operators

I>ar Py+ap e B(C*(M),C°(M))

is real analytic and for every a € I the operator Py + ayp is invertible. It follows
that the family of bounded linear operators

I>aw— (Po+ap)~t € B(CO(M),C?*(M))

is real analytic as well (see [15, VII-§1.1]). From (24]) we obtain that the family of
smooth functions a — G, — Gy is real analytic. The assertion follows.

6.3.2. Proof of Theorem[6.4 Point 2. Denote by G! = d%Ga and G .= d%Ga.
Differentiating twice P,Gq = d,,, we get:

P.G' = —0G, and P,G" = —20G". 25

Now, observe that G/ (p) = m/” (a). As a consequence, since in the sense of distri-
butions P,G, = 0, and using ([25]), we have

m” (a) = / G.P,G" dv?
M\{p}
= —2/ @G;Gadvg
M\{p}
. / G PaGl dv? > 0.
M\{p}

The last inequality comes from the fact that G, is smooth on M and that P, is a
positive operator.
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6.3.3. Proof of Theorem Point 3. Denote by A, the first eigenvalue of P,. By
assumption, Ag > 0. Since ¢(q) < 0 there exists an open neighborhood V' C M of
q such that ¢ < 0 on V. Let v # 0 be a non-negative function supported in V.
Then, for a large enough, fM vP,vdv? < 0 and hence A\, < 0. Define a, as

(oo 1= inf{a > 0|\, = 0}.
Then, by Theorem [0l we have m(a) — 00 as ¢ — aoo.

6.3.4. Proof of Theorem[G.3 Point 4. Since Py is a positive operator and since ¢ > 0
we have for all @ > 0 and for all u € C*°(M) with v # 0

/ uwP,u dv? :/ uPyu dv? +a/ ou? dv? > 0.
M M M

Thus for all a > 0 the operator P, is positive and m(a) can be defined.
For every a > 0 and for every u € C*°(M) we have

Jo(u) = Jo(u) + a/ ou® dv?,
M

where the integral on the right hand side is non-negative. Let a1,a2 > 0 with a1 <

az. Then for every u € C*° (M) we have J,, (u) < Ju, (u). It follows that m(ai) >

m(az) and thus the function a — m(a) is non-increasing. Next let u € C°°(M) such

that supp(u) C M \ supp(y). Then for all a > 0 we have —m(a) < Ju(u) = Jo(u).

Since this holds for every u € C°°(M) such that supp(u) C M \ supp(p), we obtain
—m(a) < inf{Jo(u)|u € C>(M), supp(u) C M \ supp(p)}.

Thus the function a — m(a) is bounded from below and the limit lim,_, m(a)
exists.

In the following we may assume without loss of generality that ¢ #Z 0. We now
need to obtain some properties of GG,. Let us observe that Gy — G, is smooth. One
computes that

PO(GQ — Ga) = acha. (26)
Multiplying this equation by the Green function of Py at any point ¢ € M\ {p} and
integrating we obtain (Go — G4)(¢) > 0. It follows that 0 < G, < Gg on M \ {p}.
Therefore, since

1:/ P,(1)Gq dv? :/ fGadvg—i—a/ wGq dv?
M\{p} M M

we obtain that
a/ G, dvd < C (27)
M

for some fixed positive constant C' which is independent of a. We multiply 20) by
Gy — G, and integrate.

a/ G Go dvd Za/ GGy dvg—a/ @Gi dv?d
M M M
= / (Go - Ga)Po(Go - Ga) dv?
M

= / |d(Go — Go)[2dv? +/ f(Go — Gp)?*dv?
M M
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and the right hand side is positive since Py is a positive operator. From 27), we
deduce that a [ v PGaGodv? is bounded, and hence the same holds for

/ |d(Go — Go)|[Pdv? +/ f(Go — Go)*dov’.
M M

This implies that Gy — G, is bounded in the Sobolev space H?(M). Hence,
there exists a function ve, € HV2(M) such that after taking a subsequence the
functions Gy — G, tend to vy weakly in H52(M) and strongly in L?(M). We now
set uq := Go — >~ ™. Then u, tends to s = —Vso + Go — 2™ weakly in
HY2(M) and strongly in L?(M) and pointwise almost everywhere. Observe that
Ueo 18 Non-negative on supp(yp) since u, = G, on supp(yp). Moreover, by ([21) we
have

a—» 00

/ DU dv? = lim pGodvd =0
M M
and as a consequence, U, = 0 on supp(p).

For all smooth functions u we have

Jo(u) = /M(|du|2 + fu?) dv? +/

nr " F, dv? + 2/ uk, dv?.
M\{p}

M
By density of C*°(M) in H%2(M) and since u., vanishes on supp(¢), we thus have
inf{Jo(u)| u € C* (M), supp(u) C M \ supp(p)}

:/ (|duso|?® + fu?.) dv? —|—/ nr* " F, dvg—|—2/ Uoo £y dv?.
M M\{p} M

By weak convergence in H2(M) and strong convergence in L?(M) of u, to us, it
follows that the right hand side is bounded above by (see the proof of Lemma [1.2]
for details)

1iminf/ (|dua|?® + fu?) dv? +/
M

nri ", dv? + 2/ uaFy dv?
amee M\{p}

M
= liminf Jo(ug).

a—oo
This implies that
inf {Jo(u)|u € O (M), supp(u) € M \ supp(p)} < liminf Jo(us).  (28)
From Theorem [B.1],
—ma) = Ju(ua) = Jow) +a [ 6GEdo" = Jofu)

which gives, together with (28] that

inf{Jo(u)|u € C°(M), supp(u) C M \ supp(¢)} < — lim m(a).

