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A LOWER BOUND CRITERION FOR ITERATED COMMUTATORS

We consider iterated commutators of multiplication by a symbol function and smooth Calderón-Zygmund operators, described by Fourier multipliers of homogeneity 0. We establish a criterion for a collection of symbols so that the corresponding Calderón-Zygmund operators characterize product BMO by means of iterated commutators. We therefore extend, in part, the line of one-parameter results following the work of Uchiyama and Li as well as the result in several parameters, concerning commutators with Riesz transforms by Lacey, Petermichl, Pipher, Wick.

Introduction

A classical result of Nehari [START_REF] Nehari | On bounded bilinear forms[END_REF] shows that a Hankel operator with antianalytic symbol b is bounded if and only if the symbol belongs to BMO. This theorem has an equivalent formulation by means of commutators of a symbol function b and the Hilbert transform, as the latter are a combination of orthogonal Hankel operators. Nehari's result leans on analytic structure in several crucial ways: the classical factorization result for H 1 functions on the disk and the fact that the Hilbert transform is a Fourier projection operator.

The classical text of Coifman, Rochberg and Weiss [START_REF] Coifman | Factorization theorems for Hardy spaces in several variables[END_REF] extended the one-parameter theory to real analysis in the sense that the Hilbert transforms were replaced by Riesz transforms.

In their text, they obtained sufficiency, i.e. that a BMO symbol b yields an L 2 bounded commutator for certain more general, convolution type singular integral operators. For necessity, they showed that the collection of Riesz transforms was representative enough. This is quite natural, in the view of the definition of H 1 requiring Riesz transforms being back in L 1 as well as the Fefferman-Stein decomposition of BMO using Riesz kernels.

Uchiyama [START_REF]A constructive proof of the Fefferman-Stein decomposition of BMO (R n )[END_REF] revisited said decomposition, with a very technical but constructive proof. It remarkably replaced the class of Riesz transforms by more general classes of kernel operators obeying a certain point separation criterion for their Fourier multiplier symbols. See also [START_REF]On the characterization of H p (R n ) in terms of Fourier multipliers[END_REF] and [START_REF] Uchiyama | On the compactness of operators of Hankel type[END_REF] for natural questions in this direction. Li [START_REF] Li | Characterization of the boundedness for a family of commutators on L p[END_REF] used a criterion similar to Uchiyama's, to show that it was also a sufficiently representative class to characterize BMO by means of commutators.

All of these results date back to the 70s, 80s and 90s and consider H 1 spaces in one parameter and simple, i.e. non-iterated commutators.

It is well known that the product theory and with it the product BMO space, as identified by Chang and Fefferman [START_REF] Sun-Yung | Some recent developments in Fourier analysis and H p -theory on product domains[END_REF], [START_REF]A continuous version of duality of H 1 with BMO on the bidisc[END_REF] have more complicated structure. We remind of Carleson's interesting example [START_REF] Carleson | A counterexample for measures bounded on H p spaces for the bidisk[END_REF] illustrating this difference. The techniques to tackle the analogs of the above questions in several parameters are very different and have brought, with the works of Lacey and his collaborators, valuable new insight and use to existing theories, for example in the interpretation of Journé's lemma in combination with Carleson's example.

Ferguson and Lacey proved in [START_REF] Ferguson | A characterization of product BMO by commutators[END_REF] that the iterated commutator of the Hilbert transform and multiplication by a symbol b characterize BMO, and with it, they proved the equivalent weak factorization result for H 1 on the bidisk. Lacey and Terwilliger extended this result to an arbitrary number of iterates in [START_REF] Lacey | Hankel operators in several complex variables and product BMO[END_REF], requiring thus, among others, a refinement of Pipher's iterated multi-parameter version of Journé's lemma. The real variable analog, the result of Coifman, Rochberg and Weiss [START_REF] Coifman | Factorization theorems for Hardy spaces in several variables[END_REF] using Riesz transforms instead of Hilbert transforms, was extended to the multi parameter setting in [START_REF] Michael | Multiparameter Riesz commutators[END_REF]. In this current paper, we extend in part, the direction of Uchiyama and Li to several parameters. We formulate a sufficient condition on a family of Calderón-Zygmund operators, so that their iterated commutators characterize BMO:

For vectors d = (d 1 , ..., d t ) ∈ N t , we consider product spaces

R d = R d 1 × ... × R dt .
For each 1 ≤ s ≤ t, we have a collection of Calderón-Zygmund operators T s = {T s,1 , ..., T s,ns }, whose kernels are homogeneous of degree -d s , with Fourier multiplier symbols Θ s = {θ s,ks ∈ C ∞ (S ds-1 ) : 1 ≤ k s ≤ n s } that are in turn homogeneous of degree 0. For appropriate functions f and symbols b we consider the family of iterated commutators

C k (b, •) = [T 1,k 1 [...[T t,kt , M b ]...]].
Here 1 ≤ s ≤ t, k = (k 1 , ..., k t ), 0 ≤ k s ≤ n s and T s,ks denotes the k s th choice of Calderón-Zygmund operator in the family T s acting in the sth variable.

We impose the following restrictions on the classes T s for each parameter s separately, easiest formulated in terms of their symbols:

• ∀x = y ∈ S ds-1 ∃ θ s,i so that θ s,i (x) = θ s,i (y)
(full point separation on the sphere) • ∀ x ∈ S ds-1 ∀t tangent to S ds-1 at x ∃ i so that ∂θ s,i ∂t (x) = 0 (existence of non-trivial tangential derivatives)

In the case that the kernels K are not real valued, it appears that a last condition is needed:

• Θ s is closed under complex conjugation.
Infinite sets T s are also included in our theorem at no additional cost.

