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modeling the linear viscoelasticity of nano-reinforced

polymers with an interphase

Julie Diani*, Pierre Gilormini

Laboratoire PIMM, CNRS, Arts et Métiers ParisTech, 151 bd de l’Hôpital, 75013 Paris,

France

Abstract

The self-consistent model based on morphological representative patterns is
applied to the realistic case of the linear viscoelasticity of polymers rein-
forced by elastic nano-particles coated with a viscoelastic interphase. This
approach allows to study the effect of such microstructure parameters as
particle dispersion, particle size distribution and interparticle distance dis-
tribution. Under the assumption that the interphase has the same thickness
around all reinforcing particles, it is shown that the particle size distribu-
tion has little effect on the effective properties of the heterogeneous material,
whereas the particle dispersion and the interparticle distance distribution
have stronger impacts.

Keywords: Particulate reinforced material (B), Micromechanics,
Viscoelasticity, Morphological pattern

1. Introduction

Few studies have investigated the interest of the morphological repre-
sentative pattern (MRP) approach introduced by Stolz and Zaoui (1991)
and which defines a micromechanics framework that accounts for the mi-
crostructure characteristics of materials. Bornert (1996) has included the
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MRP approach in a self-consistent scheme which has been applied mainly
by this author and his co-workers. For instance, Bilger et al. (2007) used
this self-consistent scheme to study the effect of a non-uniform void distribu-
tion in porous materials and Chabert et al. (2004) applied it to viscoelastic
polymers reinforced by silica, but without accounting for a possible material
interphase or for particle size distributions.

Taking an interphase into account in various materials has been per-
formed by using the 4-phase self-consistent model in many papers. This
model is based on a 3-phase spherical inclusion embedded in the homoge-
neous equivalent medium and has been given with full details by Maurer
(1990), with applications to interphases in viscoelastic materials by Mau-
rer (1986), Schaeffer et al. (1993), Eklind and Maurer (1996), Colombini et
al. (1999), Reynaud et al. (2001), Colombini et al. (2001), Colombini and
Maurer (2002), among others. A derivation of the same model leading to
different equations, has also been proposed by Hashin and Monteiro (2002),
for an interphase problem in elastic materials.

In a recent work (Diani et al., 2013), the present authors studied the
viscoelastic behavior of several carbon-black filled styrene butadiene rubbers
(SBRs). The experimental data showed evidences in favor of the existence
of an interphase at the rubber-filler interface, with enhanced viscoelastic
properties compared to the bulk matrix viscoelasticity. The behavior and
the thickness of the interphase were estimated by using the 4-phase self-
consistent model, which allowed a very good prediction of the viscoelastic
behavior of several filled SBRs, but the interphase thickness was estimated
to an arguably large value of 5 nm for spherical particles with a radius of
30 nm. Therefore, it seemed interesting to apply a more elaborate model
that allows for the introduction of more microstructure parameters, and to
see how the evaluation of the interphase thickness evolves. With the MRP
approach, one may study the effect of parameters such as particle dispersion,
particle size distribution and interparticle distance distribution. The method
is applied here to one of the above-mentioned carbon-black filled rubbers,
where the carbon-black agglomerates are approximated by elastic spherical
particles, and where both the polymer interphase and the polymer matrix
are viscoelastic. The mechanical behaviors considered for the constitutive
phases are realistic, and therefore the homogeneous equivalent medium can be
compared to the behavior of an actual carbon-black filled SBR. Considering
actual materials gives a sound framework to study the impact of some of the
parameters used in the MRP approach.
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Figure 1: Schematic representation of a material reinforced by randomly distributed par-
ticles of various sizes and coated with an interphase.

The paper is organized as follows. In the next section, the general equa-
tions of the MRP self-consistent model are detailed in a comprehensive and
an easy way, in order to favor its use among the scientific community. Ad-
ditional equations that are useful for the specific case of 3-phase spherical
patterns are also detailed, and the model parameters are discussed. Then,
the effects of particle dispersion, particle size distribution (based on realistic
carbon-black filler distributions), and interparticle distance distribution on
the predicted viscoelastic behavior of the heterogeneous material are exam-
ined by accounting for a large number of patterns. The comparison between
the model predictions and the behavior of an actual filled rubber provides
estimates for the interphase thickness according to the microstructures con-
sidered.