a—r 00

This proves Point 4 of Theorem
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6.3.5. Proof of Corollary [6.6l Let us for a moment consider the sphere S™. Let h
be a metric on S™ which is conformal to the standard metric and which is flat on
a ball B(g,d) of radius ¢ for some g € S™ where § > 0 is chosen such that (M, g) is
flat on B(p,d). Let @ be a smooth function on S™ which is positive on S™ \ B(q,d)
and which vanishes on B(q, ¢). For every a > 0 let G, be the Green function of the
operator Ly + ap and let m(a) be its mass. We have
Liy(Go — G,) = aBG.
As in the lines after Equation (20) it follows that for all @ > 0 we have G — G, > 0
and hence, m(a) = m(a) — M(0) = (G, — Go)(¢) < 0. By Point 4 of Theorem
the function a — m(a) is non-increasing. Hence, lim,_,o M(a) < 0. Applying
Point 4 of Theorem [6.5], we obtain that
inf{J(u)|u € C*(S™), supp(u) C B(g,9)} >0 (29)

where J is defined as above on the sphere by
J(u) = / nr? " E, dvd + 2/ uky, dv? +/ uPyu dv?,
S™\{q} " "

where 7 is a smooth function supported in B(g, 9).

Now, let f: M — R be a smooth function which is positive on M \ B(p,d) and
0 on B(p,d). We consider the operator P, := A, + f + af. Let m(a) be the
corresponding mass. For every a > 0 the operator P, is positive. By Point 4 of
Theorem [6.6] we have

l_ikm m(a) = —inf{Jo(u)|u € C*°(M), supp(u) C B(p,d)}

where Jy is constructed as above on M. Observe that since (B(q,d),h) C (S™, h)
and (B(p,9),9) C (M, g) are isometric, we have

inf{Jo(u)|u € C*(M), supp(u) C B(p,d)}

= inf{J(u)|u € C*(S™), supp(u) C B(q,9)}.
By (29), we obtain that lim, o m(a) < 0 which proves Corollary [6.6l
6.3.6. Proof of Corollary [6.7 It is sufficient to find a Riemannian metric g on S™
which is conformal to ¢”, flat on an open neighborhood of p and satisfies s, > 0.

Choose an open neighborhood U of p on which ¢" is conformally flat. Using
stereographic projection at —p we may write 0" = u*/("=2¢" on U where with

r = |z|en we have
( ) ( 2 )n;2
u(r) = .
1472

Let € > 0 be so small that v”(r) < 0 on [0,2¢) and such that the preimage of
B(0,2¢) € R™ under the stereographic projection is contained in U. Choose a
smooth function v on [0,00) such that v is constant on [0,€), v = u on [2g,00)
and such that on [0,2¢) we have v'(r) < 0 and v”(r) < 0. We define v as a radial
function on R"™ and we obtain

Agnv(z) = =0"(r) —

n—1

v'(r) > 0. (30)

We define g = v*(=2¢" on U and g = ¢” on S™ \ U. Then g is a smooth Rie-
mannian metric on S™ which is conformal to ¢ and flat on an open neighborhood
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of p. Furthermore by the conformal transformation law (@) for L¢n and by (B0) we
have s, > 0 on S™.

6.4. Application 4: Surgery and positivity of mass. Let (M, g) be a closed
Riemannian manifold of dimension n > 3, let p € M and assume that g is flat on
an open neighborhood U of p. Let f € C°°(M) such that f = 0 on U. We keep
the same notation as in Section Bl Let now Q@ C M be an open subset containing
supp(n). Assume that
Prla: CF(Q) = C™(Q)
is a positive operator with respect to Dirichlet boundary condition. Then, we define
myq = —inf{I;(u)|u e C(M), u(p) = 0, supp(u) C Q}

Let Gy,q be the Green function of Py|o with Dirichlet boundary condition. Mim-
icking the proof of Theorem [B.1] one proves that my g is the mass of G5 . Clearly
for any € the following proposition is obvious from the definitions.

Proposition 6.8. We have
myg Z mga.

This observation has nevertheless some interesting applications. A first one is
the following: let (£2,g0) be a compact manifold with boundary and let fy be a
function defined on €. Assume that (€2, go) embeds isometrically in (M, g) and let
f be such that Py is positive on (M, g) and f = fop on & C M. Then, the mass of
P; is bounded from below by a constant which depends only on (2, go) and fo.

Another application seems much more interesting. Let (M, g) be a closed Rie-
mannian manifold with positive Yamabe constant Y (M, g). We assume that g is
flat around a point p. Now, we perform on M a surgery of dimension & < n — 3,
i.e. we remove a tubular neighborhood of a sphere S* in M and replace it by gluing

the boundary with the boundary of the product B« 7 E-1 Without loss of
generality, we can assume that p does not lie in the removed part. For more infor-
mation on this procedure, see for instance [2] or Section[2l Then, it was proven by
several authors (see [8 23] 2]) that on the new manifold N one can construct a new
metric h with positive Yamabe constant which is flat around p. Moreover h can be
constructed in such a way that it coincides with ¢ on M except on an arbitrarily
small open neighborhood of the removed sphere in M. Then, a natural question
is: assume that the mass m (M, g) of L, is positive. Does this imply that the mass
m(N,h) of Ly is also positive? Observe that Proposition gives an immediate
positive answer to this question. Indeed, for € > 0, define

Q. ={ze M| dy(x,S) > ¢}
where S is the surgery k-sphere. Then we prove the following theorem.

Theorem 6.9. For every € > 0 let he be a Riemannian metric on N such that
Y(N,h:) >0 and he = g on Q.. Then we have

im i > .
llirilglfm(N, he) > m(M, g)

Proof. Let u € C*°(M) such that we have —m(M, g) = J4(u). Let x. be a smooth
function on M equal to 1 on s, equal to 0 on M \ Q. and such that |dy.|, < 2.
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We may consider the functions y.u as functions on N. We write A, := . \ Q..
Since on supp(x.) we have h. = g we obtain by (3]

/ uXeLn. (uxe) dv"s = / (U2|dXs|§ + X§ULgu) dv?
N M

4
< —2/ u? dvg—|—/ XZuLgudv?.
€= JA, M

Let k € {0,...,n — 3} be the dimension of the surgery sphere. Since there exists
C > 0 such that for all ¢ we have vol(A.) < Ce" ¥, the first term on the right hand
side tends to 0 as € — 0. We conclude that

lim sup Jp, (uxe) < Jg(u).

e—0

Since supp(x-u) C €. it follows that

limsup ( —m a2 QE) < Jg(u).