Example. It is easy to check that the family of Riesz transforms in R ds satisfies these properties.

Example. It is also not hard to check that the family of all rotations of any one smooth, dilation and translation invariant Calderón-Zygmund operator T with a discontinuity in 0 of its symbol in any given direction has these properties. Precisely we mean an operator T that has a smooth symbol m that is homogeneous of degree zero with the property that there exists ξ ∈ S ds-1 such that m(ξ) = m(-ξ). Notice that in many cases, such as when we choose T to be the first Riesz transform, a small number of rotations are sufficient to make up a family with the required properties.

Theorem 1.1. Under the conditions above on the classes T s , there exist constants

C 1 , C 2 > 0 so that ∀b ∈ BMO(R d ) C 1 ||b|| BM O ≤ sup 0≤ks≤ns ||[T 1,k 1 [...[T t,kt , M b ]...]]|| 2 ≤ C 2 ||b|| BM O
where we mean the product BMO norm according to Chang and Fefferman. T s,ks denotes the k s th choice of Calderón-Zygmund operator in the family T s acting in the sth variable.

It is well known, that theorems of this form have an equivalent formulation in the language of weak factorization of Hardy spaces. For k a vector with 1 ≤ k s ≤ d s and 1 ≤ s ≤ t, let us denote by Π k the bilinear operator obtained by unwinding the commutator:

C k (b, f ), g L 2 = b, Π k (f, g) L 2 .
The operator Π k can be expressed as linear combination of iterates of Calderón-Zygmund operators T s,ks (and their adjoints), applied to f, g.

Using the notation

f L 2 * L 2 = inf    k j φ k j 2 ψ k j 2   
where the infimum runs over all possible decompositions of f = k j Π k (φ k j , ψ k j ). With the help of the relevant commutator theorem, it is an exercise in duality to see the following:

Theorem 1.2. We have H 1 (R d ) = L 2 * L 2 . For any f ∈ H 1 (R d ) there exist sequences φ k j , ψ k j ∈ L 2 such that f = k j Π k (φ j j , ψ k j ) with f H 1 ∼ k j φ k j 2 ψ k j 2 .
In this text we prefer the language of commutators in terms of upper (sufficiency) and lower (necessity) bounds.

Our proof follows the machinery developed by Lacey and collaborators in [START_REF] Ferguson | A characterization of product BMO by commutators[END_REF], [START_REF] Lacey | Hankel operators in several complex variables and product BMO[END_REF], [START_REF] Michael | Multiparameter Riesz commutators[END_REF]. In particular, we refine a strategy from [START_REF] Michael | Multiparameter Riesz commutators[END_REF], to pass from the complex variable case and the Hilbert transform to the real variable and Riesz transform case. The Fourier multipliers of the Riesz transforms are very special -monomials on the sphere. We establish such a passage for much more general multiplier operators.

It seems not possible to use any previously proved characterization theorems directly. We can however reuse some of the general strategy and in particular, we manage to 'black box' the very technical wavelet support and paraproduct estimates found in different versions in previous works. In [START_REF] Michael | Multiparameter Riesz commutators[END_REF], this part appears to be the most streamlined and is general enough to apply to our situation. 

f (x):=f (x -y) , y ∈ R d , (2.1) Dil a (p) f (x):=a -d/p f (x/a) , a > 0 , 0 < p ≤ ∞ . (2.2)
These will also be applied to sets, in an obvious fashion, in the case of p = ∞.

By the (d-dimensional) dyadic grid in R d we mean the collection of cubes

D d := j2 k + [0, 2 k ) d : j ∈ Z d , k ∈ Z .
An elementary example of a wavelet system is the Haar system generated by h = -1 (0,1/2) + 1 (1/2,1) and W = 1 (0,1) . The principle requirement is that the functions {Tr c(I) Dil

(2)

I w : I ∈ D 1 } form an orthonormal basis for L 2 (R).
The wavelet in this text should be thought of Meyer wavelet though, due to its extraordinary Fourier support properties. Although not explicit in this text, we borrow certain technical estimates that make decisive use of this feature of the Meyer wavelet.

For ε ∈ {0, 1}, set w 0 = w and w 1 = W , the superscript 0 denoting that 'the function has mean 0', while a superscript 1 denotes that 'the function is an L 2 normalized indicator function'. In one dimension, for an interval I, set

w ε I := Tr c(I) Dil (2) 
|I| w ε .

Multiresolution wavelets, such as the Haar or the Meyer wavelet have the useful identity (2.3)

I J f, w I w I = f, w 1 J w 1 J .
The passage from R to R d consists of a product of d wavelets associated to intervals of the same size, so that the resulting wavelet is associated to a cube.

Let σ d := {0, 1} d -{ 1}, which we refer to as signatures. In d dimensions, for a cube Q with side |I|, i.e.,

Q = I 1 × • • • × I d , and a choice of ε ∈ σ d , set w ε Q (x 1 , . . . , x d ) := d j=1 w ε j I j (x j ).
It is then the case that the collection of functions

Wavelet D d := {w ε Q : Q ∈ D d , ε ∈ σ d }
form a wavelet basis for L p (R d ) for any choice of d dimensional dyadic grid D d . Here, we are using the notation 1 = (1, . . . , 1).

The passage to the tensor product setting, R d = R d 1 × ... × R dt consists of a product of t wavelets associated to cubes of possibly different size, so that the resulting wavelet is associated to a rectangle.