2. Morphologically representative pattern-based self-consistent model

2.1. General theory

The main motivation of the MRP self-consistent model introduced by
Bornert (1996) is to account for some dispersion and size effects that cannot
be included in classical homogenization schemes. Given a schematic repre-
sentation of a material reinforced by randomly distributed particles of various
sizes and geometries (Fig. 1), the idea is to recognize the various patterns
that are found within the material (Fig. 2) and to build a homogenization
scheme that takes them into account.
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Figure 2: Morphological representative patterns (embedded in the unbounded homoge-
neous equivalent medium) that may be taken into account in the MRP self-consistent
model applied to the material shown in Fig. 1.

Let us assume that the heterogeneous material contains p constitutive
phases with volume fractions fj and elastic stiffness tensorsCj, j ∈ {1, 2, ...p}.
The objective of any homogenization scheme is to compute the behavior Ch

of the homogeneous equivalent medium (HEM) defined by

Ch =
∑

j

fj Cj : Aj (1)

where the average strain localization tensor Aj in phase j is given by

ϵ̄j = Aj : E (2)

where ϵ̄j is the average strain in phase j and E is the overall strain applied
to the heterogeneous material that may be written as

E =
∑

j

fj ϵ̄j . (3)

Let us account now for the description of the heterogeneous material
as a perfectly disordered distribution of patterns of n different types, plus
a complement of matrix material left between the patterns, as shown in
Fig. 2. The latter residual matrix volume has no specific shape, but it is
treated as a single spherical homogeneous pattern Ω0 because of its statisti-
cally isotropic distribution over the heterogeneous material, as done in the
Hashin and Shtrikman (1963) approach for bounds. This differs from the
spherical shape used for the other patterns, which originates from the actual
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shape of the particles. In general, several copies of each Ωλ pattern (λ > 0)
are present in the heterogeneous medium, but considering a single copy is
sufficient in a self-consistent model, where any pattern is assumed to behave
as if surrounded by the unbounded HEM only (see Fig. 2). Various types
of volume fractions come into play in the model, at either the local scale
of a pattern or at the global scale of the heterogeneous material, and they
must be defined carefully. Let Vλ denote the total volume of the patterns of
type Ωλ found in a volume V of heterogeneous material (with V =

∑

λ Vλ),
and let V λ

j denote the total volume of phase j over all these patterns (with
Vλ =

∑

j V
λ
j , ∀λ, and fj =

∑

λ V
λ
j /V , ∀j). Therefore, ϕλ

j = V λ
j /(fjV ) de-

note the fraction of the total volume of phase j that belongs to the set of
λ-type patterns, with λ ∈ {0, 1, ..., n}, and it must not be mixed up with the
volume fraction of phase j in a Ωλ pattern, which is equal to V λ

j /Vλ. One
has

∑

λ ϕ
λ
j = 1, ∀j, obviously, and the average strain ϵ̄j writes also as

ϵ̄j =
∑

λ

ϕλ
j ϵ

λ
j (4)

where ϵλj , the average strain over phase j in pattern λ, is defined by the
localization tensor Aλ

j associated to pattern λ,

ϵλj = Aλ
j : ϵ (5)

where ϵ denotes the auxiliary far strain field applied to the unbounded HEM
surrounding pattern Ωλ (Fig. 2), which may differ from E. Combining (4)
and (5) gives

ϵ̄j =
∑

λ

ϕλ
jA

λ
j : ϵ (6)

and substituting (6) into (3) gives the relation between the far fields ϵ and
E :

ϵ =

(

∑

j

fj
∑

λ

ϕλ
jA

λ
j

)

−1

: E . (7)

Introducing (6) and (7) into (2) provides the expression of the localization
tensor over phase j in the heterogeneous material :

Aj =
∑

λ

ϕλ
jA

λ
j :

(

∑

j

fj
∑

λ

ϕλ
jA

λ
j

)

−1

(8)
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which, once introduced in (1), gives Ch finally as

Ch =
∑

j

fj Cj :
∑

λ

ϕλ
jA

λ
j :

(

∑

j

fj
∑

λ

ϕλ
jA

λ
j

)

−1

. (9)

Note that (9) simplifies into the generalized self-consistent model of Hervé
and Zaoui (1993) if a single type of heterogeneous pattern is considered, with-
out any homogeneous pattern (Ω0). Considering (9), the evaluation of the
effective behavior of the heterogeneous material amounts to computing the
strain localization tensors Aλ

j over all phases in all different patterns. These
tensors depend on Ch, since each pattern is surrounded by the unbounded
HEM, and consequently (9) is an implicit equation in Ch, as expected in a
self-consistent scheme. Eq. (8) looks very similar to Eq. (8) of Marcadon
et al. (2007) but with a significant difference, since ϕλ

j has been erroneously
replaced by cλ, which denotes the volume fraction of type-λ patterns over the
heterogeneous material (cλ = Vλ/V ). This mistake may mislead the reader of
Marcadon et al. (2007) but does not seem to have spread in the calculations.