I(n—1) She»

e—0
and thus
<limi n— .
m(M,g) < llgi)lglfmél(n}U e
The assertion now follows from Proposition O

Theorem [6.9 shows that the positivity of mass is preserved by surgery of dimension
k € {0,...,n—3}. In the next section we will obtain a much stronger result, namely
that also a negative mass is preserved under such surgeries.

7. PRESERVATION OF MASS BY SURGERY

7.1. The result. Let (M, g) be a closed Riemannian manifold of dimension n > 3
with positive Yamabe constant Y (M, g). Assume that ¢ is flat on an open neigh-
borhood of a point p € M. Then we can define the mass m(M, g) at p. Let N be
obtained from M by a surgery of dimension k € {0,...,n — 3} which does not hit
the point p. Our aim is to show that the mass m(M, g) at p is preserved by this
procedure. More precisely we will prove the following theorem.

Theorem 7.1. There exists a sequence of metrics (gg) on N such that for every 0
the mass m(N, gg) at p can be defined and such that we have

lim m(N, gg) = m(M, g).
0—0

We will study an application of this theorem to the positive mass conjecture in
Section Bl But first we will prove Theorem [Z.I1 We will define the family of metrics
go in Section The same family of metrics has been used in the article [2]. In
Section we will prove that this family of metrics has the property stated in
the theorem. We will use the variational characterization of the mass according to
Theorem Bl and we will also use some techniques from the article [2], which we
briefly recall in Sections and [7.4



ABOUT THE MASS OF CERTAIN SECOND ORDER ELLIPTIC OPERATORS 25

7.2. Definition of the metrics gg. We recall a construction called the connected
sum along a submanifold using the notation of the article [2]. On the manifold
obtained in this way we define a family of Riemannian metrics (gg)g>o which is
described in the same article. We will mostly be interested in surgery which is a
special case of this construction. Let (M, g1), (M2, g2) be complete Riemannian
manifolds of dimension n and let W be a closed manifold of dimension k < n. Let
w;: W xR % — TM;, i=1,2, be embeddings. We assume that w; maps W x {0}
to the zero section of T'M; which we identify with M;. Thus we obtain embeddings
W — M; and we will denote the images of these embeddings by W/ C M;. We
assume that for every x € W the embeddings w; restrict to linear isomorphisms
{z} x R*7F — N, (z,00W], where NW/ denotes the normal bundle of W/ with

2 2

respect to the metric g;. For ¢ = 1,2 let r; be the function on M; giving the
distance to W/ and define UMi(c) := {x € M;|r;(x) < ¢} for every ¢ > 0. There
exists Rmax > 0 such that the maps w; := exp? ow; define diffeomorphisms

wi : W X B" ®(Rpayx) = UM (Riay), i=1,2.

In general, the Riemannian metrics g; do not have a corresponding product struc-
ture on UM: (Rmax). We introduce error terms T; measuring the differences from
the product metrics. Namely, if h; denote the restrictions of g; to W/ and if o”~#~1
is the standard metric on S” *~! we have

gi = hi +dr? +rio" 4T
on UMi(Rpax), i = 1,2. Now, for every € € (0, Ryax) we define
Ne := (M \ UM (e)) U (M2 \ UM2(€))/ ~,
and for every ¢ € (&, Riax)
U (c) == (UM () \ UM (€)) U (UM2(e) \ UM (€))/ ~,

where ~ means that we identify the point 2 € UM (¢) with the point wqow; ' (x) €
OUMz (), Therefore we have

Ne = (M \ UM (e)) U (M2 \ UM2(c)) U UL (c).

We say that N, is obtained from M; and M5 by a connected sum along W with
parameter €. Since the diffeomorphism type of the manifold V. is independent of
the choice of ¢ we will often write N instead of N.. Our next aim is to define for
a given # > 0 a Riemannian metric gg on N, for € > 0 small enough. We choose
numbers Ry, 0, §p such that

Riax > Rg > 0 > 69 > 0.

Then we choose Ay € (071, (5p)~!) and we put € := e~ “4¢5y. Then we define N.
and UM (c) for ¢ > 0 as above. On the set UXN(Ryax) we define the coordinate
function ¢ by

f=J = Inry +Ine, on UM (Rpax) \ UM (e),
] Inrg —Ine, on UM2(Rpax) \ UM2(¢).
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We choose smooth functions F' on N, and f on UN (Ryay) such that
Fla) = 1, if 2 € N\ UN (Ruax),
T ()T, ifz e UMi(Ry) \ UMi(e),i=1,2,
F@) = —|t(x)| —Ine, ifz € N.\UN(O),
- 1nA9, lf:EEUEN((S())

and such that |df /dt| < 1 for all ¢t and ||d?f/dt?||p~ — 0 as § — 0. We choose a
smooth function x: R — [0,1] such that x = 0 on (—oo, —1], x = 1 on [1,00) and
IX'| <1 on R. Then we define

F?g;, on M; \ UM: (),

X0 (hy + T) + di? + o™ +=1, on UMi(9) \ UM: (6),
90 = Ajx(t/Ag)(h2 + T»)

+AF(1 = x(t/Ag)) (b1 + T1) on UN(8y).