For a vector d = (d 1 , . . . , d t ), and 1 ≤ s ≤ t, let D ds be a choice of d s dimensional dyadic grid, and let

D d = ⊗ t s=1 D ds . Also, let σ d := { ε = (ε 1 , . . . , ε t ) : ε s ∈ σ ds }.
Note that each ε s is a vector, and so ε is a 'vector of vectors'. For a rectangle

R = Q 1 × • • • × Q t ,
being a product of cubes of possibly different dimensions, and a choice of vectors ε ∈ σ d set

w ε R (x 1 , . . . , x t ) = t s=1
w εs Qs (x s ).

These are the appropriate functions and bases to analyze multi-parameter paraproducts and commutators.

So the collection of wavalets associated to a dyadic grid in the product setting D d is

w ε R : R ∈ D d , ε ∈ σ d .
This is a basis in L p (R d ).

2.2. Chang-Fefferman BMO. Let us describe product Hardy space theory. By this, we mean the Hardy spaces associated with domains like ⊗ t s=1 R ds .

The Hardy space H 1 (R d ) denotes the class of functions with the norm

d j=0 R j f 1
where R j denotes the jth Riesz transform. We adopt the convention that R 0 , the 0th Riesz transform, is the identity. This space is invariant under the one parameter family of isotropic dilations, while H 1 (R d ) is invariant under dilations of each coordinate separately. This invariance under a t parameter family of dilations gave rise to the term 'multi-parameter' theory.

The product space H 1 (R d ) has a variety of equivalent norms, in terms of square functions, (strong) maximal functions and Riesz transforms.

The dual of the real Hardy space is

H 1 (R d ) * = BMO(R d ),
the t-fold product BMO space. It is a Theorem of Chang and Fefferman [START_REF]A continuous version of duality of H 1 with BMO on the bidisc[END_REF] that this space has a characterization in terms of a product Carleson measure.

Define

(2.4) b BMO(R d ) := sup U ⊂R d   |U | -1 R⊂U ε∈σ d | b, w ε R | 2   1/2
.

Here the supremum is taken over all open subsets U ⊂ R d with finite measure, and we use a wavelet basis w ε R .

Theorem 2.5. (Chang, Fefferman) We have the equivalence of norms

b (H 1 (R d )) * ≈ b BM O(R d ) That is, BM O(R d ) is the dual to H 1 (R d ).
Notice that this space BMO is invariant under a t-parameter family of dilations. Here the dilations are isotropic in each parameter separately. This fact is also represented by the choice of our wavelet system. 2.3. Journé's Lemma. Notice that the supremum in the wavelet definition of BMO runs over open sets of finite measure. This supremum restricted just to rectangles gives the definition of the larger rectangular BMO. There is a substantial geometric difference: the maximal dyadic sub-rectangles of any arbitrary rectangle are disjoint while those maximal dyadic sub-rectangles in open sets are not necessarily comparable by inclusion. It is in part due to this difference that, in the same way as in [START_REF] Ferguson | A characterization of product BMO by commutators[END_REF], a geometric lemma by Journé [START_REF] Journé | A covering lemma for product spaces[END_REF] involving rectangles in the plane, particularly useful in handling collections of rectangles not comparable by inclusion, comes into play. It was first observed by Ferguson and Lacey that Journé's lemma could be improved to partially compare rectangular BMO and product BMO of two parameters.

An n-dimensional version of Journé's original lemma is due to Pipher [START_REF] Pipher | Journé's covering lemma and its extension to higher dimensions[END_REF] and makes use of iterations. This is the reason why we are going to have to replace the rectangular BMO space by another version of BMO that allows us to induct on the number of parameters in our commutator and therefore make use of the iterated nature of Journé's lemma in more than two parameters. This idea was first used in [START_REF] Lacey | Hankel operators in several complex variables and product BMO[END_REF].

Say that a collection of rectangles U ⊂ D d has t -1 parameters if and only if there is a choice of coordinate s so that for all R, R ′ ∈ U we have Q s = Q ′ s , that is the sth coordinate of the rectangles are all one fixed d s dimensional cube.

We then define

f BMO -1 (R d ) = sup U has t-1 parameters | sh(U )| -1 ε R∈U | f, w ε R | 2 1/2
In this notation, a collection of rectangles has a shadow given by sh(U ) = ∪{R : R ∈ U }. The -1 subscript is used to indicate that we have 'reduced by one parameter' in the definition. The reader may be more familiar with the rectangular BMO space mentioned above. In two parameters, the space BMO -1 is larger than rectangular BMO.

Carleson produced examples of functions which acted as linear functionals on H 1 (R d ) with norm one, yet had arbitrarily small rectangular BMO norm (and hence arbitrarily small BMO -1 norm).

Here is the precise version of the above mentioned refinement of Journé's lemma. It permits us, with certain restrictions and by inducing a damping factor, to control the BMO norm by the BMO -1 norm. Lemma 2.6. Let U be a collection of rectangles of finite shadow. For any a > 0, we can construct V ⊃ sh(U ) together with a function

E : U → [1, ∞] so that E(R) • R ⊂ V for all R ∈ U, |V | < (1 + a)| sh(U )|, and last that ε R∈U E(R) -C b, w ε R w ε R BMO ≤ K a b BMO -1 .
Here C depends only on d and K a on a and d.

A good and more complete reference on the subject is [START_REF] Cabrelli | Variations on the Theme of Journe's Lemma[END_REF].

2.4. Remarks on the Upper Bound. We are going to assume that K is a smooth Calderón-Zygmund convolution kernel on R d × R d . This means that the kernel is a distribution that satisfies the estimates below for x = y

|∇ j K(y)| ≤ N |y| -d-j , j = 0, 1, 2, . . . , d + 1 . K L ∞ ≤ N . (2.7)
The first estimate combines the standard size and smoothness estimate. The last assumption is equivalent to assuming that the operator defined on Schwartz functions by

T K f (x) def = K(x -y)f (y) dy extends to a bounded operator on L 2 (R d ).
If K 1 , . . . , K t is a sequence of Calderón-Zygmund kernels, with K s defined on R ds × R ds . It is not obvious that the corresponding tensor product operator

T K 1 ⊗ • • • ⊗ T Kt is a bounded operator on L p (R d )
. This is a consequence of multi-parameter Calderón-Zygmund theory.