In the following, the study will focus on an isotropic case where an
isotropic polymer matrix is reinforced by a statistically isotropic distribu-
tion of spherical isotropic particles with account of an isotropic interphase
at the matrix-particle interface. Therefore, Eq. (9) is simplified by project-
ing the strain localization tensors onto the spherical and deviatoric isotropic
fourth-order tensors J = 1

3
i ⊗ i and K = I − J , where i and I denote

the identity tensors of second and fourth order, respectively, which gives
Aj = AdjK+AsjJ and Aλ

j = Aλ
djK+Aλ

sjJ . This allows working with scalar
quantities, and Eq. (8) transforms into:

Adj =

∑

λ ϕ
λ
jA

λ
dj

∑

j fj
∑

λ ϕ
λ
jA

λ
dj

and Asj =

∑

λ ϕ
λ
jA

λ
sj

∑

j fj
∑

λ ϕ
λ
jA

λ
sj

. (10)

The behavior of phase j being characterized by its shear modulus Gj and
its bulk modulus Kj, the moduli Gh and Kh of the isotropic homogeneous
equivalent medium are given, from (9), by

Gh =

∑

j fjGj

∑

λ ϕ
λ
jA

λ
dj

∑

j fj
∑

λ ϕ
λ
jA

λ
dj

and Kh =

∑

j fjKj

∑

λ ϕ
λ
jA

λ
sj

∑

j fj
∑

λ ϕ
λ
jA

λ
sj

. (11)

This actually is a system of two coupled equations, since the strain localiza-
tion tensors Aλ

dj and Aλ
sj depend on Gh and Kh. These tensors are detailed
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in the next section for two specific patterns that will be of special interest in
the model application section, namely a pure matrix pattern and a 3-phase
spherical pattern.

2.2. Localization tensors for a pure matrix pattern and a 3-phase spherical

pattern

Pattern Ω0 (Fig. 2) is a spherical matrix domain. When embedded in
the unbounded HEM, the strain localization tensor for such a pattern yields
from the classical Eshelby (1957) solution:

A0
d3 =

(

1 +
6

5

G3 −Gh

3Kh + 4Gh

Kh + 2Gh

Gh

)

−1

and A0
s3 =

(

1 + 3
K3 −Kh

3Kh + 4Gh

)

−1

(12)
where G3 and K3 denote the shear and bulk moduli of the isotropic matrix.

The other patterns sketched in Fig. 2 are made of a spherical particle
coated with an interphase and surrounded by a matrix shell. When this
pattern is embedded in the unbounded HEM, the localization problem re-
minds the 4-phase micromechanical model introduced by Maurer (1990) and
generalized by Hervé and Zaoui (1993). We recall the expressions of the
corresponding localization tensors that may be found in Hervé and Zaoui
(1993). In an effort of consistency, we will use their notations and the filler
particles, the interphase, the matrix, and the HEM are referred to as phases
1, 2, 3, and 4, respectively. According to Eq. (36) of Hervé and Zaoui (1993),
the deviatoric part of the strain localization tensor in a λ-type pattern is

Aλ
dj = Aj −

7

5

(

1 +
3Kj

Gj

)

(Rλ
j )

5 − (Rλ
j−1)

5

(Rλ
j )

3 − (Rλ
j−1)

3
Bj ∀j ∈ {1, 2, 3} (13)

with λ > 0 and Rλ
j the outer radius of phase j (taking Rλ

0 = 0), where1

A1 =
P

(3)
22

χ
, A2 =

P
(3)
22 P

(1)
11 − P

(3)
21 P

(1)
12

χ
, A3 =

P
(3)
22 P

(2)
11 − P

(3)
21 P

(2)
12

χ
, (14)

and

B1 =
−P

(3)
21

χ
, B2 =

P
(3)
22 P

(1)
21 − P

(3)
21 P

(1)
22

χ
, B3 =

P
(3)
22 P

(2)
21 − P

(3)
21 P

(2)
22

χ
, (15)

1Up to the end of this paragraph, upperscripts between brackets refer to phase numbers
and pairs of subscripts refer to matrix components.
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with χ = P
(3)
11 P

(3)
22 − P

(3)
21 P

(3)
12 and P (1) = M (1), P (2) = M (2).M (1), P (3) =

M (3).M (2).M (1). The 4 × 4 M (j) matrices are explicitly given by Eq. (27)
of Hervé and Zaoui (1993) and are not repeated here for brevity.