+dt? + 0"

On UXN(Ry) we write the metric gy as

go = e Oh, + dt? + o™ k1 4 T,
where hy is defined by

he = X(¢/Ag)hs + (1 = x(t/Ag))h1,
for t € R and where the error term Tt is equal to

Ty = e O (x(t/Ap)Ta + (1 — X(t/Ap))T1).
On UXN(Rg) we also define the metric without error term
gy =go —Tr = > Ohy + dt*> + o™+ 1. (31)

We will need upper bounds for the error term T and its derivatives. As in Section
6.2 of the article [2] one can show that there exists C' > 0 such that for all § we
have

Ty, < CeIO (32)
V90T, |y < Ce™ /) (33)
[$go — Sg'g' < Ce I, (34)

In the special case where My = S™, W = S*. k < n, and S¥ — S™ is the standard
embedding we say that N. is obtained from M; by surgery of dimension k with

—k
parameter . Note that in this case My \ U2 (¢) is diffeomorphic to B T gn—k-1,

7.3. Limit spaces and limit solutions. In the proof of Theorem [[.1] we will
construct solutions to the equation Aju = 0 on certain limit spaces (V,g). We
need the following lemmas which are adapted versions of Lemmas 4.1, 4.2 and 4.3

in [2].

Lemma 7.2. Let V be a manifold of dimension n. Let (¢o)a be a sequence of
points in V' that converges to a point ¢ as a — 0. Let (7a)a be a sequence of
metrics defined on an open neighborhood O of q that converges to a metric yo in
the C2(0)-topology as o — 0. Let (ba)a be a sequence of positive real numbers such
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that by, — oo as a — 0. Then for every r > 0 there exists for o small enough a
diffeomorphism

Ou: B"(r) = B"(qa,b;"r)
with ©4(0) = qo such that the metric O (b27.) tends to the flat metric £" in
C2(B"(r)).
Proof. see the proof of Lemma 4.1 in [2]. O

Lemma 7.3. Let V be a manifold of dimension n. Let (9o)a be a sequence of
metrics that converges to a metric g in C? on all compact sets K C 'V as a — 0.
Assume that (Uy)o is an increasing sequence of subdomains of V' such that |, Us =
V. Let uqg € C?(Uy) be a sequence of positive functions such that |[ual| e (v, is
bounded independently of a. We assume

Ly uq =0
for all . Then there exists a non-negative function u € C2(V') satisfying
Lyu=0

on V and a subsequence of u, that tends to u in C' on each open set Q C V with
compact closure. In particular for every compact subset K C V we have

ey = i, | a0 (3)
and
/ u" dv? = lim [ wl dv9e (36)
K a—0 [

for every r > 1.
Proof. see the proof of Lemma 4.2 in [2]. O

Lemma 7.4. Let " be the flat metric on R™ and assume that u € C*(R™), u > 0,
u # 0 satisfies

Lenu = puP ™!
for some p € R and p := 2. Assume in addition that uw € LP(R™) and that

lull Lr@ny < 1.
Then pn > Y (S™,0™).
Proof. see the proof of Lemma 4.3 in [2]. O
7.4. L?-estimates on W S-bundles.

Definition 7.5. Let n > 1 and k € {0,...,n — 3} be integers. Let W be a closed
manifold of dimension k£ and let I be an interval. A W S-bundle is a product
P:=1xW x 8" %=1 equipped with a metric of the form

gws = dt® + e2*Wp, 4 k1 (37)
where h; is a smooth family of metrics on W depending on ¢t € I and ¢ is a function

on I.

We denote by m: P — I the projection onto the first factor and for every t € I
we write Fy := 7w~ 1(t). Furthermore we define

G(I’Lt) = trht(ﬁtht).

2(n—1)
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Definition 7.6. We say that condition (A;) holds at ¢ € I, if the following as-
sumptions are true:

1. s+ hg is constant on an open neighborhood of ¢,

2. e 22Winf,cy sp, () > —%,

3. @) <1

4.0 < =2k¢"(t) < 2(n—1)(n — k —2)°.

We say that condition (B;) holds at ¢ € I, if the following assumptions are true:
1. s — ¢(s) is constant on an open neighborhood of ¢,

2. infoep, Sguys () = 3Spn-r-1 = 5(n—k —1)(n — k — 2),

12
3. W e(hy)? + 272 8e(hy) > — & (n — k — 2).

Let P be a WS-bundle and let G be a Riemannian metric on P which is close

to gws in a sense we will make precise later. Assume that u satisfies the equation

Leu = 0. (38)

Our aim is to estimate the distribution of L?-norm of u with respect to the metric

gws. If we rewrite the equation ([B8) in terms of the metric gws we obtain an
equation of the form

Lywsu=d"A(du) + Xu + e0u — su, (39)

where s, € C*(P), A € T'(End(T*P)) and X € I'(T'P) and where dt(X) = 0 and
A(dt) =0 and A is symmetric. Then the following theorem holds.

Theorem 7.7. Assume that P is equipped with a metric gws of the form (37).
Let o, 8 € R such that [a, 8] C I. Assume that for every t € I condition (A;)
or condition (Bt) holds. Assume that u is a positive solution of [34). Then there
exists cog > 0 independent of o, and ¢ such that if

[ All Lo Py, 1 X Lo Py, I8l Loe Py, 1€l Lo py, ll€(he) | Lo (p) < co,
then
A(vol9e (F, 198 (B
/ u2 dpIws < (vol’ (Fa) + vol”’( ))HUH%OO(w*l(a B))
7= ((a+7y,8-7)) noke2 |

where 7y 1= 7= VEZQ

Note that the assertion is non-trivial only if g — a > 2+.