By [START_REF] Michael | Multiparameter Riesz commutators[END_REF], theorem (5.3), multi-parameter commutators are bounded operators if the symbol belongs to BMO:

Theorem 2.8. For 1 < p < ∞, (2.9) [T K 1 , • • • [T Kt , M b ] • • • ] p→p b BMO .
By BMO, we mean Chang-Fefferman BMO. The implied constant depends upon the vector d, and the T Ks .

The Calderón-Zygmund operators we are concerned about in this text are assumed to have 'infinite' smoothness in the sense of the estimates on the kernel in (2.7) and are therefore included in the result above.

The rest of the paper is dedicated to establishing a lower estimate of our commutators by means of product BMO. We are going to follow the iteration strategy in [START_REF] Ferguson | A characterization of product BMO by commutators[END_REF], [START_REF] Lacey | Hankel operators in several complex variables and product BMO[END_REF], [START_REF] Michael | Multiparameter Riesz commutators[END_REF]. The one-dimensional case is very special: the Hilbert transform is both Calderón-Zygmund as well as half space Fourier projection operator. We have lost this feature in higher dimensions, but it motivates the use of Calderón-Zygmund operators close to projection operators, such as in [START_REF] Michael | Multiparameter Riesz commutators[END_REF].

Cone operators

In dimension d 2, a cone C ⊂ R d is given by the data (ξ, Q) where ξ ∈ R d is the direction of the cone and the cube Q ⊂ ξ ⊥ centered at the origin is its aperture. The cone consists of all vectors θ that take the form (θ ξ ξ, θ ⊥ ) where θ ξ = θ.ξ and θ ⊥ ∈ θ ξ Q. By λC we mean the dilated cone with data (ξ, λQ).

Given a cone C, we consider its Fourier projection operator defined via P C f = 1 C f . Due to the fact that the apertures are cubes, such operators are combinations of Fourier projections onto half spaces and as such admit uniform L p bounds. For a given cone C we consider a smooth Calderón-Zygmund operator T C with a kernel K C whose Fourier symbol K C ∈ C ∞ and satisfies the estimate

1 C K C 1 (1+τ )C .
Remark. The derivatives of the symbols K C increase with the aperture of the cones. In the course of the proof it will be important that the L p bounds of operators T C do not grow with the aperture of the cones. We thank the special nature of the cone operators and their closeness to half plane projections for this fact. By a rotation argument, we may assume that the cone C has direction x 1 . There exists a smoothed symbol m of the sort described, so that higher derivatives in consecutive directions x 2 , . . . ., x n are controlled independently of the aperture. In the remaining variable, x 1 , the derivatives grow with the aperture, but we control total variation of the derivatives in x 2 , . . . ., x n . In doing so and carefully reading the Marcinkiewicz multiplier theorem, it provides us with L p bounds independent of the aperture. The details are left to the interested reader. We refer to [START_REF] Grafakos | Classical Fourier Analysis[END_REF] page 363 for a detailed statement of the Marcinkiewicz multiplier theorem.

3.1. Selection of a Representative Class of Cones. Following the idea in [START_REF] Michael | Multiparameter Riesz commutators[END_REF], we select classes of cones that are going to give us a certain auxiliary lower bound. We felt the need to refine this process, which is necessary due to the fact that we consider more general classes of Calderón-Zygmund operators instead of just the class of Riesz transforms.

Let b be our BMO function that we normalize to have norm 1. Let U be the open set that gives us the supremum in the BMO norm of b and denote by U the collection of rectangles R ⊂ U . Let us renormalize, by an appropriate dilation, the size of the set sh(U ) to be comparable to 1. Let β = P U b, the wavelet projection onto those wavelets adapted to rectangles in the class U .

Given a cone C with data (ξ, Q). We denote by H C the half plane projection that corresponds to the direction ξ, the convolution operator whose symbol is χ (0,∞) (ξ • θ). Recall that T C denotes the Calderón-Zygmund operator adapted to the cone and P C the Fourier projection associated to the cone. Given a vector of cones C = (C s ) 1≤s≤t we denote by H C , T C , P C their tensor products. Lemma 3.1. Let b be the set of all BMO functions normalized as above. For all such b, let U, U , β be as above. For any κ > 0 we can select a finite set of pairs ( D, C)of vectors of cones D = (D s ) 1≤s≤t where D s ⊂ R ds with data (ξ s , Q s ) and C s ⊂ R ds , 1 ≤ s ≤ t with data (ξ ′ s , Q ′ s ) so that for each β there is a pair ( D, C) with the following properties.

(1)

D s ⊂ C s (2) T D β 2 ≥ 4 -t (3) (H D -T D )β 4 ≤ κ (4) (H C -P C )|T D β| 2 2 ≤ κ
Proof. We first select a finite collection of cones D s . Let us for the moment fix b. Let η be a small positive number to be determined later. It will be in relation with the aperture of the cones: given η, the aperture Q s is chosen large enough so that

P(D s ∩ S ds-1 |S ds-1 ) ≥ 1 2 -η.
We consider random rotations D φs s of D s and write D φ for component-wise independent rotation.