For the spherical part of the strain localization tensor, Eqs (14) of Hervé
and Zaoui (1993) gives

Aλ
s1 =

1

Q
(3)
11

, Aλ
s2 =

Q
(1)
11

Q
(3)
11

, Aλ
s3 =

Q
(2)
11

Q
(3)
11

(16)

with λ > 0 and Q(1) = N (1), Q(2) = N (2).N (1), Q(3) = N (3).N (2).N (1).
Matrix N (j) is defined as

N (j) =
1

3Kj+1 + 4Gj+1

[

3Kj + 4Gj+1 4(Gj+1 −Gj)/(R
λ
j )

3

3(Kj+1 −Kj)(R
λ
j )

3 3Kj+1 + 4Gj

]

. (17)

It may be noted that matrices M (j) and N (j) depend on the outer radius
Rλ

j of phase j and on the elastic constants of phases j and j + 1 only. Con-

sequently, M (3) and N (3) involve the shear and bulk moduli of the HEM.

2.3. Model parameters

When dealing with a distribution of particle sizes, one has to define the
volume fractions and geometric parameters involved in the MRP approach.
First, when all particles are of the same chemical nature, it seems reasonable
from a physical point of view to assume that the interphase thickness e is
independent of the particle size, and is therefore constant for all patterns Ωλ

with λ > 0. Second, let us assume that the particle sizes and the fraction
number of particles of each size are known. This is provided by the particle
size distribution when it is available. For each particle size, a pattern Ωλ is
defined, where the particle radius is Rλ

1 and the outer radius of the inter-
phase layer is Rλ

2 = Rλ
1 + e (Fig. 2). The probability of finding a particle

of radius Rλ
1 over all particles within the reinforced material is denoted αλ

(with
∑

λ>0 αλ = 1). With these notations, the fraction of the total vol-
ume of phase j that is found in type-λ patterns, ϕλ

j , is obtained from simple
geometric considerations and one has

ϕλ
1 =

αλ(Rλ
1)

3

∑

λ>0
αλ(Rλ

1)
3 ,

ϕλ
2 =

αλ

[

(Rλ
1
+e)

3

−(Rλ
1)

3
]

∑

λ>0
αλ

[

(Rλ
1
+e)

3

−(Rλ
1)

3
] ,

ϕλ
3 =

f1αλ

[

(Rλ
3)

3

−(Rλ
1
+e)

3
]

∑

λ>0
αλ

[

(Rλ
1)

3

−f1(Rλ
1
+e)

3
]

(18)
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for λ > 0. From these equations, one notes that the relations
∑

λ>0 ϕ
λ
1 = 1

and
∑

λ>0 ϕ
λ
2 = 1 do hold and that the choice of the outer radii Rλ

3 , λ ∈
{1, ..., n}, decides of the volume fractions ϕλ

3 , λ ∈ {1, ..., n}. Equivalently,
giving a set of ϕλ

3 values decides of the outer radii Rλ
3 . Pattern Ω0 is made

of matrix material only (ϕ0
1 = ϕ0

2 = 0), and it contains a fraction ϕ0
3 of the

total matrix volume available in the heterogeneous material, with

ϕ0
3 = 1−

∑

λ>0

ϕλ
3 . (19)

To sum up, in order to run an MRP approach as sketched in Fig. 2 with
a given particle size distribution, one must provide the interphase thickness
e and the set of matrix volume fractions ϕλ

3 , λ ∈ {1, ..., n}, or equivalently
the set of outer radii Rλ

3 , λ ∈ {1, ..., n}. The coupled implicit equations (11)
must be solved finally to get Gh and Kh, and a mere fixed-point method is
very efficient for that purpose.