Proof. This is a special case of Theorem 5.2 in [2]. Since the proof given there is
very long and technical we will not repeat it here. Note that the theorem in [2] is
stated with ||u||p(py on the right hand side of the asserted estimate. However if
we examine the end of the proof of Theorem 5.2 in [2] we observe that we may also
put [[ul| e (x—1(a,8)) @ We have done. O

7.5. Proof of Theorem [Tl Let (M,g) be a closed Riemannian manifold of
dimension n > 3 with positive Yamabe constant Y (M, ¢g). Assume that g is flat on
an open neighborhood U of a point p € M. Then we can define the mass m(M, g)
at p.

Let N be obtained from M by a surgery of dimension k € {0,...,n — 3} which
does not hit the point p. More precisely we apply the construction described in
Section [[2 with M := M, g1 := g, My := S™, g5 := ", W := S¥ such that the
embedding S* — S™ is the standard embedding and such that p is not contained in
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the image of the embedding S k s M. Moreover we choose the number Ry.x > 0
and the open neighborhood U of p in such a way that U N UM(Rmax) = (. Then
for all # which are small enough we obtain a manifold IV := N, with a Riemannian
metric gy as described in Section In particular gy coincides with g on U. By
Theorem 6.1 in the article [2] and by the fact that

Y(MIIS", gllo™) =Y(M,g)
(see e.g.Section 1.2 in [2]) we know that there exist positive constants A, j de-

pending only on n and k, such that
min{Y (M, g), Ap i} <liminf Y (N, gg) < limsupY (N, g9) <Y (M, g).
0\0 AN0)

Thus if 0 is small enough we have Y/(N, gp) > 0 and thus we can define the mass
m(N, gg) at p.
We recall that by Theorem [B.1] we have

—m(M, g) = inf{‘]g(u)l ue C>(M)},
where for every u € C*°(M)

Jg(u) :/ y }777"2*"F77 dv? +2/ uF;, dv? —|—/ uLgu dv?
M\{p M M

and where 7 and F;, are defined as in Section[Bl For m(N, gg) we have an analogous
formula with a functional denoted by J,,. We note that the functions 7 and F;, can
be chosen independently of 6 since we have g = gy for all 6 on supp(n).

The proof of Theorem [[.1]is divided into several steps.

Step 1: After passing to a subsequence we have
lim m(N, gg) = m(M, g).
0—0

The proof is analogous to the proof of Theorem [G.91and we do not repeat it here.
We choose 6 > 0 such that B(p,20) C U and we choose a smooth function 7 on
N, such that n = m on B(p,8), n = 0on N\ B(p,26) and |dn|, < 2 on N..
For every 6 we denote the Green function for Ly, at p by Gy. Then the function
ug: Ne — R,
Go(z) —n(x)r(z)* ™, x#p
o { ST 127
is smooth. For every oo > 0 which is small enough we set

Ay = UM(2a)\UM(a) c M.
Step 2: We prove that for all o, 6 with 0 < 8 < o < Ry we have
—m(M,g) < —m(N,gg) + 16/ u2 dv9e .
Aa

For every a which is small enough let xo: M — [0,1] be a smooth function such
that xo = 1 on M\ UM(2a), xo = 0 on UM(a) and |dxal, < 2. In particular
for all a we have xo, = 1 on U. Furthermore if § < «, then we have go = F2g on
supp(xq). If in addition a € (0, Rp), then we obtain for all 6 € (0, «)

_ 2
l[dXalgy = F 1|an|g =rldxalg < 20[5 = 4. (40)
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For 0 < 6 < a < Ry the function v, 9: M — R defined by

[ F*¥ xque, ifxe M\ W,
Va0 () = { 0, if 2 € W}

is smooth. By Theorem [B.1] we have
—m(M, g) < Jg(va.s)

= / nrz_"F,, dv? + 2/ o Xaug L), dv?
M\{p} M

+ / FTLTanu(;Lg(FTLTi2 Xalg) dv?.
M

Since on supp(xa) we have go = F2g it follows from the conformal transformation
property (Bl of L, that

Lg(F%XaUG) = F%Lge(xoﬂl@)'

Since on supp(xa) we have dv9 = F~"dv9 we obtain

| P et Ly (P ) d0? = [ Xty (o) do
M M

Now by (@Bl we have

[ xouoas (xoto) dv = [ (ol + xuolsy o) dor

Using that on supp(F),) we have F' =1, xo = 1 and gy = g we obtain

~m(M.g) < [

M\{p}
—|—/ u3|dxa 39 dv9? —|—/ xiueLgeue dv9?.
M M

Using that Lg,up = —F, and xo = 1 on supp(F;)) and using that supp(F;) C M,
we obtain

nrz_"F,, dv9? + 2 /M ugl, dv?®

—m(M,g) < / nr2 " E, dv9? + 2/ ug L, dv??
N \{p} €

+/ u§|dxa|§9 dv9? +/ ugLg,up dv¥?
M

Ne
= Jg (uo) + /M ug|dxa !279 dv?
Using ({@Q) and that supp(dx.) C A, we obtain

_m(Mv g) < Jg, (UG) + 16/ ug dv?
Aa
By Theorem B we have Jy, (ug) = —m(N, gg) and therefore the assertion of Step
2 follows.

In the remainder of the proof we will show that the integral on the right hand
side tends to 0 as a and 6 tend to 0. By definition of ug we have Lg,ug = —F}, for
all 6, where F,, is defined as in Section[Bl In particular there exists b > 0 such that
for all # we have

UXN (b) N supp(Lg,ug) = 0.
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In the following step we obtain an L?-estimate for the functions ug which is inde-
pendent of §. The result is not trivial since vol?’ (U (b)) — oo as § — 0.

Step 3: We prove that there exist a € (0,b) and D > 0 such that for every 6 we

have 5
/ ug dv9? < D( max ua) .
UN (a) UXN(b)

This inequality is a special case of Lemma 6.6 in the article [2] and we follow
the proof given there. Let 7 € (g,b) be fixed. The manifold P := UXN (7) with the
metric gj defined in (3I)) is a W S-bundle, where in the notation of Section [7.4] we
have I = (o, ) with a := —In7 + Ine and § := In7 — Ine. The metric g, has
exactly the form 1) with ¢ = f and h; = h. Let 6 be small enough and let

te(—InF+Ine, —Indp+Ine)U(Indy —Ine,In7 —Ine).