Averaging the L 2 norms gives us

E( P D φ β 2 2 ) = E( D φ | β(ξ)| 2 dξ) ≥ ( 1 2 -η) t as well as E( (H D φ -P D φ )β 2 2 ) ≤ η t .
Notice that for all choices of φ, we have

0 ≤ T D φ β 2 ≤ 1 as well as 0 ≤ (H D φ -T D φ )β 2 ≤ 1.
Together, this provides us with the estimates

P( T D φ β 2 ≥ 4 -t ) ≥ 4 t ( 1 2 -η) t -1 4 t -1 and P( (H D φ -T D φ )β 2 ≥ η -t ) ≤ η t 2 .
Since lim η→0

4 t ( 1 2 -η) t -1 4 t -1
= 1 2 t -1 and lim η→0 1 -η t 2 = 1, the sum of the above probabilities exceeds 1 for small enough η. In this case we are sure to be able to select directions so that

T D φ β 2 ≥ 4 -t and (H D φ -T D φ )β 2 ≤ η -t/2 .
We have to preserve the smallness of the latter estimate when passing to the L 4 norm. We have half plane projection operators H D and Calderón-Zygmund operators T D that have, according to remark 3 above, uniform L p bounds. It is essential that the L p norms do not grow when η → 0. Recall that small η induce large aperture for the cones D. Also remember that β is normalized in L 2 as well as in BMO. We therefore have uniform L 8 bounds of the following: (H D φ -T D φ )β 8 ≤ K where the constant K neither depends on the aperture nor the direction of the cones.

By interpolation we get (H

D φ -T D φ )β 4 η -t/6
. We choose η small enough so that both the above inequalities hold as well as η -t/6 < κ.

We have seen that there exists a fixed η so that for each b the set b(η) ⊂ S d-1 of admissible directions ξ is not empty. Notice that b(η) ⊂ b(η/2). Furthermore, there exists r(η) so that the ball B(ξ, r(η)) ∩ S d-1 ⊂ b(η/2) for all ξ ∈ b(η). So by increasing the aperture, a dense enough finite sample set of directions will therefore provide an admissible direction for all appropriately normalized BMO functions b.

We turn to the selection of cones C s , keeping in mind that cones D s have already been chosen. Due to uniform L 4 estimates of T D φ we see that |T D β| 2 2 ≤ K for some universal K. So, in particular, for any vector of cones C, we have (H

C -P C )|T D β| 2 2 ≤ K.
Take ς < η/2 a small positive number. Choosing the aperture of the cones C s large enough so that

P(C s ∩ S ds-1 |S ds-1 ) ≥ 1 2 -ς gives us the estimate E (H C φ -P C φ )|T D β| 2 2 ≤ Kς t Similarly to above, P( (H C φ -P C φ )|T D β| 2 2 ≥ Kς t/2 ) ≤ ς t/2
If D s = (ξ s , Q s ) let E ξs be the hyperplane perpendicular to ξ s and H ξs the corresponding half space that contains D s . Let α = min{∠(ξ 1 , ξ 2 ) : ξ 1 ∈ D s , ξ 2 ∈ E ξs } where ∠ denotes the angle between vectors. Notice that α only depends upon η. Consider now the circular cone A ξs = {ξ : ∠(ξ, ξ s ) < α/4}. There exists a fixed larger aperture Q ′ s , only depending on α so that (ξ, Q ′ s ) ⊃ (ξ s , Q s ) whenever ξ ∈ D ξs . We are free to choose ς small enough so that P(A ξs ∩ S ds-1 |S ds-1 ) ≥ ς 1/2 as well as Kς t/2 < κ. Since

P( (H C φ -P C φ )|T D β| 2 2 ≥ Kς t/2
) ≤ ς t/2 we are sure to find C s = (ξ ′ s , Q ′ s ) with the required properties.

By slightly enlarging the aperture of cones C s and an argument similar to the one above, we obtain a finite collection of cones C s with the required properties.

We form commutators using arbitrary cones

C s = (ξ s , Q s ). Let us define b Q = sup [T C 1 , ...[T Ct , M b ]...] 2→2
where the supremum is taken over all choices of cone transforms T Cs = T (ξs,Qs) in which the direction ξ s varies and the aperture of the cone is fixed to be Q s for each parameter s separately. Here T Cs acts in the sth variable. In [START_REF] Michael | Multiparameter Riesz commutators[END_REF] the following theorem was proven: Theorem 3.2. b Q ∼ b BMO with constants depending upon the aperture of the cones.

We are going to need information that is somewhat more specific. It is valuable to us to know for which test function, depending on the symbol b, the commutator becomes large. 

[T C 1 , ...[T Ct , M b ]...]γ 2 1.
The proof of a similar estimate is implicit in [START_REF] Michael | Multiparameter Riesz commutators[END_REF], section 7. Although the cones in our text have somewhat different properties (D s and C s do not necessarily share the same direction), the pairs (D s , C s ) were chosen to enable the use of the proof in [START_REF] Michael | Multiparameter Riesz commutators[END_REF]. We sketch the part of the proof that illustrates the special use of the cone operators.

Proof. For a fixed, small δ -1 to be chosen, we start with a BMO function b so that b BMO < δ -1 is small. Let U be the supremal set in the definition of BMO and U the corresponding collection of dyadic rectangles with its shadow sh(U ). Journé's lemma provides us with a slightly larger set V . Let V = {R : R ⊂ V, R ⊂ sh(U )}. Let W denote the rest of the dyadic rectangles. We use the collections U , V and W to split our symbol b = P U b + P V b + P W b. By linearity we obtain three commutators tested on γ. We will see that only the commutator with symbol P U b is large and the other two are negligible error terms.