2.4. Viscoelasticity

The equations involved by the MRP self-consistent model for the pat-
terns sketched in Fig. 2, where all phases are isotropic, have been writ-
ten above within an elasticity framework, and analytical expressions have
been obtained. Therefore, by applying the elastic-viscoelastic correspondence
principle stated by Hashin (1970), these expressions extend readily to lin-
ear viscoelasticity by replacing the elastic moduli (G,K) by their respective
complex viscoelastic counterparts (G∗, K∗). This principle provides a way
to apply micromechanics models within a linear viscoelasticity framework
that is much easier than the classical Laplace-Carson transform. The com-
plex moduli relate a harmonic strain loading to the steady harmonic stress
response of a linear viscoelastic material, and they depend of the applied
frequency. Actually, the real and imaginary parts of these complex moduli,
defining the storage and loss moduli of the material, respectively, provide
the same information as the viscoelastic relaxation or creep functions. One
reason for using complex moduli is that the storage and loss shear moduli,
for instance, can be measured easily over a wide range of frequencies with
dynamic mechanical analysis machines. Since linear viscoelasticity provides
much more information than elasticity for polymers, it helps assessing the
relevance of micromechanics models more strictly. The MRP self-consistent
model is therefore applied in such a viscoelastic context in the following.
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3. Application to a carbon-black filled styrene butadiene gum

In order to apply the MRP self-consistent model to a realistic material,
the linear viscoelasticity of carbon-black filled SBRs with a filler-rubber in-
terphase is considered. When filled rubbers are prepared, a weight fraction of
carbon black is added to the gum, but the former is an extremely thin powder
that tends to agglomerate into what is considered in this paper as particles
idealized as spheres. Therefore, the latter contain some gum trapped be-
tween filler subparticles, and an effective volume content of particles can be
defined that we denote f1. As explained by Diani et al. (2013), the values
that are used here are consistent with experimental measures based on the
experimental procedure of Medalia (1972). In addition to a volume fraction
and an average size, these particles may also have a size distribution, and
the distance between nearest neighbors may also be distributed around an
average value. These are typical microstructure parameters (among many
others, see Torquato, 2002, for instance) that the present study tries to ac-
count for with the MRP approach in order to evaluate their effects on the
effective properties of filled rubbers.

3.1. Materials and behavior

The viscoelastic tensile behaviors of an unfilled SBR and of several carbon-
black filled SBR materials (manufactured with the same SBR gum) were
measured by dynamic mechanical analysis. Assuming that the bulk modulus
of the unfilled rubber does not depend on frequency (K3 = 3.5 GPa), the
dynamic shear modulus of the unfilled rubber is deduced; it is shown in Fig.
3 with its approximation by a generalized Maxwell model. Note that albeit
the bulk modulus of the SBR does change through the glass transition, this
approximation is fairly reasonable when focusing on the viscoelastic shear
modulus. Actually, this assumption is supported by the fact that in polymer
networks, the bulk modulus results mainly from van der Waals interactions
and not from entropy change (Diani et al., 2008). Then, assuming that the
viscoelastic shear modulus of the interphase is enhanced compared to the
viscoelastic shear modulus of the bulk gum shown in Fig. 3, because of a
reduced molecular mobility, and assuming the carbon black is elastic and in-
compressible, with G1 = 70 GPa, Diani et al. (2013) obtained good estimates
of the viscoelasticity of the filled SBRs by applying the 4-phase model with
a constant interphase thickness of about 5 nm for filler aggregates with an
average radius of 30 nm. An example of the comparison between model and
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Figure 3: (a) Storage and loss shear moduli of the unfilled SBR and approximation by a
generalized Maxwell model. (b) Comparison between the unfilled SBR viscoelasticity and
the assumed viscoelasticity of the interphase at the rubber-filler interface.

experiment is shown in Fig. 4 for the SBR filled with 40 per hundred rubber
(phr) carbon black, where a 30% effective volume fraction of filler could be
evaluated. The results for other carbon-black contents can also be found in
Fig. 6 of Diani et al. (2013).

An interphase thickness of 5 nm in carbon-black filled SBRs may be
considered as too large, though it has never been measured in systems like
ours. In order to investigate the impacts of a possible effect of dispersing the
particles more or less uniformly and of a probable particle size distribution
on the estimate of the viscoelastic behavior of filled rubbers, the MRP self-
consistent model is applied assuming that the behavior of the interphase
estimated by Diani et al. (2013) is reasonable. Therefore, in the following,
phase 1 consists of incompressible elastic spherical particles with G1 = 70
GPa, with a radius of 30 nm (except when a radius distribution is defined)
and with a volume fraction of f1 = 0.3. Phase 2 is a 5-nm thick interphase
with a viscoelastic shear modulus as shown in Fig. 3 and with a constant
bulk modulus of K2 = 3.5 GPa. Phase 3 is the viscoelastic SBR gum, with a
viscoelastic shear modulus as shown in Fig. 3 and a constant bulk modulus
of K3 = 3.5 GPa. Moreover, the viscoelastic shear moduli provided by the
MRP self-consistent model with various pattern choices are compared to the
4-phase model prediction that was found to fit the behavior of the 40 phr-
filled rubber quite well (Fig. 4). This allows a more precise comparison, since
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Figure 4: Comparison between the experimental viscoelastic shear modulus of the SBR
filled with 40 phr of carbon black and the predictions of the 4-phase model using the two
behaviors shown in Fig. 3b.

experimental noise is removed.