Then assumption (A;) from Section [[4] is true. Let again 6 be small enough and
let

te(—Indy+Ine,Indy —Ine).
Then we have sy = son-—x-1 + O(1/A4p) and the error term e(hy) from condition
(By) satisfies

- - hy — hy C
2(n — 1)]e(he)| < |try, Bihe| = [try, (X’(t/Ag) T )\ <t
and o
2(n — 1)|0pe(hy)| = [tr (bt (Oche) Ryt (Ohe))| + |trﬁta§ﬁt| <o
0

Because of 1/4y < 0 the assumption (B;) from Section [[4]is true. Now on P we
have Lg,ug = 0 and with respect to the metric gws := g this equation has the
form ([39) as argued in Section[[4l Using 32), (B3), (34) one verifies that the error
terms satisfy the pointwise estimates

A@)lgws 1 X (@) |gws  15() s [(@) [gwys < Ce™ IO

on UN(Ry), where C' > 0 is independent of §. In particular for every co > 0 we
obtain

[A(@) [gws » X (@) [gws  [5(2)[gws s [€(@)lgws < o
on UN(0) if 0 is small enough. We set

a:=—In7+1Ine, B:=In7—Ine.

If 7 is so small that 5 — a > 2y = n§£27 then with P’ := UY (fe~7) we obtain by
Theorem [T.7] that

5 ug v < Cllugl| 7o (-1 (a,8)):
where

4

— Ja « gp B

C n—k—2(V01 (F*) + vol?? (F7))

is independent of 6. Furthermore if 7 is small enough we have
dv9? < 2dpIWs

on P’ and therefore

/P g dv® < 2C s (1 -
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Thus with a := 7e™7 the assertion of Step 3 follows since the functions ug are pos-
itive on UM (b).

Step 4: We prove that there exists C7 > 0 such that for all § we have
/ up dv9? < Ch,
N
where p := %

By Theorem 6.1 in the article [2] there exists a positive constant A,, ;, depending
only on n and k such that we have

Co :=min{Y (M, g),Ani} < ligniglfY(N, 90)
—

where Cy > 0. Let ¢ € R such that % + % = 1. By definition of Y (V, gg) and by
Holder’s inequality we obtain for all sufficiently small 6

CO < fN UeL%UQ dv9°o fN ueF dv9e - f Fq dvgg)l/q

fN P dvge )2/p o _(fN P dvge)2/p — fN P dvge)L/p’

On supp(F,) we have gy = ¢ and thus the numerator on the right hand side is
independent of f. The assertion of Step 4 follows.

Step 5: We prove that there exists Co > 0 such that for all  we have

maxug < Cly.
N

€

For every 6 we choose xy € N, such that

ug(Tp) = maxug =: my.
Ne

We assume that after taking a subsequence we have my — oo as § — 0. First we
prove the following lemma.

Lemma 7.8. Let a > 0. Then for all sufficiently small  there exists xy € UN (2a)
such that we have

camg < ug(p) < my,
where ¢, > 0 is independent of 6.
Proof. Let v be a solution to the Yamabe problem on (M, g), i. e.a smooth positive
function on M such that the Riemannian metric v*(*=2)g has constant scalar

curvature 1 on M. We choose a smooth function xo: N. — [0,1] such that y, =1
on N\ UY(2a) and x, = 0 on UY (). Then for every 6 the function

n—2
v :=F "7 vxa+1—Xa
on N. is smooth and positive and it depends on 6 since F' depends on 6. Now there
exist constants b, B, > 0 such that for every 6 we have
bo < vp < Bq (41)

on N.. For every 6 we define the Riemannian metric

4
go = 'Ug 99
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on N.. Let 6 be so small that on N \ UY(2a) we have gy = F2?g. Then on
N\ UX(2a) we get gp = v¥/("=2)g and thus

s5, = 1 on N\ UN(2a). (42)
For every 6 we define the function
- Ug
ug = —
Vg

on N, and we choose zj, € N, such that
up(zy) = Irjlvasxﬁ.g.
Then for all § we have by (Il
me_me
Vo (Ig) Ba

and thus by our assumption Gg(xj) — oo as § — 0. By the conformal transforma-
tion law () for Ly, we have at zj,

tip(p) > tg(p) = (43)

n—2 ’ n+2

T 1) i (o) T0(70) = —Fn(zg)ve(wg) "2 (44)

Notice that the right hand side is bounded independently of 6 since on supp(F;)
the function vy is independent of #. Since the first term on the left hand side is
non-negative and since 4y (xp) — oo as § — 0 it follows that sz, (zj) — 0 as 6 — 0.
Thus by @2) we have zj, € UN(2a) if 6 is small enough. It remains to prove
the inequalities of the assertion. First, by definition of my we have ug(zy) < my.
Second, by (@Il and [A3]) we have

(Agytin)(zp) +

vg(xp)me Do

V

ug(zp) = vo(wy)to(zh) =
This finishes the proof of the lemma. (I

In the remaining part of the proof of Step 5 we distinguish two cases.

Case 1: There exists ¢ > 0 such that xj, € N \ UV (c) for an infinite number of 6.