We first observe that with β = P U b and γ

= T D β, we have [T C 1 , ...[T Ct , M β ]...]γ 2
1. Observe that the only non-zero term in this commutator is T C 1 ...T Ct (P U b)γ since any cone operator falling on γ is zero. Consider now the splitting

T C (γ + (H C -T D )β + (I -H C )β)γ.
The last term is zero since (I -H C )β and γ are supported on the same half space away from the cones C. The second term is small due to the choice of the cone in lemma (3.1). The first term is large and explains the motivation using cone transforms:

T C [γ • γ] 2 + κ ≥ H C [γ • γ] 2 γ • γ 2 = γ 2 4 1 .
This follows as the Fourier transform of γ • γ is symmetric with respect to the half planes determined by the cones; the last inequality uses the Littlewood-Paley inequalities.

Next, we will see that

[T C 1 , ...[T Ct , M P V b ]...]γ 2 δ 1/4 J . It is easy to see that [T C 1 , • • • [T Ct , M P V b ] • • • ]γ 2 P V b 4 γ 4 P V b 4 ,
where the implied constant depends upon the L 4 norms of the Cone transforms. But, by Journé's lemma, we have that

P V b 2 ≤ δ 1/2 J , P V b BMO ≤ 1 .
Together they imply

P V b 4 ≤ δ 1/4 J .
For the technical estimate of the last term [T C 1 , ...[T Ct , M P W b ]...]γ 2 K J δ -1 we refer to [START_REF] Michael | Multiparameter Riesz commutators[END_REF] section 7, proof of (7.9). Here K J depends upon the constant δ J .

We gather the information and are left with the following: Theorem 3.4. For each parameter s there exists a finite collection

C s of cones C s,ks = (ξ ks , Q s ) with 1 k s n s of fixed aperture Q s so that b BM O sup [T C 1,k 1 , ...[T C t,k t , M b ]...] 2→2 b BM O
for all BMO functions b. Here the supremum runs over all C s,ks ∈ C s .

It will be essential for us to approximate symbols of cone operators using polynomials in members of our given collections of symbols.

3.2.

Approximation of Cones via the Family Θ. For a fixed parameter, given our family Θ, we wish to approximate the symbol of cone projection operators by means of polynomials in θ i . For technical reasons, we need a very good approximation that controls also the supremum norm of derivatives of the symbols, say of order d. On one hand, we require the resulting approximations to be Calderón-Zygmund operators with enough additional smoothness on the kernel. This is a necessary requirement to control error terms that arise from the commutator with symbol P W b. This error estimate is not carried out in this text and can be found in [START_REF] Michael | Multiparameter Riesz commutators[END_REF], section 7, where the added smoothness is crucial. On the other hand, we need the L p estimates of the approximations to stay controlled when ǫ → 0. Nachbin's beautiful theorem [START_REF] Nachbin | Sur les algèbres denses de fonctions différentiables sur une variété[END_REF] allows us, under certain conditions on the family, to do so. We state it in the form we are going to need it. 

= v ∈ T x (M) there exists f ∈ B such that df(x)(v) = 0.
It is not hard to check that under the additional assumtion that B be closed under complex conjugation, there is a complex version. ) with values between 0 and 1 such that

• h C,D (ξ) = 1∀ξ ∈ C • h C,D (ξ) = 0∀ξ ∈ H -ξ C ∪ H -ξ D .
Given any small ǫ > 0, there exists an operator F C,D with symbol v C,D , that is a polynomial in θ ∈ Θ so that v C,D -h C,D τ d < ǫ, where . τ d is the norm of uniform convergence in C d .We have universal L p estimates for the associated kernel operators F C,D : F C,D p K p where this constant is independent of the choice of the cone and universal for small ǫ.

Proof. Thanks to our assumptions, the part concerning the approximations is almost clear. Just observe that we may add the identity operator I with multiplier 1 to our collection. That is the collection Θ characterizes BMO if and only if Θ ∪ {1} does. In the case that the kernels are real valued, we did not assume that Θ be closed under complex conjugation. In this case, consider Θ ∪ Θ characterizes BMO if and only if Θ does. Observe that if T θ denotes the Calderón-Zygmund operator associated to the symbol θ, then

T * θ = Tθ. Observe also that [T, b] = [T * , b] * . If the kernel K(x) of T is real, then K(-x) is the kernel of T * . It is easy to verify that [T 1 , [T * 2 , b]]f = [T 1 [T 2 , b (•,-) ]]f (•,-) .
Here f (•,-) (x, y) = f (x, -y) so f has a sign change in the second set of variables. Its obvious generalization holds when more iterates and adjoints are present. The BMO and L 2 norms are preserved under these reflections.

It remains the important point of universal L p estimates . Thanks to the control on the derivatives granted to us by Nachbin's theorem, we may apply a standard multiplier theorem to obtain uniform L p bounds.

Lower bound, Calderón-Zygmund operators

We induct on the number t of parameters, that is the number of coordinates in d = (d 1 , . . . ., d t ).We assume that d s 2 for all s. The case when d s = 1 for some s reduces our choices of admissible operators to the Hilbert transform. This case is easier and merely complicates notation for us.

The base case t = 1 of our induction argument is stronger than what we need and a theorem by Li: Theorem 4.1. Let T be a collection of Calderón-Zygmund operators, where the following restriction is imposed: the symbols θ i of the T i ∈ T are infinitely smooth and satisfy |θ i (x)-

θ i (-x)| = 0 for all x ∈ S d-1 .
In the case of t = 1 for all d 2 and symbols b on R d we have b BMO sup

1 k n [M b , T k ] 2→2 .
Here T k denotes the kth choice of operator in the family T .