3.2. Particle dispersion effect

By varying the fraction ϕ0
3 of the total matrix volume that is allocated to

pattern Ω0, the MRP approach makes possible to account for filler clusters
within the material. For instance, a MRP model defined by patterns Ω0 and
Ω1 only (Fig. 2), with a given interphase thickness in pattern Ω1, defines the
case of particles which are monodisperse in size but with a possible dispersion
effect. For instance, the matrix shell around the coated particles is thin if
ϕ0
3 is large, and the particles are close to each other. It may be pointed

out that if the constraint of the same interphase thickness for all particles
were relaxed, then pattern Ω1 would describe all cases of fillers with such
polydisperse sizes that all coated particles are homothetic to each other, but
this is not considered here.

Considering patterns Ω0 and Ω1 only, the fraction of the total volume of
heterogeneous material which is contained in type-1 patterns, c1 = V1/(V0 +
V1), can be used to characterize the dispersion of particles. For instance,
if this parameter is large, the volume of the Ω0 pattern is small, i.e. ϕ0

3 is
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small, and the particles are far from each other. According to the Kepler
conjecture proved by Hales (2005), no packing of identical spheres is denser
than the FCC (face-centered cubic) lattice, and therefore the largest possible
value for c1 is π/

√
18 ≃ 0.74 (and ϕ0

3 is minimal). Since FCC lattice is
periodic and anisotropic, random isotropic dense packings of identical spheres
have also been studied by computer simulation and a limit value of 0.64
seems reasonably acceptable (Torquato et al., 2000, Farr and Groot, 2009, for
instance), which is very close to the experimental value of Scott and Kilgour
(1969), although the problem is not well-defined mathematically (Torquato
et al., 2000). By contrast, the minimum c1 value is obtained when pattern
Ω1 is made of particle and interphase only (coated particles agglomerate and
ϕ0
3 = 1), which leads to c1 = 1− f3 = (1+ e/R1

1)
3f1. Consequently, c1 ranges

from 0.48 to 0.74 when f1 = 0.3, R1
1 = 30 nm, and e = 5 nm.

Fig. 5 shows the effect of particle dispersion on the viscoelastic shear
modulus that is given by the MRP self-consistent model applied to monodis-
perse (in size) inclusions. It can be observed that decreasing c1 enhances the
shear viscoelastic modulus, and even though this increase is more noticeable
in the rubbery state (at low frequencies), it does exist also in the glassy state
(at high frequencies). Therefore, the MRP self consistent model predicts
that filler clusters have a reinforcing effect with respect to well-dispersed
fillers. Moreover, if pattern Ω1 does not contain the matrix material (clus-
tered particles), the experimental data for the 40 phr SBR is best fitted by
the model for an interphase thickness of ≃ 3 nm with all other parameters
unchanged. By contrast, if pattern Ω1 contains the largest volume fraction
compatible with c1 = 0.74 (well-dispersed particles), the experimental data is
well reproduced for an interphase thickness of 4.5 nm. As a consequence, the
interphase thickness of 5 nm deduced by fitting the 4-phase model probably
overestimated the actual value, since some filler clustering is very likely in
filled rubbers.

3.3. Particle size distribution effect

The MRP approach allows taking a particle size distribution into account
very directly, by varying the number and the content of the heterogeneous
patterns, as illustrated in Fig. 2. In order to study the resulting effect that is
predicted by the model, the particle size distribution only is varied, keeping
all other parameters fixed. For instance, a volume content of f1 = 0.3 and an
average particle radius of R1 = 30 nm are used. Moreover, the fraction of the
total matrix volume that belongs to pattern Ω0 keeps the value of ϕ0

3 = 0.5

13
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Figure 5: Storage and loss shear moduli of the reinforced rubber predicted by the MRP
self-consistent model, using patterns Ω0 and Ω1 only, and predicted by the 4-phase model.
Same interphase thickness (5 nm), filler content (0.3) and filler radius (30 nm) in all
calculations.

that was found in the previous section to fit well the case of monodisperse
particles coated by a 5-nm interphase with c0 = 1 − c1 = 0.26. It is quite
natural to use patterns of various sizes in the case of polydisperse particles,
although this is not necessary, and the question arises of the maximum pos-
sible packing of random spheres of various diameters. Of course, c0 values
lower than 0.26 can easily be reached, as shown by Farr et al. (2009), for
instance, where up to c0 ≈ 0.17 was reached with suitable fractions of small,
medium, and large spheres with size ratios 1:3:9, but the value of 0.26 will
nevertheless be used below for easier comparisons with the results of the
previous section.