The proof is very similar to Subcase 1.1 in the proof of Theorem 6.1 in [2]. After
taking a subsequence we may assume that there exists T € N \ UY(c) such that
limy_,ozj = T. For every 6 we put ag := ug(xp). In a neighborhood U of T the
metric go = F2g is independent of € if € is small enough. We define gy := ag/("_2)gg.
Let r > 0. We apply Lemmall2Awith O = U, a =0, go = 2, ¢ =T, 70 = go = F?g
and b, = az/ "=2)For § small we then obtain a diffeomorphism

_ 2
B¢ : B"(r) — BY(zp,a, " 1)

such that the sequence of metrics (O}(gs)) converges to the flat metric {" in
C?(B"™(r)). For all sufficiently small § we have

_ 2
B9 (zy,a, " *r) Nsupp(F,) =0

and thus Lg,ug = 0 on B9 (:v'e,agz/("ﬁ)r). We define iy := ay'ug. By the
conformal transformation law [ for Ly, we have

Lg,iig =0
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—2/(n—2 . .
on B9 (z}, a, /=21y and since dvd = apdv9® we have
/ s Uy dv?? = / s updv?
B9 (x),a, =2y B9 (z},a, n=2y

§/ up dv9°
N

<G
by Step 4. Since

_ 2
Op : (B"(r),05(3s)) — (B* (xp, a9 " 1), Go)
is an isometry we can consider ug as a solution of
Le;(g0)t0 =0
on B™(r) with

/ ﬁg dv©0(30) < (.
Bn (T‘)

Since ||tg| poo(Bn(r)) = [U6(0)] = 1 we can apply Lemma [.3] with V' = R", o = 0,
ga = O}(ge) and u, = Gy. We can apply this lemma since every compact subset of
R™ is contained in some ball B™(r). We conclude that there exists a non-negative
C?-function u on R™ such that

Lgnu = O, ’LL(O) == 1,

in particular v # 0. By (B6]) we have for every r > 0
/ uP dvf” = lim s updv?? < Ch.

B (r) 0=0J B3 (2),a, " 2r)

In particular
/ uP dvs" < (C;.

After dividing u by a constant we may assume that f]R" uPdvt” = 1. We have ob-
tained a contradiction to Lemma [T 4l This finishes the proof in Case 1.

Case 2: For every ¢ > 0 we have zj, € UN(c) for 6 sufficiently small.

The proof is very similar to Subcase 1.2 in the proof of Theorem 6.1 in [2].
Again for every 6 we put ap := ug(xj). The subset UN(c) is diffeomorphic to
W x I x S"~%=1 where I is an interval. We identify

‘Té = (yp,t0,20) €W X (—In Ry + lne, —lne 4 In Ry) x gn—k-1

By taking a subsequence we may assume that g, t—"e and zy converge respectively
toy € W, T € [~o00,00] and z € S""F~1. First we apply Lemma [Z.2 with V = W,
a_9th_yeuq_:%’)/a—htgv'yo—hTandb 2/(n2)
h,oo = h; and hOO = hg. For every r > 0 the lemma pr0v1des diffeomorphisms

, where we define

ey : B¥(r) - Bho (yg,a;me_f(te)r)

such that (©§)*(a, 4/(1=2)2f(to)f, ) converges to the flat metric &F on BF(r) as
6 — 0. Second we apply Lemma L2 with V = S" %1 a =0, gu = 20, Ya = Y0 =
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o™ F=1and b, = az/ =2 For every 1’ > 0 we obtain diffeomorphisms

@ . Bn k— 1( )—>BU —hk-t (207@9 n— QT/)

such that (©7)*(a, 4/(n=2) n— k=1) converges to £ *~1 on B"~*~1(s') as § — 0. For
' r” >0 we deﬁne

. 2 __2
Up(r, 11" = Bhte o (yo, a —f(te) ) X [t — a, P2 et a, =
n—k— 2
x Bo"" 1(Z9,a9” 2r')
and
Op : B*(r) x [—r", 7" x B"*1(r") = Up(r, 7', 7")
by

B0y, s,2) := (05 (y), 1(s), ©5(2)),
where t(s) =ty + a;2/(n72)s Then Oy is a diffeomorphism and we obtain

_4 _4
O5(aF 2 g) = (OL)* (a7 2 Ohy) + ds? + (03)"(af *o" 1) + ©(a] > T5).
As in Subcase 1.2 in the proof of Theorem 6.1 in [2] one shows that the sequence

of Riemannian metrics @3(&3/(n_2)gg) tends to the flat metric £”. Then as in the
proof of Case 1 above one obtains a non-negative C2-function u satisfying

Lenu=0, u(0)=1, / uP dvt" < oco.

In particular v #Z 0 and one obtains a contradiction to Lemma [[4] as above. This
finishes the proof of Step 5.

By Steps 3 and 5 we know that there exist a > 0 and C' > 0 such that for every
0 we have

/ uj dv¥® < C. (45)
UZ\/I( )
We recall that for o« > 0 we have defined
Ay = UM(2a)\UM(a) C M.
Next we define

E := liminf lim inf u2 dv9e.
a—0 6—0 Ao
Step 6: Conclusion.
By the result of Step 2 it remains to show that £ = 0. We proceed similarly as
on p. 50 of the article [2]. Namely there exists 6 > 0 such that for every a € (0, 0)
we have

E
liminf/ ug dvd? > —.
0—0 Aa 2
For m € N we set a,, := 27"4. Then we have
E
lim inf/ ug dvd? > —
6—0 A 2

am

for all m. Let No € N. The sets A,,,, m € N, are disjoint and therefore we have

2
uy dv9® 2/ Ug 2 dv9o = / uZ dv9°
/UM<6> ’ U, Z A

am
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for all . From this we obtain
No
lim inf 2 dv9 > liminf 2 dv9°
gt [ B0 2ipie Y [ e

No
> E lim inf u%dvge
0—0 A
m=1 am

> ENo
- 2

Assume that £ > 0. Since Ny € N can be chosen arbitrarily large, we obtain a
contradiction to the estimate [5)). Thus we have E = 0 and Theorem [T1]is proved.