We are also going to need the following weaker lower bound in terms of the BMO -1 norm in terms of iterated commutators using our families of Calderón-Zygmund operators. Lemma 4.2. Let t 2. Given classes T s of Calderón-Zygmund operators with the class of their symbols Θ s . Assume that for each parameter 1 s t separately we have

(1) ∀x = y ∈ S ds-1 ∃ θ s,i so that θ s,i (x) = θ s,i (y) (2) ∀ x ∈ S ds-1 ∀ t tangent to S ds-1 at x ∃ i so that ∂θ s,i ∂t (x) = 0
and assume that under these same conditions the lower bound holds in the case of t -1 parameters in terms of product BMO. Then we have the estimate

b BMO -1 sup k C k (b, •) 2→2 , where C k (b, •) = [T 1,k 1 [...[T t,kt , M b ]...]]
. Here 1 ≤ s ≤ t, k = (k 1 , ..., k t ), 0 ≤ k s ≤ n s and T s,ks denotes the k s th choice of operator in the family T s acting in the sth variable.

The proof uses a well established equivalent formulation of commutator estimates and weak factorization. This argument goes back to Ferguson and Sadosky [START_REF] Ferguson | Characterizations of bounded mean oscillation on the polydisk in terms of Hankel operators and Carleson measures[END_REF]. Our case is closest to the proof of lemma (6.3) in [START_REF] Michael | Multiparameter Riesz commutators[END_REF], replacing the collection of Riesz transforms by our families T s . We include a sketch for the sake of completeness.

We assume that t ≥ 2 and use the induction hypothesis to establish a lower bound in terms of our BMO norm with t -1 parameters.

Proof. It is sufficient to demonstrate that the following inequality holds,

(4.3) b (L 2 * L 2 ) * b BMO -1 ,
and this will be established, inducting on the number of parameters. Assume the truth of the Theorem in t -1 parameters.

Given a smooth symbol b(x 1 , . . . x t ) = b(x 1 , x ′ ) of t parameters, we assume that b BMO -1 = 1. Assume the supremum is achieved by the collection U of D d of t -1 parameters. Say that the rectangles in U agree in the first coordinate, to a fixed cube Q ⊂ R d 1 . After normalization, assume that |Q| = 1 and |sh(U )| ≈ 1. Then define

ψ = R∈U ε∈Sig d b, w ε R w ε R .
Note that b, ψ = 1. To prove the claim, it is then enough to prove that

ψ L 2 (R d ) * L 2 (R d ) 1.
Observe that ψ(x) = ψ 1 (x 1 )ψ ′ (x ′ ) and ψ 1 ∈ H 1 (R d 1 ) with

ψ 1 H 1 (R d 1 ) = 1.
To ψ 1 , apply the one-parameter weak factorization of H 1 (R d 1 ) resulting from the oneparameter characterization result of Li. There exists functions f j n , g

j n ∈ L 2 (R d 1 ), n ∈ N, 1 ≤ j 1 ≤ d 1 , such that ψ 1 = ∞ n=1 d 1 j 1 =1 Π 1,j 1 (f j 1 n , g j 1 n )
where Π 1,j 1 (p, q) := T 1, j 1 (p)q + pT 1, j 1 (q). One next sees that ψ ′ ∈ H 1 (⊗ t l=2 R d l ) with norm controlled by a constant. By the induction hypothesis in t -1 parameters, in particular that

H 1 (⊗ t l=2 R d l ) = L 2 (⊗ t s=2 R ds ) * L 2 (⊗ t s=2 R ds ), we have f j m , g j m ∈ L 2 (⊗ t s=2 R ns
) with m ∈ N and j a vector with 1 ≤ j s ≤ d s for s = 2, . . . , t such that

ψ ′ = ∞ m=1 j Π j (f j m , g j m ), ∞ m=1 j f j m 2 g j m 2
1.

This immediately implies (4.3) since ψ = ψ 1 ψ ′ , and we have a weak factorization of ψ with

ψ L 2 (R d ) * L 2 (R d ) 1.
We now turn to the induction step in the main theorem, to finish the proof of the lower estimate in terms of BMO in t parameters.

Proof. We start with any BMO function b so that b BMO -1 < δ -1 is small. Notice that we have no loss of generality here: due to lemma (4.2), we already have a lower bound for such b where b BMO -1 δ -1 .

We normalize the function b as before, find the function β and obtain cones D s , the function γ := T D β and cones C s according to lemma (3.1). For a small positive number ǫ to be chosen, that determines the precision with which we approximate the cone transforms T Cs , obtain operators T s , polynomials in Θ ∪ Θ ∪ {1}.

We are going to see that, indeed, the following estimate holds:

[T 1 , ...[T t , M b ]...]γ 2 1
Similar to before in the proof of lemma (3.3), we split the estimate into one large term and two error terms with the help of Journé's lemma. To be precise, we split the symbol function b into its parts b = P U b + P V b + P W b.

The commutator [T 1 , ...[T t , M β ]...]γ 2 consists of terms of the form T βT ′ γ where T, T ′ are combinations of T s and the identity. In the case where T ′ is not the identity, it follows from lemma (3.6) that the symbol of T ′ is at most ǫ on the Fourier support of γ. Such components are small:

T βT ′ γ 2 βT ′ γ 2 β 4 T ′ γ 4 ǫ 1/3 .
To obtain the last inequality, we have to preserve the trivially small L 2 norm T ′ γ 2 when passing to L 4 . To do so, recall that β is normalized both in BMO and L 2 . Observe also that T ′ is at most ǫ on the Fourier support of γ, which gives us T ′ γ 2 ≤ ǫ. In addition, T ′ has universal L 8 norms independent of ǫ by lemma 3.6. It remains to interpolate to obtain the estimate above. Now we are left with term T βγ = T 1 . . . .T t βγ which we estimate as follows. Remember that γ = T D β and write

β = γ + (H D -T D )β + (I -H D )β,
thus obtaining three terms. We will see that only one of them is large.