Two particle size distributions are considered here. They are presented
in Fig. 6 in terms of the occurrence frequency αλ (with

∑

λ>0 αλ = 1) of
particles with radius Rλ

1 . They are adapted from the distributions mea-
sured in two filled SBRs by Klüppel (2003), by applying a shift so that
(
∑

λ>0(R
λ
1)

3αλ

)1/3
= 30 nm. In other words, the average volume of the par-

ticles corresponds to a sphere with 30-nm radius. As mentioned in section
2.3, once the distribution (Rλ

1 , α
λ) is defined for λ ∈ {1, ..., n}, the last input

required is the set of ϕλ
3 values, or equivalently Rλ

3 for λ ∈ {1, ..., n}. This
defines how the matrix volume that is not used in pattern Ω0 is distributed
among the other patterns, and it is easier to define a set of ϕλ

3 (positive and
such that

∑

λ>0 ϕ
λ
3 = 1 − ϕ0

3) than a set of admissible Rλ
3 because of the
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Figure 6: (a) The distributions of particle radius Rλ
1
used for carbon-black clusters, and

(b) the resulting distribution of Rλ
3
−Rλ

2
when the same amount of matrix phase is assumed

in all sets of heterogeneous patterns.

constraint Rλ
3 ≥ Rλ

1 + e for λ ∈ {1, ..., n}. As a first step, we consider the
case where the matrix volume is the same for all sets of heterogeneous pat-
terns, i.e. ϕλ

3 = (1 − ϕ0
3)/n for λ ∈ {1, ..., n}. For the two size distributions

shown in Fig. 6a, this simple assumption leads to the distributions of phase
3 thickness Rλ

3 −Rλ
2 around the coated particles shown in Fig. 6b.

All parameters being defined, the MRP self-consistent model can be ap-
plied with either 15 (first distribution) or 17 (second distribution) patterns.
The viscoelastic shear moduli calculated with Eq. (11) are compared in
Fig. 7 to the results obtained in the monodisperse case, and the effect of
the size distribution appears negligible. Note that different results, with a
significant effect of size distribution, would have been obtained if the dis-
tributions were shifted such that the average radius

∑

λ>0 R
λ
1 αλ (instead of

(
∑

λ>0(R
λ
1)

3αλ

)1/3
) had been taken equal to 30 nm. The above noticeable

result would simplify the use of the model significantly, since any particle size
distribution could be reduced to two patterns only, without affecting the ho-
mogenization result significantly, provided the appropriate definition of the
equivalent particle radius is used. Nonetheless, the crude assumption of a
uniform distribution of matrix volume over all sets of heterogeneous patterns
remains questionable, and variants are explored below.
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Figure 7: Effect of the particle size distribution on the prediction of the viscoelastic shear
modulus of the filled rubber by the MRP self-consistent model.

3.4. Interparticle distance effect

The distribution of the volume fraction of phase 3 in the patterns, ϕλ
3 for

λ ∈ {0, ..., n}, is strongly related to the distribution of interparticle distance.
Keeping distribution 1 for the particle size (Fig. 6), the above assumption
of equal values of ϕλ

3 for λ ∈ {1, ..., n} is now relaxed in order to test various
schematizations of the material. One simple distribution of ϕλ

3 considers
that the thickness of phase 3 layer increases with the particle radius, which
corresponds to a material where small particles are close to each other and
far from large ones. By contrast, the thickness of the matrix layer may
decrease when the particle radius increases in another distribution, and thus
large particles would be closely packed, with small particles repelled farther.
Fig. 8 shows examples of such cases (distributions A, B, and C), with the
same particle size distribution (Rλ

1 , αλ) but with various sets of outer radius
Rλ

3 , to which the model has been applied.
Fig. 9 displays the viscoelastic shear modulus predicted by the model for

each material representation. By comparing to Fig. 5, it can be observed that
the distribution of the matrix thickness around the particles has a stronger
impact on the behavior of the homogeneous equivalent material than the dis-
tribution of the particle size, with an evident reinforcement when the matrix
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Figure 9: Effect of the distribution of the matrix volume over the patterns on the estimate
of the viscoelastic shear modulus of the filled rubber using the MRP self-consistent model.
The three distributions used are defined in Fig. 8.