8. APPLICATION TO THE POSITIVE MASS CONJECTURE

In this section we study an application of Theorem [Z] to the positive mass
conjecture. By a simply connected manifold T we mean a connected manifold 7’
with 71 (T) = {0}. If T is an oriented manifold, we denote by —T the manifold T'
with the opposite orientation.

Lemma 8.1. Let X, be a closed simply connected oriented non-spin manifold of di-
mension n > b and let Xo be a manifold of dimension n which is oriented cobordant
to X1. Then X1 can be obtained from Xo by finitely many surgeries of dimension
ke {0,..,n—3}.

Proof. The assertion follows from the proof of Theorem C in the article [8] by
Gromov and Lawson. Namely let W be an oriented cobordism from Xy to Xj.
After applying finitely many surgeries of dimension 0 or 1 to X and then to W we
may assume that Xy and W are simply connected. After further applying surgeries
and using that X; is not spin we can assume that the induced homomorphism
m2(X1) — m2(W) is surjective. It follows that for i < 2 we have H;(W, X() = 0 and
H;(W,X;) = 0. The assertion then follows from a result by Smale ([26], see also
[16, VIII Thm. 4.1]). O

Definition 8.2. We say that a closed manifold M satisfies PMT if for every Rie-
mannian metric g on M with Y (M, g) > 0 and for every point p € M such that g
is flat on an open neighborhood of p we have m(M, g) > 0 at p.

Lemma 8.3. Let M, N be two closed manifolds of dimension n such that N
satisfies PMT. Assume that M is obtained from N by surgery of dimension { €
{2,..,n—1}. Then M satisfies PMT.

Proof. In general any surgery of dimension ¢ on a manifold of dimension n can be
undone by a surgery of dimension n —1 — ¢. Thus N can be obtained from M
by surgery of dimension k € {0,...,n — 3} and the assertion follows from Theorem

A} O

Lemma 8.4. Let M and P be two closed manifolds of the same dimension. Assume
that M does not satisfy PMT and that there exists a Riemannian metric h on P
with Y (P, h) > 0. Then the connected sum M#P does not satisfy PMT.
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Proof. Let g be a Riemannian metric on M with Y(M, g) > 0 such that at some
point p € M we have m(M, g) < 0. The metric g IT h on the disjoint union M 1T P
satisfies

Y(MUI P gllh)=min{Y(M,g),Y(P,h)} >0
(see e.g.Section 1.2 in [2]). The Green function of Ly, is given by

G, on M,
Gguh_{ 09 on P

and thus at p we have m(M I P,gIlh) = m(M,g) <0, i.e. M II P does not satisfy
PMT. Since M#P can be obtained from M IT P by surgery of dimension 0 Theorem
[Tl shows that M#P does not satisfy PMT. O

Theorem 8.5. Assume that there exists a closed orientable simply-connected non-
spin manifold of dimension n > 5 satisfying PMT. Then every closed manifold of
dimension n satisfies PMT.

Note that, by Proposition 4.1 in [2I] or Section 5 in [18], this theorem could also be
stated for the ADM-mass in the context of the standard positive mass conjecture
coming from general relativity.

Proof. Let M be a closed oriented simply-connected non-spin manifold of dimension
n satisfying PMT. The manifold M#M#(—M) is oriented cobordant to M. By
Lemma [BT] the manifold M can be obtained from M#M#(—M) by finitely many
surgeries of dimension k € {0, ...,n — 3}. Therefore M#M#(—M) can be obtained
from M by finitely many surgeries of dimension ¢ € {2,...,n—1}. Since M satisfies
PMT it follows from Lemma [83] that M#M#(—M) satisfies PMT. By Lemma [8.4]
we conclude that M#(—M) satisfies PMT.

Let N be a closed manifold of dimension n. Assume first that IV is orientable
and choose an orientation on N. Assume that N does not satisfy PMT. By Lemma
B4 it follows that N#(—N) does not satisfy PMT. Now N#(—N) is oriented
cobordant to M#(—M) since both manifolds are oriented cobordant to S™. Fur-
thermore M+#(—M) is simply connected and non-spin. By Lemma 8] the manifold
M+#(—M) can be obtained from N#(—N) by finitely many surgeries of dimension
k € {0,...,n — 3}. By Theorem [[T] the manifold M#(—M) does not satisfy PMT
which is a contradiction.

Next assume that N is not orientable. Let m: N — N be the two-fold orientable
covering of N. Let g be a Riemannian metric on N which is flat on an open
neighborhood of a point p € N and such that L, is a positive operator. Let g be
the Riemannian metric on N such that 7 is a Riemannian covering. Since the first
eigenvalue Ao of Lj is simple and the corresponding eigenfunctions do not change
their sign, Ao is also an eigenvalue of L. It follows that Lj is a positive operator.
Now if we write 71 (p) = {p1,p2} and if G1, G denote the Green functions for
L at p1 and Py respectively, then for the Green function G of L, at p we have
G om = G1 4 Gs. In particular if m? (N, §) denotes the mass of (N, §) at p;, then
for the mass of L, at p we have m(N, g) = mP*(N, §) 4+ Ga(p1) > 0. O

It is easy to find examples of closed orientable simply-connected non-spin manifolds,
e.g.CP?™ or CP?™ x S* with k > 2. Our hope is that among these examples one
can find manifolds of dimension at least 8 satisfying PMT. However we have not
yet succeeded. Among the manifolds of dimension at least 8 satisfying PMT we
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know examples which are simply connected and spin (by Section [6.1]) and examples
which are not simply-connected and non-spin: indeed, we have

Proposition 8.6. Let n > 5, n = 1 mod4. Then, the projective space RP™
satisfies PMT.

Proof. Let g be a metric on RP™ which is flat around p € RP" such that L, is a
positive operator. Using the two-fold covering S™ — RP™ one obtains as in the last
part of the proof of Theorem that the mass of L, at p is strictly positive. [
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