The functions (I -H D )β and γ are supported on the same product of half spaces complementary to cones D s . We know that the symbol h C,D vanishes and therefore the T s are at most ǫ, so

T ((I -H D )β • γ) 2 ǫ (I -H D )β • γ 2 ǫ (I -H D )β 4 γ 4 .
Recall the compositions of half plane projection operators have uniform L p bounds and that L 4 norms of both β and γ are controlled.

For the part T ((H D -T D )β • γ) we rely on the estimate from lemma 3.1 of the L 4 norm

T ((H D -T D )β • γ) 2 (H D -T D )β • γ 2 κ γ 4 κ.
For the term T (γγ)we consider

| T γγ 2 -H C γγ 2 | (T -H C )γγ 2 (T -T C )γγ 2 + (T C -H C )γγ 2 ǫ + κ.
Since γγ is real with symmetric Fourier transform, we have

H C γγ 2 γγ 2 = γ 2 4 . Furthermore γ 2 4 ε R∈U | γ, w R | 2 |R| 1 R 1/2 2 4 ε R∈U | γ, w R | 2 |R| 1 R 1/2 2 2 1.
The first inequality uses a Littlewood Paley inequality and to see the second inequality, note that the rectangles in U are contained in a set of measure bounded by 1. We have therefore proved that T (γγ) 2 1.

We wish to prove that commutators that arise with our Calder'on-Zygmund operators themselves are large, not just specific polynomials in those operators. To do so, observe the following elementary fact. Let T, T ′ be Calderón-Zygmund operators. Then

[T T ′ , M b ] = T [T ′ , M b ] + [T, M b ]T ′ .
If the symbols of T s and T ′ s are polynomials in the θ s , it follows that for some choice of operators associated to θ

s , [T 1,k 1 [. . . .[T t,kt , β]]]γ ′ 2 1
where γ′ is of the form T γ and where T is a composition of operators T s,ls . Notice here that it is essential that we only approximate a finite set of cone operators so that we control degrees and coefficients of the arising polynomials. This point is imperative, since we do not control degree or coefficients with Nachbin's approximation.

Recall that β = P U b and that all dyadic rectangles are split into three groups U ∪V ∪ W.

In order to see that the norm of the commutator satisfies For these two estimates, we can follow directly the arguments in [START_REF] Michael | Multiparameter Riesz commutators[END_REF].

The first estimate illustrates the use of Journé's lemma in this context. We do not need to use any cancellation of the commutator: The last estimate requires a very careful analysis, but does not use the specifics of our operators, except the control on a large number of derivatives of the kernel. We therefore appeal to the version in [START_REF] Michael | Multiparameter Riesz commutators[END_REF], section 7, where the estimate was stated for Riesz transforms but in fact carried out for more general Calderón-Zygmund operators with control on a large number of derivatives, such as the ones we have here.

Concluding Remarks

Remark. Our theorem is a generalization of the Riesz transform case, but it falls short of recovering the full Uchiyama-Li criterion in several parameters. Li's criterion only requires point separation of all pairs ξ and -ξ on the sphere. This criterion is quite natural as it makes sure there is an operator in the family that has a singularity in a given direction, for all directions. Due to the method of proof, we felt the need to require point separation for all pairs of points as well as a derivative condition. The strategy to obtain lower bounds in this multi-parameter setting remains analytic in nature -while we are not able to use Fourier projections directly as in one dimension, we build operators that are close enough to still pretend we are in the one-dimensional setting. Families that have Li's criterion are not enough to approximate the operators we need in the norm of uniform convergence in C(S d-1 ) much less in C n (S d-1 ). We require the latter because we need excellent convergence of multiplier symbols on the Fourier transform side in order to draw meaningful conclusions. It is interesting to remark that, in cases like ours, one easily proves a version of Stone Weierstrass theorem that can handle defects in the sense that it is clear which algebra is generated by a family of functions with defects, such as a lack of point separation for a given pair of ξ and ζ in S d-1 . One uses factor spaces to see that the generated algebra will have the exact same set of defects: the algebra generated by a family that lacks point separation for a set of pairs (ξ, ζ) will be the subalgebra with that same property. The situation is not so simple if one needs uniform approximation in C n (S d-1 ). Due to the necessary conditions on the
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  [T 1,k 1 [. . . .[T t,kt , b]]] 2→2 1, we use test function γ′ and split the estimate according to partial sums of the symbol b of only those rectangles belonging to classes U , V, W respectively. We have already seen that [T 1,k 1 [. . . .[T t,kt , P U b]]]γ ′
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 12142 It remains to see that the remaining parts are small. We are going to see that[T 1,k 1 [. . . .[T t,kt , P V b]]]γ ′ ,the part of the estimate responsive to Journé's lemma and also that[T 1,k 1 [. . . .[T t,kt , P W b]]]γ ′ J δ -1 .

[T 1 2 P V b 4 γ 4 where 2 δ

 1242 ,k 1 [. . . .[T t,kt , P V b]]]γ ′ the implied constant depends upon L 2 and L 4 operator norms of the T s,ks . The L 4 norm of γ is uniformly controlled and by construction we have P V b BMO 1. Last, Journé's lemma provides us with the estimate P V b 2 J . Interpolation then gives P V b 4 δ
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tangential derivatives, the situation becomes very complex when the family has defects, such as a lack of point separation in just one point or the lack of non-zero tangential derivatives. The corresponding subalgebras are unknown since the 1950s.