17



phase is mostly concentrated around the smaller particles (distribution C
in Fig. 8). For such a microstructure, the viscoelastic shear modulus differs
from what was obtained with the (monodisperse) two-pattern representation,
which has been shown above to approximate a uniform distribution of ϕλ

3 val-
ues very well (distribution A in Fig. 8). Therefore, specific distributions of
interparticle distances may enhance the role of the interphase within particle
reinforced polymers. On the contrary, although it differs significantly from
distribution A, distribution B does not lead to a noticeably different effective
viscoelastic behavior. Using distribution C, the model can also be used to
estimate the interphase thickness by fitting to the reference curve of Fig. 4,
which leads to e = 4.3 nm. Consequently, the distribution of interparti-
cle distances, which cannot be accounted for with a simplified two-pattern
model, has a non-negligible effect, but which is second-order compared to the
particle dispersion effect when evaluating the interphase thickness.

3.5. Bulk modulus

Up to this point, the predicted viscoelastic shear modulus only has been
presented, but the model also predicts the viscoelastic bulk modulus with
Eq. (11). Due to expression of Aλ

sj (j ∈ {1, 2, 3}), Kh depends on both shear
and bulk moduli of all phases. In polymers, a drop of the bulk modulus by a
factor between 1.5 and 3 is expected when sweeping from high frequencies to
low frequencies. The assumption of an elastic response of the matrix material
to a volume change, i.e. a constant bulk modulus within the matrix (and
in the interphase, consequently, where the same value is used), is reasonable
when the shear modulus of the homogeneous equivalent material is studied,
but is questionable when its bulk modulus is analyzed. Actually, with the
chosen inputs, the variations of the HEM storage bulk modulus with loading
frequency have been found unrealistically small (less than 10%) in all our
simulation cases. Therefore, we may focus on the results obtained at the two
ends of the frequency range only, and this amounts to considering two elastic
problems.

At low frequency, in the rubbery state, the matrix is very soft and the
interphase is both harder than the matrix and softer than the particles. At
high frequency, in the glassy state, the interphase behaves like the matrix,
which is much stiffer than in the rubbery state but still softer than the
reinforcing particles. The model predicts that the particle dispersion, the
particle size distribution, and the distribution of the matrix phase in the
patterns all have a negligible effect on the bulk modulus Kh when the matrix
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is in the rubbery state. When the matrix is in the glassy state, the trends
found for the bulk modulus are similar to the trends already reported for the
shear modulus: increasing the volume fraction of pattern Ω0 has a stiffening
effect, the particle size distribution has a very slight effect, and assigning
more matrix around the small particles leads to higher Kh values.

4. Conclusion

A previous study on the viscoelasticity of carbon-black filled SBRs had
shown experimental evidences of the existence of a viscoelastic interphase at
the filler-rubber interface. In order to estimate the behavior and the thick-
ness of this interphase, which are difficult to reach experimentally, a mere
4-phase self-consistent model was applied and lead to an arguably large inter-
phase thickness of 5 nm. In an effort to understand the effect of microstruc-
ture parameters on the material behavior, a morphological representative
pattern-based self-consistent model has been applied to estimate the overall
viscoelastic response of a viscoelastic matrix reinforced by elastic spherical
particles coated by a thin viscoelastic interphase. The general equations of
the MRP self-consistent model have been detailed to promote a wider diffu-
sion of this potentially rich approach, which so far had been used with two
patterns only. For the first time, the use of a large number of patterns has
allowed studying the effects of microstructure parameters such as particle dis-
persion, particle size distribution, and interparticle distance distribution on
the material behavior. The results show a significant impact of the particle
dispersion, a weak effect of the particle distribution for a fixed average parti-
cle volume, and a moderate effect of the distribution of interparticle distance.
Finally, the results also showed that the interphase thickness would be eval-
uated to smaller values if the particle dispersion and interparticle distance
could be measured in the filled rubbers considered.
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Colombini, D., Merle, G., Albérola, N.D., 1999. Evidence of an interphase
relaxation in a ternary polymer blend through a reverse mechanical
modeling. J. Macromol. Sci. B, 38, 957-970.
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