Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2013

Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem

Résumé

The Euler-Poinsot rigid body problem is a well known model of left-invariant metrics on SO(3). In the present paper we discuss the properties of two related reduced 2D models: the sub-Riemanian metric of a system of three coupled spins and the Riemannian metric associated to the Euler-Poinsot problem via the Serret-Andoyer reduction.We explicitly construct Jacobi fields and explain the structure of conjugate loci in the Riemannian case and give the first numerical results for the spin dynamics case.
Fichier principal
Vignette du fichier
2013-CDC2-cots-preprint.pdf (1.1 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00925078 , version 1 (07-01-2014)
hal-00925078 , version 2 (23-02-2017)

Identifiants

  • HAL Id : hal-00925078 , version 1

Citer

Bernard Bonnard, Olivier Cots, Nataliya Shcherbakova. Riemannian metrics on 2D manifolds related to the Euler-Poinsot rigid body problem. 52nd IEEE Conference on Decision and Control, 2013, Firenze, Italy. ⟨hal-00925078v1⟩
707 Consultations
441 Téléchargements

Partager

More